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1. Introduction.

Let $|||\cdot|||$ be a unitarily invariant norm for matrices, that is, it is a norm with

$|||UAV|||=|||A|||$

for all matrices $A$ and unitary ones $U$ and $V$ . Since $|||A|||$ is a function of the

singular values of $A$ (see [5], where it is called a symmetric norming function), we

have

(1) $|||f(AA^{*})|||=|||f(A^{*}A)|||$

for all real functions $f$ . For the order induced by positive-semidefinite matrices, it

is known that

$0\leq A\leq B$ implies $|||A|||\leq|||B|||$ .

The operator norm $||A||= \sup_{||x||1}=||Ax||$ is one of unitarily invariant ones and the

following inequality holds for all matrices $X$ and $Y$ :

(2) $|||XA\mathrm{Y}|||\leq||X|||||A|||||Y||$ .

In 1988, Ando [1] solved Bhatia’s conjecture of estimations for unitarily invariant

norms as the following general result:

Theorem A. Let $f$ be a nonn$\mathrm{e}g\mathrm{a}$tive operator $\mathrm{m}$onotone function on $[0, \infty)$ . If $A$

and $B$ are positi $\mathrm{r}^{r}\mathrm{e}- de\mathrm{f}\mathrm{i}\dot{\mathrm{m}}t\mathrm{e}$ matrices, then

$|||f(A)-f(B)|||\leq|||.f(|A-B|)|||$ .
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In [3], one of the authors gave an equality condition for Ando’s inequality for

the case of the operator norm: For non-affine $f$ , the equality holds if and only if
$A=B$ and $f(\mathrm{O})=0$ .

Recently, based on Ando’s inequality, Bhatia and Kittaneh [2] generalized it,

which is paraphrased in terms of the bounds of $X^{*}X$ :

Theorem B. Let $f$ be a nonnegative operator monotone function on $[0, \infty)$ . If $A$

and $B$ are posi $ti\iota\Gamma e$-definite matrices and $X$ satisfies $0<m\leq X^{*}X\leq M$ for $so\mathrm{m}e$

positive $n\mathrm{u}mb\mathrm{e}rsm$ and $M$ , then

(3) $|||f(A)x-Xf(B)||| \leq\frac{1+M}{2}|||f(\frac{2}{1+m}|AX-xB|)|||$ .

One of the authors also gave an equality condition of the above inequality for the

operator norm in [4]. But our approach does not suit for unitarily invariant norms.

In this paper, we give equality conditions for the above inequalities making use of

Ando’s approach in [1]. Moreover, we generalize the above inequality considering

the initial condition of $f$ . Note that all the inequalities in this paper hold also

for operators on a Hilbert space if the unitarily invariant norms for operators in

discourse make sense.

To begin with, we discuss an extension of Ando’s one in the next section since

Theorem A played an essential role in the Bhatia-Kittaneh inequality.

2. Ando’s inequality. As we pointed out in [4], we need not nonnegativity for $f$

in the above inequalities, which is a sharp estimation even if $f$ is nonnegative.

Theorem 1. Let $f$ be $op$erator monotone on $[0, \infty)$ . If $A$ and $B$ are positive-

semidefinite matrices, then

(4) $|||f(A)-f(B)|||\leq|||f(|A-B|)-f(0)|||$ .

The $\mathrm{e}q\mathrm{u}$ ality holds for non-ffine $f$ and positive-deffiite $A$ and $B$ if and on$ly$ if

$A=B$ .
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The inequality (4) itself is obtained by applying Theorem A to a nonnegative

operator monotone function $F(t)=f(t)-f(\mathrm{O})$ . To see the equality condition, we

have only to show the following lemma, which is essential also in Ando’s inequality

as in the proof of Theorem A in [1]. Ando’s proof is based on the integral repre-

sentation of a nonnegative operator monotone function $F$ : There exists a positive

Radon measure $\mu$ on $[0, \infty]$ with

$F(A)=a+bA+ \int_{(\infty)}0,(t:A)\frac{1+t}{t}d\mu(t)$ .

In other words, if $F$ is non-affine, then $F(A)$ is nothing but an variation of a parallel

sum 1 : $A=A(1+A)^{-1}=1-(1+A)^{-1}$ .

Lemma 2. Let $F$ be a $\mathrm{n}on\mathrm{n}$ egative non-affine operator $\mathrm{m}$onotone function on

$[0, \infty)$ . If $A$ and $B$ are positive-semidefinite, then

$|||F(A+B)-F(B)|||\leq|||F(A)|||$ .

Moreover, the equality does not hold if $A$ is nonzero and $B$ is positive-definite.

Proof. Considering the integral representation for $F$ , we have only to show the

above inequality for the case $F(x)=1:x$ . Since

$0\leq 1$ : $(A+B)-1$ : $B=(B+1)-1-(A+B+1)-1$

$=(B+1)-1/2(1-((B+1)-1/2A(B+1)-1/2+1)-1)(B+1)^{-1}/2$

$=(B+1)^{-1/}2F((B+1)^{-1/}2A(B+1)-1/2)(B+1)^{-1}/2$ ,

and $(B+1)^{-1}\leq 1/(k+1)$ for some $k\geq 0$ with $B\geq k$ , we have

$|||1$ : $(A+B)-1$ : $B|||\leq||(B+1)^{-1}|||||F((B+1)-1/2A(B+1)-1/2)|||$ by (2)

$\leq\frac{1}{k+1}|||F((B+1)-1/2A(B+1)-1/2\mathrm{I}|||$

$\leq\frac{1}{k+1}|||F_{\backslash ^{A^{1/2}(1}}^{/}B+)^{-1}A^{1/2})|||$ by (1)

$\leq\frac{1}{k+1}|||F(A)|||\leq|||F(A)|||$ .
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If $B$ is positive-definite, then $k$ is positive, or $1/(k+1)<1$ . So the last inequality

is exchanged for

$\frac{1}{k+1}|||F(A)|||<|||F(A)|||$

for nonzero A. $\square$

Remark. If $F(t)=a+bt$ for $a,$ $b\geq 0$ , a nonnegative affine function, then we have

$F(A+B)-F(B)=bA\leq F(A)$ and hence

$|||F(A+B)-F(B)|||\leq|||F(A)|||$ ,

in which the equality holds if $F(\mathrm{O})=a=^{\mathrm{o}}$ .

For completeness, we sketch a proof of the above theorem:

Proof of Theorem 1. For a nonnegative operator monotone functon $F(t)=f(t)-$

$f(\mathrm{O})$ , we have

$|F(A)-F(B)|\leq F(|A-B|+B)-F(B)$

and Lemma 2 shows

$|||F(|A-B|+B)-F(B)|||\leq|||F(|A-B|)|||$ ,

so the required inequality yields. Moreover Lemma 2 shows $|A-B|=0$ , that is

$A=B$ .

3. The Bhatia-Kittaneh inequality. Now we extend the Bhatia-Kittaneh in-

equality and discuss an equality condition. The following extension is the same

formula as in [4] except norms:

Theorem 3. Let $f$ be operator $\mathrm{m}$onotone on $[0, \infty)$ and matrices $A$ and $B$ are

posi$ti\mathrm{r}\prime e$-semidefinite. If a matrix $X$ satisfies $0\leq m\leq X^{*}X\leq M$ for some real

numbers $m$ and $M$ , then

(5) $|||f(A)X-Xf(B)||| \leq\frac{1+M}{2}|||f(\frac{2}{1+m}|Ax-xB|)-f(0)|||$ .
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The equality holds for $\mathrm{n}$on-affine $f$ and positive-definite $A$ and $B$ if and only if

$AX=XB$ .

Though (5) itself follows from (3) via $F(t)=f(t)-f(\mathrm{O})$ , we will prove (5) to

observe the equality condition considering their proof in [2]. The basic fact is the

following lemma which is easily obtained by Theorem 1:

Lemma 4. Let $f$ be opera$tor\mathrm{m}$onotone on $[0, \infty)$ . If $A$ is positive-semidefinite

and $U$ is unit $\mathrm{a}xy$, then

$|||f(A)U-Uf(A)|||\leq|||f(|UA-AU|)-f(\mathrm{O})|||$ .

If $f$ is non-affine and $A$ is positi $\mathrm{t}^{r}e$-definite, then the equality holds if and only if $A$

commutes with $U$ .

Proof. It follows from Theorem 1 that

$|||f(A)U-Uf(A)|||=|||U^{*}f(A)U-f(A)|||=|||f(U^{*}AU)-f(A)|||$

$\leq|||f(|U^{*}AU-A|)-f(\mathrm{o})|||=|||f(|AU-UA|)-f(\mathrm{o})|||$ .

Moreover the equality condition is $U^{*}AU=A$ , or $AU=UA$. $\square$

Now we show Theorem 3 by using their excellent idea in [2]:

Proof of Theorem 3. First we show the case $X=X^{*}$ and $A=B$ . Take a unitary

operator $U=(X-i)(x+i)^{-1}$ by the Cayley transform. Then

$f(A)X-Xf(A)=2i(f(A)(1-U)-1-(1-U)-1f(A))$

$=2i(1-U)^{-}1(f(A)U-Uf(A))(1-U)^{-1}$

and AU–UA $=2i(X+i)^{-1}$ (AX-XA) $(X+i)^{-1}$ . Since

$||(1-U)^{-1}||^{2}= \frac{||X^{2}+1||}{4}\leq\frac{M+1}{4}$ ,

$||(X+i)-1||^{2}=||(x^{2}+1)^{-1}|| \leq\frac{1}{1+m}$
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it follows from Lemma 4 that

$|||f(A)x-xf(A)||| \leq\frac{M+1}{2}|||f(A)U-Uf(A)|||$

$\leq\frac{M+1}{2}|||f(|AU-UA|)-f(\mathrm{o})|||$

$\leq\frac{M+1}{2}|||f(\frac{2}{1+m}|AX-xA|)-f(0)|||$ .

Here we notice that the equality condition is $AU=UA$ , hence $AX=XA$. Now

we have the required inequality by taking

$X$ respectively. In this case, the equality condition$=$implies $AX=XB$ . $\square$

Example. The logarithm is a typical operator monotone function on $(0, \infty)$ , so

we put an operator monotone function on $[0, \infty]$ by $f_{\epsilon}(t)=\log(t+\epsilon)$ for all $\epsilon>0$ .

Then we have the following inequality by Theorem 3:

$||| \log(A+\epsilon)x-x\log(B+\mathcal{E})|||\leq\frac{1+M}{2}|||\log(\frac{2}{1+m}|AX-xB|+\epsilon)-\log_{\mathit{6}}|||$ .

But (3) implies the following inequality for $a\geq 1$ :

$||| \log(A+a)X-X\log(B+a)|||\leq\frac{1+\mathrm{J}/I}{2}|||\log(\frac{2}{1+m}|AX-XB|+a)|||$ .

Thus, compared with the latter inequality, the former one gives a new inequality

for $0<\epsilon<1$ and a sharp one for $\epsilon>1$ .

4. Variations. In this section, we discuss variations for Theorem 3. Bhatia and

Kittaneh [2] showed that

(6) $|||f(A)X-Xf(B)||| \leq\frac{5}{4}|||f(|Ax-^{xB|)|||}$

for all contractions $X$ . By virtue of Bhatia-Kittaneh’s idea, we have the following

corollary by substituting $tX$ for $X$ in Theorem 3:
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Corollary. Let $f$ be operator $\mathrm{m}$onotone on $[0, \infty)$ and matrices $A$ and $B$ positive

semi-definite. If an opera$torX$ satisfies $0\leq m\leq X^{*}X\leq M$ for some real $nu\mathrm{m}$bers

$m$ and $M$ , then

(7) $|||f(A)X-xf(B)||| \leq\frac{1+Mt^{2}}{2t}|||f(\frac{2t}{1+mt^{2}}|AX-xB|)-f(0)|||$

for any positive number $t$ . The equality holds for non-affine $f$ and $p_{oSiti}\mathrm{V}\mathrm{e}- definit\mathrm{e}$

$A$ and $B$ if and only if $AX=XB$ .

Hereafter in this section, we leave out the common equality condition for the

following inequality since they are all based on the above corollary. Now, as a

generalization for (6), we have an estimation of $|||f(A)x-Xf(B)|||$ in terms of

$f(|Ax-^{xB|)}$ .

Theorem 5. Let $f$ be operator monotone on $[0, \infty)$ , matrices $A$ and $B$ positive

semi-definite and $0\leq m\leq X^{*}X\leq M$ for some real $num$bers $m$ and M. If

$0<m\leq 1$ , then

(8) $|||f(A)x-Xf(B)||| \leq\frac{m^{2}+M(2-m-2\sqrt{1-m})}{2m(1-\sqrt{1-m})}|||f(|Ax-xB|)-f(\mathrm{o})|||$ .

If $m=0$ , then

(8’) $|||f(A)x-Xf(B)||| \leq(1+\frac{M}{4})|||f(|AX-xB|)-f(\mathrm{O})|||$ .

Proof. Solving an equation $2t/(1+mt^{2})=1$ for $0<m\leq 1$ , we have $t=(1\pm$

$\sqrt{1-m})/m$ . Then, Corollary implies (8) since the value $(1+Mt^{2})/(2t)$ at $t=t_{1}=$

$(1-\sqrt{1-m})/m$ is not greater than that at $t=t_{2}=(1+\sqrt{1-m})/m$ . In fact,

$t_{1}t_{2}=1/m>0$ shows

$\frac{1+Mt_{2}^{2}}{2t_{2}}-\frac{1+Mt_{1}^{2}}{2t_{1}}=\frac{M(t_{1}t_{2}-1)(t2-t1)}{2t_{1}t_{2}}$

$= \frac{(M-m)(t2-t1)}{2}\geq 0$

For $m=0$, we have (8’) by putting $t=1/2$ . $\square$
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Remark. We may say that (8’) is the extreme case for (8) since

$\lim_{m\downarrow 0}\frac{1-\sqrt{1-m}}{m}=\frac{1}{2}$

and

$\lim_{m\downarrow 0}\frac{m^{2}+M(2-m-2\sqrt{1-m})}{2m(1-\sqrt{1-m})}=1+\frac{M}{4}$.

Putting $M=1$ in (8’), we have the following (6’) for any contraction $X$ , which

is an extension of (6):

(6’) $|||f(A)x-xf(B)||| \leq\frac{5}{4}|||f(|Ax-xB|)-f(\mathrm{o})|||$

Though Bhatia and Kittaneh did not mention the other type of inequality, we

show the following one similarly:

Theorem 6. Let $f$ be operator monotone on $[0, \infty)$ , matrices $A$ and $B$ positive

semi-definite and $0\leq m\leq X^{*}X\leq M$ for some real $n$umbers $m$ and M. If

$0\leq M\leq 1$ , then

$|||f(A)x-Xf(B)||| \leq|||f(\frac{2M(1-\sqrt{1-M})}{M^{2}+m(2-M-2\sqrt{1-M})}|AX-^{xB|)}-f(\mathrm{o})|||$ .

In particular, if $M=1$ , then

$|||f(A)x-Xf(B)||| \leq|||f(\frac{2}{1+m}|Ax-^{xB|)}-f(0)|||$ .

5. Inverse inequalities. Ando [1] gave the inverse inequality for Theorem A

making use of the fact that if hermitian matrices $A$ and $B$ satify $|||A|||\leq|||B|||$ for

all unitarili invariant norms, then $|||h(A)|||\leq|||h(B)|||$ for all monotone increasing

convex functions $h$ : Let $g$ be nonnegative monotone increasing convex function on

$[0, \infty)$ such that $g^{-1}$ is operator monotone on $[0, \infty)$ and matrices $A$ and $B$ positive-

definite. Then

(9.) $|||g(|A-B|)|||\leq|||g(A)-g(B)|||$
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According to this idea, Bhatia and Kittaneh [2] also gave inverse inequalities for

Theorem $\mathrm{B}$ :

(10) $|||g( \frac{2}{1+M}|Ax-XB|)|||\leq\frac{2}{1+m}|||g(A)X-x_{g}(B)|||$ .

In the above results, the nonnegativity of $g$ implies that $g(A)$ and $g(B)$ are

positive-(semi)definite. Also the condition $\min g(t)=0$ assures that $A$ and $B$ are

arbitrary positive-(semi)definite matrices. But now the domain interval of $g$ does

not have to be nonnegative any longer:

Theorem 7. Let $g$ and $h$ be nonnegative monotone increasing convex functions

on $[c, \infty)$ for $c\leq 0$ such that $g^{-1}$ is operator monotone and $g(c)=0$ . If $A$ and $B$

be positive-semidefinite and $0\leq m\leq X^{*}X\leq M$ , then

$|||h( \frac{2}{1+M}|AX-xB|)|||\leq\frac{2}{1+m}|||h(g^{-1}(g(A)X-Xg(B))-g^{-1}(0))|||$ .

Proof. Since $f=g^{-1}$ is operator monotone on $[0, \infty)$ and there exist positive-

semidefinite operators $C=g(A)$ and $D=g(B)$ , we can apply Theorem 3 for $C$

and $D$ :

$|||( \frac{2}{1+M}|f(C)X-Xf(D)|)|||\leq\frac{2}{1+m}|||f(CX-xD)-f(\mathrm{o})|||$ .

So the convexity of $h$ assures the required inequality. $\square$

Remark. Of course $h$ can be $g$ itself. But the independence $h$ of $g$ sometimes

convenient. In our example for Theorem 3, $f_{\epsilon}(t)=\log(t+\epsilon)$ means $g_{\epsilon}(t)=e^{t}-\epsilon$ ,

in which $\epsilon$ should not be greater than 1 by the assumption $g^{-1}(0)\leq 0$ in Theorem

6. In fact $\epsilon>1$ implies $A=\log C+\epsilon\geq\log\epsilon>0$ , which restricts $A$ . So the above

example shows

$||| \frac{2}{1+M}|AX-xB||||\leq|||\log(\frac{2}{1+m}|(e^{AB}-\epsilon)X-x(e-\epsilon)|+\epsilon)-\log\epsilon|||$

$\leq|||\log(\frac{2}{\epsilon(1+m)}|e^{AB}X-xe|+1)|||$ .
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If we apply Theorem 6 for $h=g_{\epsilon}$ , then

$||| \exp(\frac{2}{1+M}|AX-^{xB|)}-\mathcal{E}|||\leq|||(\frac{2}{\epsilon(1+m)}|e^{A}X-^{x_{e|1}}B+)-\mathcal{E}|||\cdot$

For the case $h(t)=e^{t}$ , we have

$||| \exp(\frac{2}{1+M}|Ax-^{xB|)}|||\leq|||(\frac{2}{\epsilon(1+m)}|e^{A}x-^{x_{e|+1)||}}B|$

for all $0<\epsilon\leq 1$ . If $M\geq 1$ in addition, then the convexity of the function

$t\vdash+t^{()}1+M/2$ implies

$||| \exp(|Ax-xB|)|||\leq|||(\frac{2}{\epsilon(1+m)}|e^{A}X-Xe^{B}|+1)^{(}1+M)/2|||$ .
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