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1 Introduction

We consider time-global existence and blow-up of solutions of the following system
related to chemotaxis

(u; =V - (Vu—xuVv), z€Q, t>0,
0= Av —yv+ au, zeN, t>0,
(P) ) du v
v %:5'7{:0, xEBQ,t>0,
L u(+,0) = ug, z €N

Here ) is a bounded domain in R? with smooth boundary 0, x, v and a are postive
constants and g, is a non-negative smooth function on Q.

There exists a unique solution (u,v) to (P) defined on a maximal interval of existence
[0, Trmaz), Which is smooth in z € Qand 0 <t < Thnaz- If g £0 in (2, the solution satisfies
that u(z,t) > 0, v(z,t) > 0 for (z,t) € Q X (0, Tinaz). If Tmaz < 00, We can observe the
following. '

Proposition 1 If T < 00, then the following relations hold.

(i) . h,}n l|ulog ul| 1) = oo

—lmazx

(i) lim [[V]| p2() = oo

t—

(iii) For a > x/2, then lim; .1, [ e*’®tdz = co. |

Then, if Tyer < 00, we have that
im (s Ol =, lim (o, 8)|z=@ = oo,

which we mean that the solution blows up in finite time.
Let L be an arbitrary positive constant and let Dy, = {z € R?||z| < L}. We have the
following results.

Theorem 1 Suppose

Q=D and |lugllzpy < 8/(ax). (1)
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Let ug(z) = ug(—z) on Dy. Then (P) admits a unique classical solution (u,v) on Df x
(0, 00) satisfying :
sup{a )=o) + I, Dllmio} < 00

Definition 1 We say that q is a blow-up point of u if there exists {tx}3>; C [0, Trmaz)
and {z:}32, C Q satisfying u(zy,tp) — 00, tg — Tmee < 00 and 2, — q € O as k — co.
We denote the set of all blow-up pomts of u by B.

Theorem 2 Let (1) hold. Let a. be a root of a, — x/2 — |Jug||L1(ya?/16m = 0 such
that a, < x. If Thpar < 00, then there exists a point g € B O satisfying

. 27
limsup u(z,t)dz >
t—Tmaz Q ﬂ B(qys) . a.x

for any € > 0.

Definition 2 For q € B, we say that q is an isolated blow-up point if there exists
6 > 0 such that

sup{u(z,t)| 0 <t < Trnaz and z € {B(q,6)\B(q,€)}[ |} < 0 Jor any € € (0, 96).

We denote the set of all tsolated blow-up points of u by B;.

Theorem 3 Suppose Tpqr < co. Then the following properties hold.
For q € By, there exist two positive constants 6, m > m, and a non-negative function

f € LNE(g,8) NC(E(g,6)\{q}) such that
w*-hmt__,TmmU(', t) = m5q +f m M(E(Qa 6))7
where E(g,6) = B(q,6) N,

_JAn/(ax) ifqedf,
M = 8n/(ax) ifqgeN

and M(S) is the Banach space consisting of all Radon measures on a compact Hausdorff
space S with the usual norm.

For a set K, we denote the number of elements of K by *E. The following corollary is
an immediate consequence of Theorem 3.

Corollary 1 Suppose Tmar < co. Then B satisfies that

1
B N9} + 5B N9} < Xlluollziay-

The following collorary is an immediate consequence of Theorem 3 and [6].

Corollary 2 Suppose Q = Dy, and that ug be radially symmetric. If [, uo(z)dz >
8/ (ax) and [, uo(z)|z[*dz is sufficiently small, then Trnq, < 0o and there exist a positive
constant m > 87/(ax) and a non-negative function f € L'(Dy) N C(Dr\{0}) such that

w*-limy pq,,, u(-,t) =mé + f in M(Dr).
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2  Proof of Theorem 1

Lemma 1 Let (u,v) be a solution to (P). Put

W(t) = L {ulogu — % (IVU|2 + 'y'uz)} dz.

Then, it follows that

d
£W(t) + /Qu[V(logu —xv)|*dz =0 Jort € (0, Thnaz)-

Proof of Lemma 1: Multiplying logu — xv by the first equation of (P) and using the
second equation of (P), then we have this lemma. '

Lemma 2 Suppose that (u,v) is a solution to (P). Let a be an arbitrary positive
constant and let M =-||lug||;1. Then, the inequality

a/ uvdz < / ulogudr + M log (/ e‘“’dx) — Mlog M
Q Q Q
holds for 0 <t < Tur.

Proof of Lemma 2. Let
: M
p= / e®dr and ¢ = —e™.
Then, we have that

v\ u
< L(—log;) Md:z:,

by which together with Jensen’s inequality we get this lemma.

Proposition 2 If w is a function on Dy, satisfies that w € C* (D), w(z) = w(—z)

on 0D;, and
ow

ol

then there exists absolute constants C and K such that

0 on 0Dy,

, .
log ( / erm> <— / VwlPdz + Cllw||p + K.
Q 167 Jao
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Proof of Theorem 1. By Lemmas 1, 2 and the second equation of (P), we have that

;Z l L 2 2 <N ( av(z,t) )_
(a 2)QL(|VU(JJJ)| + ylv(z, 1) )dﬂ:_W(O)+Mlog Le dz ) — Mlog M,

by which togehter with Proposition 2 it follows that

{(a _ 2<2.) 211. _ ];46‘71: } [ (1960, 0% + ooz, ) de < W(O)+M (% + K- 1ogM) -

Because of ||upl|z1@) = M < 8m/ay, we can take a constant a satisfying

x\ 1 Ma?
<a—2>a Tor >V

Then gives

- sup (IVv|? + 4|v[})dz < co.
0<t<Tmaz Dr

and hence Tha, = 0o by the case (ii) of Proposition 1. O

3 Proof of Theorem 2

Proposition 3 Let h > 0 and & = {w € CY(DL)|%2 = 0 on 8D and ||w||px < h}.
Then, for any F C £ satisfy 1 or 2:

(i) For any e > 0, there exists a positive constant Cy s.t.

1+e
w < 2 .
log(Ae da:)_ 16”1}|le dx+CEfor@€f

(ii) There exist a sequence {wx} C F, a point ¢ € 8Dy, a constant m € [1/2,1) and a
reqular measure Y s.t.

exp(wy)p.
fDL exp(wk')p* dr

w* - 1Moo

= mbg + 1 in M(D),

. _ 8
where P = W

Next we consider the following elliptic problem related to the second equation of (P).

O=Aw—-yw+ f, z€Q,
(EE)

é13:0, x € 0N}

on

with f € L(Q),> 0.
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Proposition 4 Let g € Q. Then there exists a positive constant 1y such that for
n € (0,m0) there exists a positive constant Cy, satisfying

C dz
e’dr < exp | —2— / —
KlﬂB(qm) =P (770 - 77”f||él(m) jzj<2m0 |]°
where ]
— dx if g e,
) %1/5((”0)) £ faq
-—"7—0/ \fldz  if g € BQ.
m Q{1 D(g,m0)

Proof of Theorem 2: Let a be a positive constant satisfying
x\1 Ma?
—=) - - > 0.
(a 2) a 16w

We assume that {av} satisfies 1 of Proposition 3, by which together with the arguments
of proof of Theorem 1 it follows that T,,,, = co. It is the contradiction. Then, for any

positive constant a with
x\ 1 Ma?
- == >0
(a 2) o 16m

co = limsup [ e*dzx
t—Trax Q

we observe that

1
< —limsup

/ e“dzx for any € > 0, (2)
m t—=Tmoe Q’ﬂ B(q,(f) .

by which together with Proposition 4 we have this theorem. O

4 Proof of Theorem -3

By using Proposition 1 and Lemmas 1 and 2, we have (2) for any ¢ € Br and any
a > x/2, by which together with Proposition 4 we have this theorem.
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