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Newton polyhedrons and a formal Gevrey space of double indices
- for linear partial differential operators

R KZEREESH  UNEEFE (leoshl Yamazawa)

Abstract

In this paper, we shall study a necessary condition to become that
‘the below operator Ly, (£, z;0;, 8; ) is bijective on G{***=} where it is said -
that a formal power series U(t,z) = 3,4 Uipt'z? /116! belongs to gleve=}

when U(t, z) = Zlﬁ Uipt'z? /(1')*t (8!)*" is convergent near the origin for
St, Sy 2> 1. : : ' . '
1 Introduction

Let us give the operator L,, that we shall study in this paper.
Let t = (¢1,-- ,t;) € C% z = (21, ,p) € C? and
t-0y = (t16¢1,t26t2, v ,tqatq). Set

(1.1) (t-8) = (tlah)jl (206,)7 - - (88e, )7

fOI'j :(jh"' 7j0) € N? and

(12) Pu(t-8)= Y Pilt-alY,

lilsm

where P, € C, and P,, is said to be of Fuchs type of order m in [M]. Then we
consider the following operator:

(1.3) L = Py(t-0;) + A(t,z;0y; 8;) + B(t,x; 0; 0)
where |

finite '
(1.4) A= ) a2, (o) 8785

|a|=0

fo'|=lo|<m

and

Jinite
15) B= Y b:%(ta)t s 0702,
lo'{+la’|>]o]+|al

where the coefficients a2 . (¢,) and b,’, %' (¢, ) are holomorphic functions in a
neighbourhood of the origin for any (o,o a,a') € Z9 x N7 x ZP x NP.
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Miyake and Hashimoto studied the unique solvability in G{¢:!} for such
type operator. They characterized the Gevrey index s; by Newton polygons in
[M] and [MH].

Our motivation comes from the following facts. Put:

(1.6) L = (t8; + 1) — 3t320208, — (t6; + 1)x%0,.

This operator is not bijective in G{*:1} for any s;, but is bijective in G{#+%=} for
- s8¢ 2 3and s, > 2.

So it is our purpose that we shall consider G{#::#=} to obtain the unique solv-
ability for this operator. We shall define a Newton polyhedrons to characterize

double Gevrey indices.
In Section 2, we give our results after defining a function space and Newton
polyhedron and listing some notations. In Section 3, we prove our theorems.

2 Statement of ’i'esults

2.1 Notations.

We denote by N, Z, R and C the set of non negative 1ntegers integers, real
numbers and complex numbers, respectively.
Cl[[t, z]] denotes the set of formal power series in ¢ € C? and € C? with

coefficients in C.

- For multi indices ¢ = (01, -+ ,04) € Z9 and & = (oq,--- ,ap) € ZP, an
integro-differential 872U (¢, z) of U(t, z) Z Uw l' B € C|[t,z]] is defined
lEN?
BENP?
as follows:
9 tl o ﬁ a.
2.1 JOSU (L, x) =
( ) at zU( a‘T) Z Ulﬁ(l _ )'(ﬂ O!)'
IENY,I-g€NT

BENP,f—g€N?

2.2 Formal Gevrey class G{S"s”}(T,X ;).

For U(t,z) € C[lt,z]], we set U(t,x) = 3, 5Uigt'a?/1!B!, where Uy € C,
Il € N? and 3 € N? and R denotes the set of positive real numbers.

Let s, 8, >21,T>0,X>0,7= (1, - ,'rq)leRi,p-—- (p1,---,pp) € RE
and m € N. Then we define a space GL5**}(T, X;m) C C[[t, z]] as follows.

(22) Gl N (T, X;m) = {U(t,2) € Cllt i VI m < 0
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where

ll!mTllleﬁl
2.3 Ulfses=t . sup|U | '
S Ll S s LU e e

and n! :=T(n+1).
Hence there exist positive constants R;,R, and C such that

e 81

(24) | [Uis| < C—r—51
o Jig) RIRIP!

for any | € N7 and 8 € NP.
‘Here we define a formal Gevrey space as follows:

Definition 2.1

(2.5) - Glrensd o= Up oGS H(T, Xy m)

2.3 Newton polyhedron.

Here we define Newton polyhedron for a linear partial integro-differential oper-
ator and state some remarks L,,.

Let

finite

(2.6) P=Y a2%(ta)t" % 8702

be a linear partial integro-differential operator of finite order with holomorphic
coefficients in a neighbourhood of the origin.

In the space R?, we define the following lower half line for (0,0 ,a,a) €
Z7 x N9 x ZP x NP: '

Q(a’ U’ ) a’ a,)

(2.7) ' |
={(X,Y,2) eR% X =o'| - Jo|, ¥ = |o'| - |a, Z < |o] +ai}.

Definition 2.2 Newton polyhedron N(P) of the operator P is de_ﬁned by

(_2.8) N(P) := Ch{Q(o, o',a,a');(a, a',d,a') with a;’) (t z) Z 0},
where Ch{-} denotes the convez hull of sets in {-}.

Let N(L,,) be Newton polyhedron of L,,.

Remark 2.3 By the form of L,,, the lower half line {(0,0, Z); Z < m} becomes
a side of N(Ly,) and the point (0,0,m) becomes a vertex of N(Ln,).
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Next let

(2.9) A={(X,V,2);aX +bY - Z+m > 0}.
Then we define the fbllowing set of pairing indices:

(2.10) S ={(s,8z);st =a+1,8, =b+1,N(Ln) CA}.

Remark 2.4 Since the boundary of S is a hyper plane which goes through the
point (0,0,m), there exists (s, sz) such that N(L,,) C ™ by Remark 2.3.

Remark 2.5 For any (s, sz) belonging to S, we obtain
(211) st(lo| = |o']) + sz(laf ~ |&]) + |o'| + |@| -m <0

for (o,0',a,a') with Q(g,0',a,a') € N(Ly,).

2.4 Main results.

We assume the following additional condition. '
(A.1) I m(lo’| — |o]) + |o'| < m for (0,0, c,0') with b2 (t,z) Z 0, then

(2.12) (m + se)(lo| = lo']) + sz (lef - |o]) + || <0,

for (s, sz) belonging to S. .
(S.C) For any € > O,there exist 7 € R} and p € R% such that

finite

(2.13) Z |a3,a,|7"’“" p* < e,

la|=0
lo’|=lo]<m

where a2 ., = a2 ,(0,0).
It is sald that the condition (S C) is Spectral condition in M].
Then we obtain the following results.

Theorem 2.6 Assume that L, satisfies the condition (A.1) and (S.C) and
further assume that there exists a positive constant C such that

(2.14) |Pn(D)] > C(JI} +1)™  for all 1€ N7.
Then the mapping | | |
(2.15) . Lm . G{shsz} — G{stn?:}

is bijective for any (st, sz) belonging to S.
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Next set .
(2.16)

B o] + max{lo’| — m,m(o] = [0')} aa
5*m4{ T+ 1o = Ja] - Jo] b“”¢@ }

Then for s, > 4, there exist indices s¢ with s; > 1 such that if m(|o’| — |o]) +
lo’| —m > 0, then

(2.17) si(lo] = lo’']) + sz (la] = |&']) + |o'| + |&'| —=m < 0,
and if m(|o'| — |o|) + |o'| —m < 0, then ‘ )
(2.18) (s¢ + m) (o] = lo']) + sz(la] = |a']) + [a'] < O.

For example if s, = s; > ¢, then the above formulas are satisfied.
So we obtain the following Corollary

Corollary 2.7 Assume that Lm satisfies the condztwn (S C) and further as-
sume the inquation (2.14). Then for s, > 4, there ezist indices sy with s¢ > 1
such that the mapping (2.15) is bijective. =~ |

3 Proof of Theorem.

In this section first we estimate a operator of form 7 e 07 92 P! on
G’{"”"}(T,X :m), next by using the estimate we show L, P, is bijective on
same space, at last we give a proof of Theorem 2.6.

3.1 The estimate of operator t7 0792 P;; .

Here we study a estimate of the operator ¢ a:""Bt" 02 P! of the mapping

31 e o7og Pt Gyt H(T, X ym) = GE (T, X m),
where

- | —1,, ¢ Igh
(3.2) P Z Uw l'ﬂ' me(l) Uig Tk

Lemma 3.1 Assume that the conditions in Theorem 2.6 are satisfied. Then
for any (si,sz) belonging to S, there exist a positive constant C' such that the
operator norm of the mapping (3.1) is estimated as follows:

(3.3) ”ta"zalagagpglll S CTIall__laleall_'alTa_a_lpa__al,

where the constant C depends only on m, st,8z,0,0',a and o', and ||-|| denotes
the operator norm on G,{,i‘ =} (T, X;m).
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Proof. Let t7 % 0703 P U(t,z) = 4 Vigt'z? /1!B!. Then we obtain
I a1
(I—a" ) (8-

where l+ 0 —o0' € N?7and f+a —a' € NP.
Therefore we have
[llnglllxlﬁl
IVlﬁl ‘ 1
{(s¢ + m)|l] + s51B}'r!pP
(3.5) < COmm(la’I—lal)+|o’l—mlﬂlIa'lTlv'l—Ialxla’l—IaITa—d'pa-—a'
s+ m)ll] + 28] + (se + m)(lo] = |o']) + s (Jof — o'}
{(st + m)|l] + s.|8]}!

By Remark 2.5 and the condition (A.l) we obtain the estimation (3.3). Q.E.D.

(3°4) Vlﬁ= ,)’ m(l+a 0’) 1Ul+a;a’ﬁ+a—a’,y

3.2 The estimate of operator L, P‘

For z € CP,we set |z| = =1 + -+ + &, and ||z]| = |z1| + -+ + |zp|. For a
domain Q C CP, O(9) denotes the set of holomorphic functions in 2, O(Q) :=
O(2) N C(Q). Similar notations will be used frequently for functions defined in
a domain C"+” .

Let a(t,) = ¥ aist's? /16! € O({J|tll < #T} x {lla]| < xX}) (x > 0) and

put
(3.6) lla|lxT,xx := max |a(t, )|
S [ltI|EKT
llz][<xX

By Cauchy’s integral forrhula on a polyciréle - {|t1| =n;kT} x [1% 1{|:z:,| =
&ikX} (nj >0,m +---+n;=1) and (&, > 0, 51 -+ & = 1), we have

1 13!
(TG 7

(3.7) laig] < C

Slnce n' and fﬂ take 1ts maximum on the above mentloned domain at a pomt

= /1, - lq/lll)andf (B1/18; -~ > Bp/181), we have

‘ 1 st
(3 8) ‘alﬁl < ”a”hT hx( )|l|(,§X)|m llﬂﬂ LA

Hence by Stirling’s formula, we: have

(39 gl so(q,»p)nanw,xx‘”.'_.+([qu_g]ﬁféglc;a[f/2].)‘!’




131

for some positive constant: C(q,p) depending only.on the dimension ¢ of ¢ and
the dimension p of . Here [¢/2] (resp p/ 2]) denotes the integral part of q/2

(resp.p/2).

Then we have the following lemma.

Lemma 3.2 Let U(t z) € G{s‘ s’}(T,X;m) and

a(t, z) € O({||7t]| < T} x {HPfBH < kX}) (k> 0).

Then a(t z)U(t, x) € GL0*=H(T, X;m) for any & > 1 and it holds

oo o /2]!
HaUH:{r/T X}/p m C(‘LP)( 1[(;/ )][q/2]+1 (1- 1[};,5)][1)/214—1

||aumx|lvn¥;;’;/p,

Proof. We may be p=(1,---,1) € R} and 7 = (1 +,1) e RY.
Set a(t, z)U(t z) = Eth’zﬁ/l'ﬂ' where

(3.10)

~ I B!

(3.11) Vig= 3. omUi-ngs nl(l = n)l (B — )
‘ 0<n<l
0<v<B

Then we have

(3.12) |
ol ol 3 2 SC e

0<n<l
0<y<B

o« Wst +m)(ll] = Inl) + 52 (18] — [v])}!
Il — | T WA X187
I B!
X A= n) VB — )

Hence we have

eV i < Ca D)ol OIS

(3.13) g/2]! [p/2)!
(1 —1/k)la/2H+1 (1 — 1/k)P/2+1"

Q.E.D
By Lemma 3.1 and Lemma 3.2, we obtain the following essential proposition.

Proposition 3.3 Assume that the conditions of Theorem 2.6 are satisfied.
Then for any (s, sz) belonging to S, there ezist a positive constant Ry, T € RY.
and p € R such that the mapping

(3.14) LnP;t : GEvs=}(R, Rym) - Gis*<} (R, R;m)
is bijective for any R with 0 < R < Ry.
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Proof. Since PnP-! = I on GY5**}(R, R;m), it is sufficiently that we show
that Q@ = (A + B)P —1 is a contraction mapping. By Lemma 3.1, Lemma 3.2
and the condition (A.1), we obtain a estimation ||AP;;'|| = O(e) + O(R), and
by Lemma 3.1, Lemma 3.2 and the condition of the operator B (|¢'| + |o'| >
lo| + |a|), we obtain a estimation ||BP;!|| = O(R). Hence the opcrator @ is a

construction mapping on G1%°*} (R, R; m) for sufficiently small € and R. Q.E.D.

Proof of Theorem 2.6. ‘ '
Let P7lU(tx) = 3 Pu(l) 1Upta? 1B for U(t,x) = 3 Uigt'zP /18! By
Proposition 3.3, L, P! is bijective on G{s"s'} (R, R;m), and since P! Py, =
P, P‘1 = I (identity) holds on G{"’s’}(R R;m), L,is bijective on
{" 9=} (R, R;m). This completes the proof |
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