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In the talk we $\mathrm{h}\mathrm{a}\dot{\mathrm{v}}\mathrm{e}$ presented a partial generalization of a theorem due to Masser
and David concerning the canonical height on a polarized abelian variety over a
number field. The essential part of the proof was to show an inequality between
naive heights of isogenous polarized abelian varieties.

Let $k$ be a number field, $A$ a $g$-dimensional abelian variety over $k$ , and $\mathcal{M}$ a very
ample line bundle over $A$ . The theta group $\mathcal{G}(\mathcal{M})$ of $\mathcal{M}$ is defined as

$\mathcal{G}(\mathcal{M}):--\cdot$

.

.

Via the multiplication on the.fibers the multiplicative group $\mathrm{G}_{\mathrm{m}}$ is a subgroup of
$\mathcal{G}(\mathcal{M})$ . Moreover we know that there exists a finite sequence $\delta=(d_{1}, \ldots, d_{g})$ of
rational integers such that $d_{i+1}$ divides $d_{i}$ and such that the theta group $\mathcal{G}(\mathcal{M})$ is
isomorphic over an algebraic closure $\overline{k}$ of $k$ to the group

$\mathcal{G}(\delta):=\mathrm{G}_{\mathrm{m}}\cross\prod_{i=1}^{\mathit{9}}\mu(d_{i})\cross\bigoplus_{i=1}^{g}\mathbb{Z}/d_{i}\mathbb{Z}$ ,

where $\mu(d_{i})$ is the group of $d_{i^{-}}\mathrm{t}\mathrm{h}$ roots of unity in $\overline{k}$ . We do not mention here the
group structure of $\mathcal{G}(\delta)$ . The sequence $\delta$ is the type of $\mathcal{M}$ and the integer $d:=\Pi_{i1}^{g}=d_{i}$

is the degree of $\mathcal{M}$ . An isomorphism $s$ of $\mathcal{G}(\mathcal{M})$ onto $\mathcal{G}(\delta)$ which is restricted to the
identity on $\mathrm{G}_{\mathrm{m}}$ is called a theta-structure on $(A, \mathcal{M})$ . For the detail we refer the
reader to [4], [5], or [2].

What is good about a theta-structure $s$ is that a basis $(\theta_{j})_{j=1}^{d}$ of the finite dimen-
sional vector space of global sections of $\mathcal{M}$ is determined up to a constant. The naive
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height $h$ of the triple $(A, \mathcal{M}, s)$ is by definition the logarithmic height of the $\overline{k}$-valued

point $(\theta_{j}(0))_{j}$ of the $(d-1)$-dimensional projective space $\mathrm{P}^{d-1}$ , i.e.,

$h(A, \mathcal{M}, S):=\frac{1}{[k\cdot \mathbb{Q}]}.\sum_{v}[k_{v} : \mathbb{Q}v]\log\max|j\theta_{j(\mathrm{o}})$ $|v$ .

Here the sum is over the set of normalized absolute values on $k$ .
With some conditions on $\mathcal{M}$ and $s$ , the naive height is in fact a height on a moduli

scheme. Namely, we have a quasi-projective scheme $M_{\delta}\mapsto \mathrm{P}^{d-1}$ over $\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{C}}}\mathbb{Z}[d^{-}1]$ such

that the set of triples $(A, \mathcal{M}, s)$ of type $\delta$ is in $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence with the set

of $\overline{k}$-valued points of $M_{\delta}$ . The correspondence is given by associating $(A, \mathcal{M}, s)$ with

the point $(\theta_{j}(\mathrm{o}))_{j=}^{d}1$ as described above. For the precise statement, see [5, Section 6].

Next we consider the situation that the line bundle $\mathcal{M}$ over $A$ is an inverse image

by an isogeny. That is, let $B$ be another abelian variety over $k,$ $N$ a very ample line

bundle over $B$ , and $f:Aarrow B$ an isogeny such that $f^{*}N\simeq \mathcal{M}$ . Then we obtain
naturally the theta group $\mathcal{G}(N)$ of $N$ from the theta group $\mathcal{G}(\mathcal{M})$ of $\mathcal{M}$ by taking

a subquotient. Hence if the theta-structure $s$ on $(A, \mathcal{M})$ is nice with respect to the

formation of the subquotient, it induces a theta-structure $t$ on $(B,N)$ . In this case
we say $s$ and $t$ are compatible [2, Definition 1.4].

The following is the key result mentioned at the beginning.

Theorem 0.1. Notation is the same as above. If $s$ and $t$ are compatible, then we
have

$h(A, \mathcal{M}, s)\geq h(B,N, t)$ . $\square$

As an application we obtain the next theorem.
Let $\mathcal{L}$ be an arbitrary ample line bundle over $A$ and set $\mathcal{M}:=(\mathcal{L}\otimes(-1)^{*}\mathcal{L})\otimes 4$

The line bundle $\mathcal{M}$ is very ample. Let $q_{\mathcal{L}}$ be the quadratic part of the canonical height
attached to $\mathcal{L}$ . For a finite extension field $F$ of $k$ , the function $q_{\mathcal{L}}$ is positive definite
on the finite dimensional real vector space $\mathbb{R}\otimes_{\mathbb{Z}}A(F)$ . The question is that what is

the non-zero minimum value of $q_{\mathcal{L}}$ on the lattice $A(F)/\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}$ in $\mathbb{R}\otimes_{\mathbb{Z}}A(F)$ . We do
not go now into the Lang-Silverman conjecture or the Lehmer conjecture as to lower

bounds of the minimum. We only note that a lower bound as below together with
the rank of $A(F)$ provides us with an explicit estimate for the number of F-valued
points with bounded heights.
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Theorem 0.2. If the abelian variety $A$ is simple and a theta-structure on $(A, \mathcal{M})$ is

defined over $k$ , then there exists a positive constant $C=C(g)$ such that

$A(p)\ni P\cdot$.
$n \mathit{0}-\iota orsion\min_{n}q_{\mathcal{L}}(P)>\frac{C}{h(A,\mathcal{M})^{3\mathit{9}\triangle^{31}(}g+1+\log\triangle)2gD^{2g+}1(1+\log D)2g}$,

where $h(A, \mathcal{M}):=\min_{s}h(A, \mathcal{M}, s),$ $\triangle:=[k:\mathbb{Q}]$ , and $D:=[F:k]$ . $\square$

Remark 0.3. When $\deg L=1$ , the theorem is due to Masser [3] and David [1]. $\square$

Remark 0.4. The constant $C$ in the theorem is effective if a set of generators of the
ring of automorphic forms and a set of generators of the ideal of cusp forms with
respect to a certain congruence subgroup is well understood. Precisely their Fourier
coefficients and their algebraic equations over the subring of theta functions. $\square$

Handling as examples Jacobians of curves, we often encounter non-simple abelian
varieties. His starting point is that the speaker would like to solve the following.

Problem 0.5. Remove the assumption simple in the theorem of Masser and David.

This seems possible if we are able to settle the next question in addition to our
result in the talk.

Question 0.6. Can we replace the naive height $h$ with the Faltings stable height
modulo a moderate error term?
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