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1. Introduction.

Let ||| - ||| be a unitarily invariant norm for matrices, that is, it is a norm with
TAV][| = {[| Al

for all matrices A and unitary ones U and V. Since |||A]|| is a function of the
singular values of A (see [5], where it is called a symmetric norming function), we

have

(1) [1F(AAD = [I1F (A" Al

for all real functions f. For the order induced by positive-semidefinite matrices, it
is known that

0<A<B implies |||A[l[<[[|B]-

The operator norm ||A|| = sup) ;=1 ||Az]| is one of unitarily invariant ones and the

following inequality holds for all matrices X and Y:
(2) NIXAY ] < [IXI] AN YL

In 1988, Ando [1] solved Bhatia’s conjecture of estimations for unitarily invariant

norms as the following general result:

Theorem A. Let f be a nonnegative operator monotone function on [0,00). If A

and B are positive-definite matrices, then

11£(A) = £B)III < NI (1A - BDIII-



In [3], one of the authors gave an equality condition for Ando’s inequality for
the case of the operator norm: For non-affine f, the equality holds if and only if
A =B and f(0) = 0.

Recently, based on Ando’s inequality, Bhatia and Kittaneh [2] generalized it,

which is paraphrased in terms of the bounds of X*X:

Theorem B. Let f be a nonnegative operator monotone function on [0,00). If A
and B are positive-definite matrices and X satisfles 0 < m < X*X < M for some

positive numbers m and M, then

@ Wax - xs@)is 2o lax - xB) ||

One of the authors also gave an equality condition of the above inequality for the
operator norm in [4]. But our approach does not suit for unitarily invariant norms.
In this paper, we give equality conditions for the above inequalities making use of
Ando’s approach in [1]. Moreover, we generalize the above inequality considering
the initial condition of f. Note that all the inequalities in this paper hold also
for operators on a Hilbert space if the unitarily invariant norms for operators in
discourse make sense.

To begin with, we discuss an extension of Ando’s one in the next section since

Theorem A played an essential role in the Bhatia-Kittaneh inequality.

2. Ando’s inequality. As we pointed out in [4], we need not nonnegativity for f

in the above inequalities, which is a sharp estimation even if f is nonnegative.

Theorem 1. Let f be operator monotone on [0,00). If A and B are positive-

semidefinite matrices, then

(4) I1£(A) = FBI < [||F(1A = Bl) — £(0)]]]-

The equality holds for non-affine f and positive-definite A and B if and only if
A= B.



The inequality (4) itself is obtained by applying Theorem A to a nonnegative
operator monotone function F(t) = f(t) — f(0). To see the equality condition, we
have only to show the following lemma, which is essential also in Ando’s inequality
as in the proof of Theorem A in [1]. Ando’s proof is based on the integral repre-
sentation of a nonnegative operator monotone function F: There exists a positive

Radon measure g on [0, co] with

F(A):a—}—bA+/ (t: A) }:——td,u()

(0,00)
In other words, if F is non-affine, then F(A) is nothing but an variation of a parallel

sum1: A=A(1+A)1=1-(1+4)""

Lemma 2. Let F be a nonnegative non-affine operator monotone function on

[0,00). If A and B are positive-semidefinite, then
IIF(A+ B) - F(B)II| < IIF (Al

Moreover, the equality does not hold if A is nonzero and B is positive-definite.

Proof. Considering the integral representation for F', we have only to show the

above inequality for the case F(z) = 1: . Since

0<1:(A4+B)—-1:B=B+1)'=A+B+1)"!
=(B+1)"1/2 (1 —(B+1)"Y2AB+1) + 1)’1) (B+1)71/2

= (B+1)72F ((B+1)7V2A(B +1)77) (B+1)7/2,

and (B +1)7! < 1/(k +1) for some k > 0 with B > k, we have

|||1:(A+B)—1:Bl||<||(B+1‘1||H|F (B+1)72AB+1)7)||| by (2)

. HIF ((B+1)"2A(B +1)71/?) H]
1

E+1
1

"k-l—l

]HF/A1/2 (B +1)"14/%) HI by (1)

—HFEA < IF(A]I-



If B is positive-definite, then k is positive, or 1/(k 4+ 1) <'1. So the last inequality

is exchanged for

Ay 1IIIF( W< HECAI

for nonzero A. O

Remark. If F(t) = a + bt for a,b > 0, a nonnegative affine function, then we have

F(A+ B) — F(B) =bA < F(A) and hence
IIF(A+ B) = FB)IIl < IIF (A,

in which the equality holds if F(0) =a =0.

For completeness, we sketch a proof of the above theorem:

Proof of Theorem 1. For a nonnegative operator monotone functon F(t) = f(t) —
f(0), we have
|F(A) — F(B)| < F(|A- Bl + B) - F(B)

and Lemma 2 shows
I|F(|A — B] + B) — F(B)|l| < |[|F(|A - B|)lll,

so the required inequality yields. Moreover Lemma 2 shows |A — B| = 0, that is
A=B.

3. The Bhatia-Kittaneh inequality. Now we extend the Bhatia-Kittaneh in-
equality and discuss an equality condition. The following extension is the same

formula as in [4] except norms:

Theorem 3. Let f be operator monotone on [0,00) and matrices A and B are
positive-semidefinite. If a matrix X satisfies 0 < m < X*X < M for some real

numbers m and M, then

1+M

(5)  lIFAX - XFB)II < Hlf (rmiax - xB1) - HI



The equality holds for non-affine f and positive-definite A and B if and only if
AX = XB.

Though (5) itself follows from (3) via F(t) = f(¢) — f(0), we will prove (5) to
observe the equality condition considering their proof in [2]. The basic fact is the

following lemma which is easily obtained by Theorem 1:

Lemma 4. Let f be operator monotone on [0,00). If A is positive-semidefinite

and U is unitary, then

AU - Uf(A < llIf(IUA - AU]) = FO)]I]-

If f is non-affine and A is positive-definite, then the equality holds if and only if A

commutes with U.
Proof. 1t follows from Theorem 1 that

IF (AU = U (A = U FAU = f(All = IIf(UAV) = fF(A)ll

<IfF(U*AU - A]) = fO)lll = Il (|AU = UA]) = f(O)ll]-
Moreover the equality condition is U*AU = A, or AU =UA. 0O

Now we show Theorem 3 by using their excellent idea in [2]:

Proof of Theorem 3. First we show the case X = X* and A = B. Take a unitary

~operator U = (X —)(X +1)~! by the Cayley transform. Then

FIAX = XF(A) =21 (f(A)(1-U)T" = (1-U)T f(4))
=2i(1-U) 7 (F(AU - Uf(4)(1-0)""

and AU —UA =2i(X +1)7! (AX — XA) (X +1)"!. Since
X2 +1]] _ M+1
4~ 47

1
=112 — 2 -1 <
WX +)THF =X+ D7 < T

11 -0)7P =




it follows from Lemma 4 that

(AT =T (Al

11£(14U - UAl) - (0]

lFAx - Xpa)ll < 2
M+1

IA

M—I—l

oz - xa) - s

Here we notice that the equality condition is AU = UA, hence AX = XA. Now

0 B X*

X respectively. In this case, the equality condition

(5 2)(x 3)-(x 3) (6 5)

implies AX = XB. O

we have‘ the required inequality by taking (A 0 ) , ( 0 )é—) instead of A and

Example. The logarithm is a typical operator monotone function on (0,0), so
we put an operator monotone function on [0, 0o] by f.(t) = log(t +¢) for all € > 0.

Then we have the following inequality by Theorem 3:

+M

||| log(A+€)X — X log(B +¢)||| < m log (——IAX XB|+ 6) —logeIH

But (3) implies the following inequality for a > 1:

[ Tog(A + )X — X log(B + a)|| < 1+ M

|H1 (—-——IAX XB| +a> H‘
Thus, compared with the latter inequality, the former one gives a new inequality

for 0 < € < 1 and a sharp one for ¢ > 1.

4. Variations. In this section, we discuss variations for Theorem 3. Bhatia and

Kittaneh [2] showed that

(6) IIF(A)X - XfF(B)IIl < ZIIIf(IAX - X Bl

for all contractions X. By virtue of Bhatia-Kittaneh’s idea, we have the following

corollary by substituting tX for X in Theorem 3:



Corollary. Let f be operator monotone on [0,00) and matrices A and B positive
semi-definite. If an operator X satisfies 0 < m < X*X < M for some real numbers

m and M, then

2t
1+ mt?

@ X - xr@)ll < 2L (=2 ax - x8)) - f0)|

for any positive number t. The equality holds for non-affine f and positive-definite
A and B if and only if AX = XB.

Hereafter in this section, we leave out the common equality condition for the
following inequality since they are all based on the above corollary. Now, as a
generalization for (6), we have an estimation of |||f(4)X — X f(B)||| in terms of
F(1AX — X BY).

Theorem 5. Let f be operator monotone on [0,00), matrices A and B positive
semi-definite and 0 < m < X*X < M for some real numbers m and M. If

0 <m <1, then

2+ M2 —-m—2/1—m)

(8) FX-xfBl <= 7 (|AX — X B) - f(O)]]]-

2m(l — /1 —m)
If m = 0, then
® iwx - xs@i < (1+ 2 ax - x0) - F0)

Proof. Solving an equation 2¢/(1 + mt?) = 1 for 0 < m < 1, we have t = (1 &
v1—=m)/m. Then, Corollary implies (8) since the value (1+ M1?)/(2t) at t=t; =
(1 — /I =m)/m is not greater than that at t = t; = (1 ++/1—m)/m. In fact,
t1ta = 1/m > 0 shows

1+ Mt} 1+ Mt M(titz —1)(t2 — t1)

2t'2 2t1 2tlt2

— (M—m;(tz —tl) ZO

For m = 0, we have (8) by putting ¢t =1/2. O



Remark. We may say that (8’) is the extreme case for (8) since

1-y/1I-m 1

}rlzi% m -2
and
lig WA MEom 2 -m) M
m0 2m(1 — /1 —m) B 4’

Pufting M =1 in (8’), we have the following (6’) for any contraction X, which

is an extension of (6):
(6)) [IF(A)X - X f(B)|l < glllf(lAX — X B|) - f(O)lll

Though Bhatia and Kittaneh did not mention the other type of inequality, we

show the following one similarly:

Theorem 6. Let f be operator monotone on [0,00), matrices A and B positive
semi-definite and 0 < m < X*X < M for some real numbers m and M. If
0< M <1, then

lIf(A)X - Xf(B)]]] < “ ,f (Mz ff(;l_—M 1__2\M/1 )— M)

|AX — XBI) _ f(O)”l.

In particular, if M = 1, then

Fax - x5l < |17 (2 1ax - x81) - 0|

5. Inverse inequalities. Ando [1] gave the inverse inequality for Theorem A
making use of the fact that if hermitian matrices A and B satify |||A||| < |||B]|| for
all unitarili invariant norms, then |[||h(A)||| < |[|h(B)]|| for all monotone increasing
convex functions h: Let g be nonnegative monotone increasing convez function on

0,00) such that g~ is operator monotone on [0, 00) and matrices A and B positive-
g p

definite. Then

(9) llg(14 = BDIII < llg(4) - g(B)II]



According to this idea, Bhatia and Kittaneh [2] also gave inverse inequalities for

Theorem B:

(10) IUg(lmex xBl)[|| £ = llo(4)x - Xg(B)I

In the above results, the nonnegativity of ¢ implies that g(A) and g(B) are
positive-(semi)definite. Also the condition min g(t) = 0 assures that A and B are
arbitrary positive-(semi)definite matrices. But now the domain interval of g does

not have to be nonnegative any longer:

Theorem 7. Let g and h be nonnegative monotone increasing convex functions

on [¢,00) for ¢ < 0 such that g~! is operator monotone and g(c) —=0. IfA and B

be positive-semidefinite and 0 < m < X*X < M, then

|AX—XB|)|H< ||h (97" (9(A)X — Xg(B)) — g™ (0))]]|-

(32 o

Proof. Since f = g~! is operator monotone on [0,00) and there exist positive-
semidefinite operators C = g(A) and D = g(B), we can apply Theorem 3 for C
and D:

G 5gtree - x| < 5

So the convexity of h assures the required inequality. 0O

Remark. Of course h can be g itself. But the independence h of g sometimes
convenient. In our example for Theorem 3, f.(t) = log(t + ) means g.(t) = €' —¢,
in which e should not be greater than 1 by the assumption ¢~(0) < 0 in Theorem
6. In fact ¢ > 1 implies A = logC + ¢ > loge > 0, which restricts A. So the above

example shows

|AX”XB|HIS’ IOg( 2 |(eA_e)X-—X(eB_6)I+6)—loga”l

1+m

Il



10

If we apply Theorem 6 for A = g, then

[lese (ggtax = x81) ~ell| < || (st - xe21+1) =4l

For the case h(t) = €, we have

exp(1+M|AX XB|>|||<|H<——1+m)|€AX XeB|+1)m

for all O <e<l1l IfM > 1in addition, then the convexity of the function

t — t(+M)/2 implies
9 N 5 (1+M)/2
x| < | (Gl -xei+1) |l
l”exp(lAX B ||| £ 5(1+m)|6 X - Xe?|+
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