Newton polyhedrons and a formal Gevrey space of double indices for linear partial differential operators

武蔵野短期大学国際教養学科 山澤浩司 (Hiroshi Yamazawa)

Abstract

In this paper, we shall study a necessary condition to become that the below operator $L_m(t,x;\partial_t,\partial_x)$ is bijective on $\mathcal{G}^{\{s_t,s_x\}}$, where it is said that a formal power series $U(t,x) = \sum_{l\beta} U_{l\beta} t^l x^\beta / l! \beta!$ belongs to $\mathcal{G}^{\{s_t,s_x\}}$ when $U(t,x) = \sum_{l\beta} U_{l\beta} t^l x^\beta / (l!)^{s_t} (\beta!)^{s_x}$ is convergent near the origin for $s_t, s_x \geq 1$.

1 Introduction

Let us give the operator L_m that we shall study in this paper.

Let
$$t = (t_1, \dots, t_q) \in \mathbf{C}^q$$
, $x = (x_1, \dots, x_p) \in \mathbf{C}^p$ and $t \cdot \partial_t = (t_1 \partial_{t_1}, t_2 \partial_{t_2}, \dots, t_q \partial_{t_q})$. Set

$$(1.1) (t \cdot \partial_t)^j = (t_1 \partial_{t_1})^{j_1} (t_2 \partial_{t_2})^{j_2} \cdots (t_q \partial_{t_q})^{j_q}$$

for
$$j = (j_1, \dots, j_q) \in \mathbb{N}^q$$
 and

(1.2)
$$P_m(t \cdot \partial_t) = \sum_{|j| \le m} P_j(t \cdot \partial_t)^j,$$

where $P_{\sigma} \in \mathbb{C}$, and P_m is said to be of Fuchs type of order m in [M]. Then we consider the following operator:

(1.3)
$$L_m = P_m(t \cdot \partial_t) + A(t, x; \partial_t; \partial_x) + B(t, x; \partial_t; \partial_x)$$

where

(1.4)
$$A = \sum_{\substack{|\alpha|=0\\|\sigma'|=|\sigma| \leq m}}^{finite} a_{\sigma,\sigma'}^{\alpha}(t,x)t^{\sigma'}\partial_t^{\sigma}\partial_x^{\alpha},$$

and

(1.5)
$$B = \sum_{\substack{|\sigma'|+|\alpha'|>|\sigma|+|\alpha|}}^{finite} b_{\sigma,\sigma'}^{\alpha,\alpha'}(t,x)t^{\sigma'}x^{\alpha'}\partial_t^{\sigma}\partial_x^{\alpha},$$

where the coefficients $a^{\alpha}_{\sigma,\sigma'}(t,x)$ and $b^{\alpha,\alpha'}_{\sigma,\sigma'}(t,x)$ are holomorphic functions in a neighbourhood of the origin for any $(\sigma,\sigma',\alpha,\alpha')\in \mathbf{Z}^q\times\mathbf{N}^q\times\mathbf{Z}^p\times\mathbf{N}^p$.

Miyake and Hashimoto studied the unique solvability in $\mathcal{G}^{\{s_t,1\}}$ for such type operator. They characterized the Gevrey index s_t by Newton polygons in [M] and [MH].

Our motivation comes from the following facts. Put

$$(1.6) L = (t\partial_t + 1) - 3t^3x\partial_t^2\partial_x - (t\partial_t + 1)x^2\partial_x.$$

This operator is not bijective in $\mathcal{G}^{\{s_t,1\}}$ for any s_t , but is bijective in $\mathcal{G}^{\{s_t,s_x\}}$ for $s_t \geq 3$ and $s_x \geq 2$.

So it is our purpose that we shall consider $\mathcal{G}^{\{s_t,s_x\}}$ to obtain the unique solvability for this operator. We shall define a Newton polyhedrons to characterize double Gevrey indices.

In Section 2, we give our results after defining a function space and Newton polyhedron and listing some notations. In Section 3, we prove our theorems.

2 Statement of results

2.1 Notations.

We denote by N, Z, R and C the set of non negative integers, integers, real numbers and complex numbers, respectively.

 $\mathbf{C}[[t,x]]$ denotes the set of formal power series in $t \in \mathbf{C}^q$ and $x \in \mathbf{C}^q$ with coefficients in \mathbf{C} .

For multi indices $\sigma = (\sigma_1, \dots, \sigma_q) \in \mathbf{Z}^q$ and $\alpha = (\alpha_1, \dots, \alpha_p) \in \mathbf{Z}^p$, an integro-differential $\partial_t^{\sigma} \partial_x^{\alpha} U(t, x)$ of $U(t, x) = \sum_{\substack{l \in \mathbf{N}^q \\ \beta \in \mathbf{N}^p}} U_{l\beta} \frac{t^l x^{\beta}}{l! \beta!} \in \mathbf{C}[[t, x]]$ is defined

as follows:

(2.1)
$$\partial_t^{\sigma} \partial_x^{\alpha} U(t, x) := \sum_{\substack{l \in \mathbf{N}^q, l - \sigma \in \mathbf{N}^q \\ \beta \in \mathbf{N}^p, \beta - \sigma \in \mathbf{N}^p}} U_{l\beta} \frac{t^{l - \sigma} x^{\beta - \alpha}}{(l - \sigma)!(\beta - \alpha)!}.$$

2.2 Formal Gevrey class $G_{\tau\rho}^{\{s_t,s_x\}}(T,X;m)$.

For $U(t,x) \in \mathbf{C}[[t,x]]$, we set $U(t,x) = \sum_{l,\beta} U_{l\beta} t^l x^{\beta} / l! \beta!$, where $U_{l\beta} \in \mathbf{C}$, $l \in \mathbf{N}^q$ and $\beta \in \mathbf{N}^p$ and \mathbf{R}_+ denotes the set of positive real numbers.

Let $s_t, s_x \ge 1, T > 0, X > 0, \tau = (\tau_1, \dots, \tau_q) \in \mathbf{R}^q_+, \rho = (\rho_1, \dots, \rho_p) \in \mathbf{R}^p_+$ and $m \in \mathbb{N}$. Then we define a space $G_{\tau\rho}^{\{s_t, s_x\}}(T, X; m) \subset \mathbf{C}[[t, x]]$ as follows.

$$(2.2) G_{\tau\rho}^{\{s_t,s_x\}}(T,X;m) := \left\{ U(t,x) \in \mathbb{C}[[t,x]]; ||U||_{T/\tau,X/\rho;m}^{\{s_t,s_x\}} < \infty \right\},$$

where

(2.3)
$$||U||_{T/\tau, X/\rho; m}^{\{s_t, s_x\}} := \sup_{l, \beta} |U_{l\beta}| \frac{|l|!^m T^{|l|} X^{|\beta|}}{\{(s_t + m)|l| + s_x|\beta|\}! \tau^l \rho^\beta}$$

and $n! := \Gamma(n+1)$.

Hence there exist positive constants R_t, R_x and C such that

$$|U_{l\beta}| \le C \frac{|l|!^{s_t} |\beta|!^{s_x}}{R_t^{|l|} R_x^{|\beta|}}$$

for any $l \in \mathbb{N}^q$ and $\beta \in \mathbb{N}^p$.

Here we define a formal Gevrey space as follows:

Definition 2.1

(2.5)
$$G^{\{s_t, s_x\}} := \cup_{T, X > 0} G^{\{s_t, s_x\}}_{\tau_{\rho}}(T, X; m)$$

2.3 Newton polyhedron.

Here we define Newton polyhedron for a linear partial integro-differential operator and state some remarks L_m .

Let

(2.6)
$$P = \sum_{\sigma,\sigma'}^{finite} a_{\sigma,\sigma'}^{\alpha,\alpha'}(t,x) t^{\sigma'} x^{\alpha'} \partial_t^{\sigma} \partial_x^{\alpha}$$

be a linear partial integro-differential operator of finite order with holomorphic coefficients in a neighbourhood of the origin.

In the space \mathbb{R}^3 , we define the following lower half line for $(\sigma, \sigma', \alpha, \alpha') \in \mathbb{Z}^q \times \mathbb{N}^q \times \mathbb{Z}^p \times \mathbb{N}^p$:

(2.7)
$$Q(\sigma, \sigma', \alpha, \alpha') := \{ (\mathcal{X}, \mathcal{Y}, \mathcal{Z}) \in \mathbf{R}^3; \mathcal{X} = |\sigma'| - |\sigma|, \mathcal{Y} = |\alpha'| - |\alpha|, \mathcal{Z} \le |\sigma| + |\alpha| \}.$$

Definition 2.2 Newton polyhedron N(P) of the operator P is defined by

$$(2.8) \quad N(P) := Ch\{Q(\sigma,\sigma^{'},\alpha,\alpha^{'}); (\sigma,\sigma^{'},\alpha,\alpha^{'}) \quad \textit{with} \quad a_{\sigma,\sigma^{'}}^{\alpha,\alpha^{'}}(t,x) \not\equiv 0\},$$

where $Ch\{\cdot\}$ denotes the convex hull of sets in $\{\cdot\}$.

Let $N(L_m)$ be Newton polyhedron of L_m .

Remark 2.3 By the form of L_m , the lower half line $\{(0,0,\mathcal{Z}); \mathcal{Z} \leq m\}$ becomes a side of $N(L_m)$ and the point (0,0,m) becomes a vertex of $N(L_m)$.

Next let

(2.9)
$$\mathfrak{A} = \{(\mathcal{X}, \mathcal{Y}, \mathcal{Z}); a\mathcal{X} + b\mathcal{Y} - \mathcal{Z} + m \ge 0\}.$$

Then we define the following set of pairing indices:

(2.10)
$$S = \{(s_t, s_x); s_t = a + 1, s_x = b + 1, N(L_m) \subseteq \mathfrak{A}\}.$$

Remark 2.4 Since the boundary of S is a hyper plane which goes through the point (0,0,m), there exists (s_t,s_x) such that $N(L_m) \subseteq \mathfrak{A}$ by Remark 2.3.

Remark 2.5 For any (s_t, s_x) belonging to S, we obtain

$$(2.11) s_t(|\sigma| - |\sigma'|) + s_x(|\alpha| - |\alpha'|) + |\sigma'| + |\alpha'| - m \le 0$$

for $(\sigma, \sigma', \alpha, \alpha')$ with $Q(\sigma, \sigma', \alpha, \alpha') \in N(L_m)$.

2.4 Main results.

We assume the following additional condition.

(A.1) If
$$m(|\sigma'| - |\sigma|) + |\sigma'| < m$$
 for $(\sigma, \sigma', \alpha, \alpha')$ with $b^{\alpha\alpha'}_{\sigma\sigma'}(t, x) \not\equiv 0$, then

$$(2.12) (m+s_t)(|\sigma|-|\sigma'|)+s_x(|\alpha|-|\alpha'|)+|\alpha'| \leq 0,$$

for (s_t, s_x) belonging to S.

(S.C) For any $\epsilon > 0$, there exist $\tau \in \mathbf{R}^q_+$ and $\rho \in \mathbf{R}^p_+$ such that

(2.13)
$$\sum_{\substack{|\alpha|=0\\|\sigma'|=|\sigma|\leq m}}^{finite} |a^{\alpha}_{\sigma,\sigma'}|\tau^{\sigma-\sigma'}\rho^{\alpha} < \epsilon,$$

where $a_{\sigma,\sigma'}^{\alpha} = a_{\sigma,\sigma'}^{\alpha}(0,0)$.

It is said that the condition (S.C) is Spectral condition in [M].

Then we obtain the following results.

Theorem 2.6 Assume that L_m satisfies the condition (A.1) and (S.C) and further assume that there exists a positive constant C such that

$$(2.14) |P_m(l)| \ge C(|l|+1)^m for all l \in \mathbb{N}^q.$$

Then the mapping

(2.15)
$$L_m: G^{\{s_t, s_x\}} \to G^{\{s_t, s_x\}}$$

is bijective for any (s_t, s_x) belonging to S.

Next set

(2.16)

$$\delta = \max \left\{ \left\{ \frac{|\alpha'| + \max\{|\sigma'| - m, m(|\sigma| - |\sigma'|)\}}{|\alpha'| + |\sigma'| - |\alpha| - |\sigma|}; b_{\sigma\sigma'}^{\alpha\alpha'}(t, x) \not\equiv 0 \right\}, 1 \right\}.$$

Then for $s_x \geq \delta$, there exist indices s_t with $s_t \geq 1$ such that if $m(|\sigma'| - |\sigma|) + |\sigma'| - m \geq 0$, then

$$(2.17) s_t(|\sigma| - |\sigma'|) + s_x(|\alpha| - |\alpha'|) + |\sigma'| + |\alpha'| - m \le 0,$$

and if $m(|\sigma'| - |\sigma|) + |\sigma'| - m < 0$, then

$$(2.18) (s_t + m)(|\sigma| - |\sigma'|) + s_x(|\alpha| - |\alpha'|) + |\alpha'| \le 0.$$

For example if $s_x = s_t \ge \delta$, then the above formulas are satisfied. So we obtain the following Corollary.

Corollary 2.7 Assume that L_m satisfies the condition (S.C) and further assume the inquation (2.14). Then for $s_x \geq \delta$, there exist indices s_t with $s_t \geq 1$ such that the mapping (2.15) is bijective.

3 Proof of Theorem.

In this section first we estimate a operator of form $t^{\sigma'}x^{\alpha'}\partial_t^{\sigma}\partial_x^{\alpha}P_m^{-1}$ on $G_{\tau\rho}^{\{s_t,s_x\}}(T,X;m)$, next by using the estimate we show $L_mP_m^{-1}$ is bijective on same space, at last we give a proof of Theorem 2.6.

3.1 The estimate of operator $t^{\sigma'} x^{\alpha'} \partial_t^{\sigma} \partial_x^{\alpha} P_m^{-1}$.

Here we study a estimate of the operator $t^{\sigma'}x^{\alpha'}\partial_t^{\sigma}\partial_x^{\alpha}P_m^{-1}$ of the mapping

$$(3.1) t^{\sigma'} x^{\alpha'} \partial_t^{\sigma} \partial_x^{\alpha} P_m^{-1} : G_{\tau\rho}^{\{s_t, s_x\}}(T, X; m) \to G_{\tau\rho}^{\{s_t, s_x\}}(T, X; m),$$

where

$$(3.2) P_m^{-1}: \sum U_{l\beta} \frac{t^l x^{\beta}}{l!\beta!} \mapsto \sum P_m(l)^{-1} U_{l\beta} \frac{t^l x^{\beta}}{l!\beta!}.$$

Lemma 3.1 Assume that the conditions in Theorem 2.6 are satisfied. Then for any (s_t, s_x) belonging to S, there exist a positive constant C such that the operator norm of the mapping (3.1) is estimated as follows:

$$(3.3) ||t^{\sigma'}x^{\alpha'}\partial_t^{\sigma}\partial_x^{\alpha}P_m^{-1}|| \leq CT^{|\alpha'|-|\alpha|}X^{|\sigma'|-|\sigma|}\tau^{\sigma-\sigma'}\rho^{\alpha-\alpha'},$$

where the constant C depends only on $m, s_t, s_x, \sigma, \sigma', \alpha$ and $\alpha', \alpha', \alpha' \in C$ the operator norm on $G_{\rho\tau}^{\{s_t, s_x\}}(T, X; m)$.

Proof. Let $t^{\sigma'}x^{\alpha'}\partial_t^{\sigma}\partial_x^{\alpha}P_m^{-1}U(t,x)=\sum_{\beta l}V_{l\beta}t^lx^{\beta}/l!\beta!$. Then we obtain

(3.4)
$$V_{l\beta} = \frac{l!}{(l-\sigma')!} \frac{\beta!}{(\beta-\alpha')!} P_m (l+\sigma-\sigma')^{-1} U_{l+\sigma-\sigma'\beta+\alpha-\alpha'},$$

where $l + \sigma - \sigma' \in \mathbb{N}^q$ and $\beta + \alpha - \alpha' \in \mathbb{N}^p$.

Therefore we have

$$|V_{l\beta}| \frac{|l|!^{m} T^{|l|} X^{|\beta|}}{\{(s_{t}+m)|l|+s_{x}|\beta|\}! \tau^{l} \rho^{\beta}}$$

$$\leq C_{0} |l|^{m(|\sigma'|-|\sigma|)+|\sigma'|-m} |\beta|^{|\alpha'|} T^{|\sigma'|-|\sigma|} X^{|\alpha'|-|\alpha|} \tau^{\sigma-\sigma'} \rho^{\alpha-\alpha'}$$

$$\times \frac{\{(s_{t}+m)|l|+s_{x}|\beta|+(s_{t}+m)(|\sigma|-|\sigma'|)+s_{x}(|\alpha|-|\alpha'|)\}!}{\{(s_{t}+m)|l|+s_{x}|\beta|\}!}.$$

By Remark 2.5 and the condition (A.1), we obtain the estimation (3.3). Q.E.D.

3.2 The estimate of operator $L_m P_m^{-1}$.

For $x \in \mathbf{C}^p$, we set $|x| = x_1 + \cdots + x_p$ and $||x|| = |x_1| + \cdots + |x_p|$. For a domain $\Omega \subset \mathbf{C}^p$, $\mathcal{O}(\Omega)$ denotes the set of holomorphic functions in Ω , $\mathcal{O}(\overline{\Omega}) := \mathcal{O}(\Omega) \cap \mathbf{C}(\overline{\Omega})$. Similar notations will be used frequently for functions defined in a domain $\mathbf{C}_{t,x}^{q+p}$.

Let $a(t,x) = \sum a_{l\beta}t^lx^\beta/l!\beta! \in \mathcal{O}(\{||t|| \le \kappa T\} \times \{||x|| \le \kappa X\}) \ (\kappa > 0)$ and put

(3.6)
$$||a||_{\kappa T, \kappa X} := \max_{\substack{||t|| \le \kappa T \\ ||x|| \le \kappa X}} |a(t, x)|.$$

By Cauchy's integral formula on a polycircle $\prod_{j=1}^{q} \{|t_j| = \eta_j \kappa T\} \times \prod_{i=1}^{p} \{|x_i| = \xi_i \kappa X\}$ $(\eta_j > 0, \eta_1 + \dots + \eta_q = 1)$ and $(\xi_i > 0, \xi_1 + \dots + \xi_p = 1)$, we have

$$|a_{l\beta}| \le C \frac{1}{(\kappa T)^{|l|} (\kappa X)^{|\beta|}} \frac{l! \beta!}{\eta^l \xi^{\beta}}.$$

Since η^l and ξ^{β} take its maximum on the above mentioned domain at a point $\eta = (l_1/|l|, \dots, l_q/|l|)$ and $\xi = (\beta_1/|\beta|, \dots, \beta_p/|\beta|)$, we have

(3.8)
$$|a_{l\beta}| \leq ||a||_{\kappa T, \kappa X} \frac{1}{(\kappa T)^{|l|} (\kappa X)^{|\beta|}} \frac{|l|^{|l|} |\beta|^{|\beta|} l! \beta!}{l^{l} \beta^{\beta}}.$$

Hence by Stirling's formula, we have

(3.9)
$$|a_{l\beta}| \leq C(q,p)||a||_{\kappa T,\kappa X} \frac{(|l|+[q/2])!(|\beta|+[p/2])!}{(\kappa T)^{|l|}(\kappa X)^{|\beta|}},$$

for some positive constant C(q,p) depending only on the dimension q of t and the dimension p of x. Here [q/2] (resp.[p/2]) denotes the integral part of q/2 (resp.[p/2]).

Then we have the following lemma.

Lemma 3.2 Let $U(t,x) \in G_{\tau\rho}^{\{s_t,s_x\}}(T,X;m)$ and $a(t,x) \in \mathcal{O}(\{||\tau t|| \le \kappa T\} \times \{||\rho x|| \le \kappa X\})$ $(\kappa > 0)$. Then $a(t,x)U(t,x) \in G_{\tau\rho}^{\{s_t,s_x\}}(T,X;m)$ for any $\kappa > 1$ and it holds

(3.10)
$$||aU||_{T/\tau,X/\rho;m}^{\{s_{t},s_{x}\}} \leq C(q,p) \frac{[q/2]!}{(1-1/\kappa)^{[q/2]+1}} \frac{[p/2]!}{(1-1/\kappa)^{[p/2]+1}} \times ||a||_{\kappa T,\kappa X} ||U||_{T/\tau,X/\rho;m}^{\{s_{t},s_{x}\}}.$$

Proof. We may be $\rho = (1, \dots, 1) \in \mathbf{R}_+^p$ and $\tau = (1, \dots, 1) \in \mathbf{R}_+^q$. Set $a(t, x)U(t, x) = \sum V_{l\beta}t^lx^{\beta}/l!\beta!$, where

(3.11)
$$V_{l\beta} = \sum_{\substack{0 \le n \le l \\ 0 \le \gamma \le \beta}} a_{n\gamma} U_{l-n\beta-\gamma} \frac{l!}{n!(l-n)!} \frac{\beta!}{\gamma!(\beta-\gamma)!}.$$

Then we have

(3.12)

$$|V_{l\beta}| \leq C(q,p)||a||_{\kappa T,\kappa X}||U||_{T/\tau,X/\rho;m}^{\{s_{t},s_{x}\}} \sum_{\substack{0 \leq n \leq l \\ 0 \leq \gamma \leq \beta}} \frac{(|n| + [q/2])!(|\gamma| + [p/2])!}{(\kappa T)^{|n|}(\kappa X)^{|\gamma|}} \times \frac{\{(s_{t} + m)(|l| - |n|) + s_{x}(|\beta| - |\gamma|)\}!}{|l - n|!^{m}T^{|l| - |n|}X^{|\beta| - |\gamma|}} \times \frac{l!}{n!(l - n)!} \frac{\beta!}{\gamma!(\beta - \gamma)!}.$$

Hence we have

(3.13)
$$||aU||_{T/\tau,X/\rho;m}^{\{s_{t},s_{x}\}} \le C(q,p)||a||_{\kappa T,\kappa X}||U||_{T/\tau,X/\rho;m}^{\{s_{t},s_{x}\}}$$

$$\frac{[q/2]!}{(1-1/\kappa)^{[q/2]+1}} \frac{[p/2]!}{(1-1/\kappa)^{[p/2]+1}}.$$

Q.E.D

By Lemma 3.1 and Lemma 3.2, we obtain the following essential proposition.

Proposition 3.3 Assume that the conditions of Theorem 2.6 are satisfied. Then for any (s_t, s_x) belonging to S, there exist a positive constant R_0 , $\tau \in \mathbf{R}^q_+$ and $\rho \in \mathbf{R}^p_+$ such that the mapping

(3.14)
$$L_m P_m^{-1} : G_{\tau \rho}^{\{s_t, s_x\}}(R, R; m) \to G_{\tau \rho}^{\{s_t, s_x\}}(R, R; m)$$

is bijective for any R with $0 < R < R_0$.

Proof. Since $P_m P_m^{-1} = I$ on $G_{\tau\rho}^{\{s_t, s_x\}}(R, R; m)$, it is sufficiently that we show that $Q = (A+B)P_m^{-1}$ is a contraction mapping. By Lemma 3.1, Lemma 3.2 and the condition (A.1), we obtain a estimation $||AP_m^{-1}|| = O(\epsilon) + O(R)$, and by Lemma 3.1, Lemma 3.2 and the condition of the operator $B(|\sigma'| + |\alpha'|) > |\sigma| + |\alpha|$, we obtain a estimation $||BP_m^{-1}|| = O(R)$. Hence the operator Q is a construction mapping on $G_{\tau\rho}^{\{s_t, s_x\}}(R, R; m)$ for sufficiently small ϵ and R. Q.E.D.

Proof of Theorem 2.6. Let $P_m^{-1}U(t,x) = \sum P_m(l)^{-1}U_{l\beta}t^lx^{\beta}/l!\beta!$ for $U(t,x) = \sum U_{l\beta}t^lx^{\beta}/l!\beta!$. By Proposition 3.3, $L_mP_m^{-1}$ is bijective on $G_{\tau\rho}^{\{s_t,s_x\}}(R,R;m)$, and since $P_m^{-1}P_m = P_mP_m^{-1} = I$ (identity) holds on $G_{\tau\rho}^{\{s_t,s_x\}}(R,R;m)$, L_m is bijective on $G_{\tau\rho}^{\{s_t,s_x\}}(R,R;m)$. This completes the proof.

References

- [M] Miyake, M., Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations, J. Math. Soc. Japan Vol. 43, No. 2(1991), 305-329.
- [MH] Miyake, M. and Hashimoto, Y., Newton polygons and Gevrey indices for linear partial differential operators, Nagoya Math. J. 128(1992), 15-47.
- [BG] Bengel, G. and Gérard, R., Formal and convergent solutions of singular partial differential equations, Manuscripta Math. 38(1982), 343-373.
- [W] Wagschal, C., Problème de Cauchy analytique a données méromorphes, J. Math. pures et appl. 51(1972), 375-397.