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1. INTRODUCTION
In this paper, we consider the folloWing minimax fractional .programming problem:

(P)  v* = min max [£i(o)/ (o),

where

(A1) S ={z € R";hx(z) <0,k =1,2,--- ,m} is nonempty and compact;

(A2) fi: Xo—R,g;: Xo—R,0=1,2,--- ,p,and hy : Xo —» R,k =1,2~-- ,m are

locally Lipschitz continuous and X is the open subset of R";

(A3) gi(z) > 0,1 =1,2,--- ,p, z € S;

(A4) if g; is not affine, then fi(z) >0 foralli and all z € S.
Generalized fractional programming has been of much interest in the last decades; see
for example [1-4, 6, 7, 10-19]. In [7], Crouzeix et al. have shown that the minimax
fractional program can be derived by solving the following minimax nonlinear (nondif-
ferentiable) parametric program: '

(R)  min max (fi(z) —vgi(z))

where v € Ry = [0,00) is a parameter.



It is clear that (P,) is equivalent to the following problem (EP,) for a given v:

(EPU) mana
subject to  fi(z) —vgi(z) <q, i=1,2,---,p,
he(z) <0, k=1,2,---,m

In [2], Bector et al. employed the problem (EP,) to prove necessary and sufficient
optimality conditions for problem (P) and establish various duality results for prob-
lem (EP,) involving differentiable generalized convex functions (or generalized invex
functlons) Liu [10-12] also adapted the same approach to obtain necessary and suffi-
cient optimality conditions; and he derived duality theorems for generalized fractional
programming problems mvolvmg either nonsmooth pseudoinvex functions [11] or non-
smooth (F, p)-convex functions [10], and duality theorems for generalized fractional
variational problems involving generalized (F, p)-convex functions [12].

But, all of the above necessary optimality conditions and strong duality theorems
need that the constraint of (EP,) satisfy a constraint qualification.

In order to improve this defect, we want to use problem (P,) to establish both
parametric and nonparameter necessary and sufficient optimality conditions, since a
constraint qualification that is imposed on the constrains of (P) may not hold for
(EP,) but hold for (P,). Subsequently, these optimality criteria are utilized as a basis
for constructing one parametric and two other parametric-free dual models (see [13]
and [16]), and some duality results for (P) are established.

2. NOTATIONS AND PRELIMINARY RESULTS
Throughout this paper, let R” be the n-dimensional Euclidean space and R% be its
non-negative orthant. Let X, be an open subset of R”.

Definition 2.1. The function 6 : X, — R is said to be Lipschitz on X, if there exists
¢ > 0 such that for all y, z- € X,

16(y) — 8(2)| < elly — =],

where || - || denotes any norm in R™.

For each d in R", °(z;d) is the generalized directional derivative of Clarke
[5] defined by

6°(z;d) = lim sup[6(y + ¢d) - 6(y)]/t.
tl0

It then follows that
6°(z;d) = max{¢Td | ¢ € 98(z)} for any z and d,

where 06(-) denotes the Clarke’s generallzed gradient [5]. The following definitions
can be found in [11]:



Definition 2.2. The function 6 : R™ — R is said to be invex at z* with respect to n
if there exists a mapping n : R® x R™ — R” such that, for each z € R",

6(z) - 8(z*) 2 0°(a*;n(z,2%)). (2.1)

0 is said to be invex on R™ with respect to 7 if there exists a mapping n : R® x R" — R"
such that, for each z,u € R”?,

() —6(u) > 6°(usn(, 0)). (22)
If we have strict inequality in (2.1) and (2.2), respectively, then § is said to be strictly

invex at z* with respect to n and strictly invex on R™ with respect to 5, respectively.

Definition 2.3. The function 6 : R” — R is said to be quasiinvex at z* with respect
to n if there exists a mapping n : R® x R® — R" such that, for each z € R",

6(z) < 6(z*) = 6°(z*;n(z,z*)) <O0. (2.3)

6 is said to be quasiinvex on R™ with respect to 7 if there exists a mapping n : R" xR"
R™ such that, for each z,u € R,

6(z) < 9(u) = 60°(u;n(z,u)) <0. (‘2.4)

If we have strict inequality in (2.3) and (2.4), respectively, then 6 is said to be strictly
quasiinvex at z* with respect to 7 and strictly quasiinvex on R"™ with respect to 7,
respectively.

Definition 2.4. The function 6 : R® — R is said to be pseudoinvex at z* with
respect to n if there exists a mapping n : R x R™ = R such that, for each z € R",
6°(z*;n(z,z*)) > 0= 0(z) > 6(z™). (2.5)

9 is said to be pseudoinvex on R” with respect to n if there exists a mapping 7 :
R™ x R™ — R™ such that, for each z,u € R",

6°(u;n(z,u)) > 0 = 6(z) > 6(u). (2.6)

If we have strict inequality in (2.5) and (2.6), respectively, then 6 is said to be strictly
pseudoinvex at z* with respect to n and strictly pseudoinvex on R™ with respect to
n, respectively.

We need the following lemmas.

Lemma 2.1. [16, Lemma 3.1.] Let v* be the optimal value of (P), and let V(v) be
the optimal value of (P,) for any fixed v € Ry such that (P,) has an optimal solution.
Then z* is an optimal solution of (P) if and only if * is an optimal solution of (Py+)
with optimal value V(v*) = 0.



Lemma 2.2. [5, Proposition 2.3.12.] Let fi,---, fp be Lipschitz functions at z* and
a; ERforallz=1,---,p. Then : : :

(1) 835y aufi)(z™) C Yoty idfi(e),
(2) 6[maxlszsp fil(@*) CU{ Xiep @,0f,(*); @, 20, Xyep o, =1}

where L is the set of indices [ for which

fi(z") = max fi(2").

Lemma 2.3. [16, Lemma 3.2.] For each z € S, one has

9(2) = max (fi(2)/9:(2)) = max Zﬁzfz x)/Zﬂzgz (2))

ﬂEU

where U = {8 € RE|YP_, B; = 1}.
- For convenience, we give the scalar minimization problem as follows:
(SP) Minimize N(z),
subject to  hx(z) <0, k=1,2,---,m

where N, hg : Xo — R,k = 1,2,--- ,m, are Lipschitz on X;. We need the following

lemma.

Lemma 2.4. [8, Theorem 6.] If z* € X is a local minimum for (SP) and a constraint
qualification is satisfied, then there exist z* = (2f,--- ,2) € R} such that_

0€ON(z*) + Y z0hi(z"),
k=1
zphp(z*) =0, forall k£=1,2,---,m.

For simplicity, throughout the paper we denote

U={aeR} |Zaz—1},

F(z) =(fi(z), 7.fp($))7
G(z) = (g1(x),-- ,gp(x)), and
( )_ (hl(x)77hm($))

For z € R™, 2TH(z*) = Y1, zkhe(z*), and 8(zTH)(z*) = S, zx0hi(z*).

3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITiONS

In this section, we shall use Lemmas 2.1 ~ 2.4 to establish some necessary and
sufficient optimality conditions for the minimax fractional programming problem (P).



Theorem 3.1 (Necessary optimality conaitions). Let z* € S. If z* is an optimal
-solution of (P) and that the constraint of (P) satisfy Slater’s constraint qualification
[8]. Then there exist v* = ¢(z*) € Ry, y* € U, 2* € RY such that

0 € a(y*TF)(z*) — v 0y TG)(a*) + 8(z* T H)(z"), C(31)
y*TF(:c*) - v*y*TG(x*) =0, (3.2)
2T H(z*) = 0. . (3.3)

Proof. If z* is an optimal solution of (P), by Lemma 2.1, it is an optimal solution
of (Py+) with v* = maxi<i<p[fi(2*)/gi(z*)]. Thus, by Lemma 2.4, there exist z* €
R7, such that :

0€ a(max (fi — v*gi))(x*) +8(z* TH)(z*)

1<i<p
and
Z*TH(.’C*) =0.
Therefore, by Lemma 2.2, there exist o, >0, [ € L, Z a, =1, such that
leL
* * * *T *
0€ ) a(df(¢%) +v*0(~g,(c")) +0(z" H)(z"). (3.4)

leL

It is obvious that v* = maxi<i<p[fi(z*)/gi(z*)] if and only if max;<i<p[fi(z*) —
v*g;(z*)] = 0. From (3.4), if we set yf = o; for ¢ € L as well as y; = 0 for
i € {1,2,---,p} \ L, the expressions (3.1), (3.2) and (3.3) hold.

’ O

In order to construct parameter-free. duality models for problem (P), we shall for-
mulate parameter-free versions of Theorem 3.1 as follows:

Theorem 3.2. Let z* € S. If z* is an optimal solution of (P) and that the constraint
of (P) satisfy Slater’s constraint qualification [8]. Then there exist y* € U and 2* € R}
such that ‘

0¢ v T6(") (0 TR + 8" TH)(=")) — v TF()oly* T @)(a),

‘ (3.5)
*TH(z*) =0, (3.6)

and obtain the optimal value by |
#(z") =y F(z")/y" G(a') = max (fi(a")/9:(a").  (3.7)

Proof. From (3.2) and (3.1), substituting y* T F(z*)/y* T G(z*) for v*, we can derive
the results.
‘ O

The conditions (3.5) ~ (3.7) will be the sufficient optimality condition which we
state as the following theorem.



Theorem 3.3 (Sufficient optimality conditions). Let z* € S, and assume that there
exist y* € U and z* € R, such that the conditions (3.5) ~ (3.7) hold. Let

Alz) =y TG(e")y T F(e) —y" F(z%)y" T G(a),

B(z)=z*"H(z), and C(z)=A(z)+y* G(z*)B(x).

If any one of the following conditions holds

(a) A is pseudoinvex at z* with respect to n and B is quasiinvex at z* with respect
to same function 7,

(b) A is quasiinvex at z* with respect to n and B is strictly pseudoinvex at z* with
respect to same function 7,

(¢) C is pseudoinvex at z* with respect to 7.

Then z* is an optimal solution of (P).

Proof. Suppose contrary that * were not an optimal solution of (P). Then there
exists a feasible solution z; € S such that

$(z*) > $(z1).
From (3.7) and Lemma 2.3, we have
y* F(a")/y"" G(a*) > max(FT F(21)/87G(1)) 24" Flar)/y™" G(an).
It féllows that
Alzy) = y* Ga*)y* " F(zy) - y*TF(é*)y*TG(xl) < 0= A(z*). (3.8)
Using both the feasibility z; for (P) and the equality (3.6), we have
B(z;) <0 = B(z*). | (3.9)
Consequently, expressions (3.8) and (3.9) yield
C(z1) < C(z*). (3.10)
By (3.5), there exist ¢ € (y* " F)(z*), ¢ € 8(* "H)(z*), and p € d(—y* " G)(z*),

such that .
y* G )E+O+y FaT)p =0.

From here it results
y* T G(z*) (€ n(z, %) + Tz, 2*)) + y* T F(2*)pTn(z,2*) = 0. (3.11)
Using the characterization of the generalized gradient of Clarke, we obtain
(y*TF)°(x*;n(m,m*)) > ¢Ty(z,2*), forall ze€S, '(3.12),

| (z*TH)°(x*; n(z,z*)) > ¢(Tn(z,z*), forall z €S, (3.13)



(——y*TG)°(a:*;77(:v,x*)) > p ' n(z,z*), forall zeld. (3.14)

Now, multiplying (3.12) by y* ' G(z*), (3.13) by y* ' G(z*), and (3.14) by y* T F(z*),
and adding the resulting inequalities and with (3.11), we obtain
y* Gy F)°(@*in(z,2%)) + (* T H) (% (=, %))

—y* F(e*)(y* ' G)°(z*;n(z,2*)) >0, forall z €S
(3.15)

If hypothesis (a) holds, using the pseudoinvexity of A at z* and the inequality (3.8),
we have ' ' .

y* G(e*)(y* F)°(a%in(z1,2%)) —y* T F(a*)(y* T G)°(z*im(e1,2%)) < 0. (3.16)
Consequently, the inequalities (3.15) and (3.16) yield
y* G(a")(="TH) (2% n(e1,2%)) > 0.
Thus, we have
(z*TH)®(z*;n(zy,2%)) > 0. (3.17)
Using the quasiinvexity of B at z*, we get from (3.17)
" B(zy) = 2" "H(zy) > z* " H(z*) = B(z*)

which contradicts the inequality (3.9).

Hypothesis (b) follows along with the same lines as (a).

If hypothesis (c) holds, using the pseudoinvexity of C at z* and the inequality (3.10),
we have

y* TGy F)° (¢ (a1, a®)) + (2% H)®(a*; (21, 2*))]
~y* TF(@*)(y* " G)°(z*; (21, 2%)) < 0

which contradicts the inequality (3.15). Hence, the proof is complete. d

4. THE FIRST DUAL MODEL

Utilize Theorem 3.2, in Sections 4 and 5 we shall introduce two parametric-free dual
models and prove appropriate duality theorems. Indeed, we shall demonstrate that the
following is dual problem for (P): '

(DI) Maximize (yTF(u) + zTH(u))/yTG(u)
subject to 0 € yTG(U)(a(yTF)(U)."F 8(zTH)(u)) ‘
— (yTF @) + 2T Hw)ATG)(w), (41)
yeU, zeRY. (4.2)

We denote by K; the set of all feasible solutions (u,y,2) € Xo x U x RT* of problem
(DI). We assume throughout this section that y " F(u)+ 2T H(u) > 0 and y " G(u) > 0.



Theorem 4.1 (Weak Duality). Let z € S and (u,y,2) € K; and assume that
D()=y ' G)ly F(-)+z HO) ~y Gy F(u) + =" H(u)]
is a pseudoinvex function with respect to n at u. Then ’

8(x) > (v () + = TH(w)) [y G(w).

Proof. By (4.1), there exist £ € 8(y " F)(u), ¢ € 8(z"H)(u), and p € d(—y T G)(u),
such that :
yTG)(E + )+ [y Fw) + = H(w)lp = 0.

From here it results

y ' G(u)(Tn(z,u) + (Tn(z,w) + [y F(u) + 2" H(u)]p n(z,u) =0. (4.3)

Using the characterization of the generalized gradient of Clarke, we obtain
(y"F)°(u;n(z,u)) > € "n(z,u), forall zes5, , (4.4)
(zTH)(w;n(z,u)) > ¢ "n(z,u), forall ze€S, (4.5)
(—y T @)°(u;n(z,u)) > p ' n(z,u), foral zes. (4.6)

Now, multiplying (4.4) by y"G(u), (4.5) by y' G(u), and (4.6) by y' F(u) + 2" H(u),
and adding the resulting inequalities and with (4.3), we obtain

y Gu)(y" F)°(usn(z,u)) + (= TH)(u;n(e, v))]

— [T F(u) + 2 THW)](y TG (uin(z,u)) > 0, forall zeS.
. (47)

We suppose that _
é(z) < (yTF(u) + ZTH(u))/yTG(u).

Then, by Lemma 2.3 and y € U, we have
yTF()/yTG(2) < (yTF(w) + = H () /yT G(w).
Thus, we have
y G(u)y "F(z) -y G(z)ly F(u) + 2" H(u)] <0.
Hence, we have another inequality
y G(u)ly F(e) +2 H(z)| -y G(e)ly F(u) + z H(w)] <y G(u)z " H(=).
Using the fact y"G(u) > 0, 2T H(z) < 0, and the latest inequality, we have
D(z) < 0= D(u).
Using the fact that D(-) is a pseudoinvex function with respect to n at u, we have
y ' G()[(y " F)°(un(e,u)) + (=" H)®(u;n(e,u))]
— [y F(u) + 2 TH(w)(y " G)°(u;n(z, ) <0

which contradicts the inequality (4.7). Hence, the proof is complete. O



Theorem 4.2 (Strong Duality). If z* is an optimal solution of (P) and that the
‘constraint of (P) satisfy Slater’s constraint qualification [8].- Then-there exist y* € U-
and z* € R7, such that (z*,y*,2*) is a feasible solution of (DI). Furthermore, if the
conditions of Theorem 4.1 hold for all feasible solutions of (DI), then (z*,y*,2*) is an
optimal solution of (DI) and the optimal values of (P) and (DI) are equal; that is,
min(P) = max(DI).

Proof. By Theorem 3.2, there exist y* € U, and z* € R}, such that (z*,y*,2%) is a
feasible solution of (DI). Furthermore,

(v TF@*) + 2 THE) /v TGt = v TRy TG = ¢(e").

Thus, optimality of (z*,y*, 2*) for (DI) follows from Theorem 4.1.
' O

Theorem 4.3 (Strict Converse Duality). Let z; and (z*,y0, z0) be optimal solutions
of (P) and (DI), respectively, and assume that the assumptions of Theorem 4.2 are

fulfilled. If
D(") = yf G(a*)lyg F() + 20 H()] — vg G()lyg F(a*) + z0 H(z")]

is a strictly pseudoinvex function with respect to 7, then =3 = z*; that is, z* is an opti-
mal solution of (P) with the same optimal values ¢(z1) = (yq F(z*)+20 H(z*))/ys G(z*).

Proof. Suppose, on the contrary, that z; # z*. From Theorem 4.2 we know that there
exist y; € U and z; € RY, such that (z1,y1,21) is an optimal solution of (DI) and

B(x1) = (leF(ﬂcl) + 2] H(z1))/y, G(zy).

Now proceeding as in the proof of Theorem 4.1 (replacing = by 71 and (u,y,z) by
(z*,90,20) ), we arrive at the following strict inequality:

¢(z1) > (yoTF(fﬂ*) + 29 H(z"))[yg G(a¥).
This contradicts the fact that
$(z1) = (y] F(z1) + 2 H(z1)) )y Glz1) = (yo F(*) + 29 H(z")) /yo G(a¥).

Therefore, we conclude that

z1=2%, and ¢(z1) = (yo F(z*)+ 2 H(a" ))/yo G(z7).

5. SECOND DUAL MODEL
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. We shall continue our discussion of parameter-free duality model for (P) in this
section by showing that the following problem (DII) is also dual problem for (P):

(DII) Maximize yTF(u)/yTG(u)
~ subject to 0 € yTG(u)‘(a(yTF)(u) + B(zTH)(u))

—y F(u)d(y" G)(u), o

(5.1)

2T H(u) >0, (5.2)
y €U, z € RY. (5.3)

We denote by K> the set of all feasible solutions (u,y,z) € Xo x U x R of problem
(DII). Throughout this section, we assume that y ' F(u) > 0 and y ' G(u) > 0. Then,
we can prove the following weak duality, strong duality, and strict converse duality
theorems.

Theorem 5.1 '(Weak Duality). Let z € S and (u,y,z) € Ky and let
E() =y Guly F() —y Fu)y G(),
I()=2TH(), and  J()=E()+yTG@I().

If any one of the following conditions holds

(a) E is a pseudoinvex function with respect to n at u and I is a quasiinvex function
at u with respect to same function 7,

(b) E is a quasiinvex function with respect to n at u and I is a strictly pseudoinvex
function at u with respect to same function 7,

(c) J is a pseudoinvex function with respect to n at wu.

Then :
$(z) >y F(u)/y" G(u).

Theorem 5.2 (Strong Duality). If z* is an optimal solution of (P) and that the
constraint of (P) satisfy Slatel_"s constraint qualification [8]. Then there exist y* € U
and z* € RT, such that (z*,y*, z*) is a feasible solution of (DII). Furthermore, if the
conditions of Theorem 5.1 hold for all feasible solutions of (DII), then (z*,y*, 2*) is an
optimal solution of (DII) and the optimal values of (P) and (DII) are equal; that is,
min(P) = max(DII).

Theorem 5.3 (Strict Converse Duality). Let z; and (z*,yo,20) be optimal solutions
of (P) and (DII), respectively, and assume that the assumptions of Theorem 5.2 are
fulfilled. If E(:) = yo ' G(z*)yo  F(-) — yo " F(2*)yo ' G(:) is a strictly pseudoinvex
function with respect to 1 and I(-) = 2o ' H(-) is a quasiinvex function with respect to
same function 7, then z; = z*; that is, £* is an optimal solution of (P) Wlth the same
optimal values ¢(z1) = y, F(w*)/y(;rG(:c ).

6. THE THIRD DUAL MODEL
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Making use of Theorem 3.1, in this section we can formulate the following parametric
dual problem:

(DIII) Maximize v

subject to 0 € A(yT F)(u) — vd(yTG)(u) + 8(zT H)(w), (6.1)
yTF(u) — vyTG(u) >0, (6.2)
2z H(u) >0, (6.3)
yeU, veRy,zeRT. (6.4)

We denote by K3 the set of all feasible solutions (u,y,z,v) € Xo x U x R} x Ry of
problem (DIII). Then a weakly duality theorem is established as follows:

Theorem 6.1 (Weak Duality). Let « € S and (u,y, z,v) € K3, and let
L(-) =y " F(-) —vy G("),
I()=2zTH(), and M()=L()+I().

If any omne of the following conditions holds

(a) L is a pseudoinvex function with respect to n at u and I is a quasiinvex function
at u with respect to same function 7,

(b) L is a quasiinvex function with respect to n at u and I is a stnctly pseudomvex
function at u with respect to same function 7, -

(¢) M is a pseudoinvex function with respect to 7 at u.

Then _
é(z) > v.

Theorem 6.2 (Strong Duality). If z* is an optimal solution of (P) and that the
constraint of (P) satisfy Slater’s constraint qualification [8]. Then there exist y* €
U, z* € R}, and v* € Ry, such that (z*,y*,2*,v*) is a feasible solution of (DIII).
Furthermore, if the conditions of Theorem 6.1 hold for all feasible solutions of (DIII),
then (z*,y*, 2*,v*) is an optimal solution of (DIII) and the optimal values of (P) and
(DIII) are equal that is, min(P) = max(DIII).

Theorem 6.3 (Strict Converse Duality). Let z; and (z*,yo, 20,v0) be optimal solu-
tions of (P) and (DIII), respectively, and assume that the assumptions of Theorem 6.2
are fulfilled. I yo " F(-) — voyo ' G(-) is a strictly pseudoinvex function with respect
to n and I(-) = 2" H(:) is a quasiinvex function with respect to same function 7,
then r; = z*; that is, z* is an optimal solution of (P) with the same optimal values

¢(~’U1) = Vp.

The complete proof of Theorems 5.1-5.3 and Theorems 6.1-6.3 will be appear else-
where.

7. SOME REMARKS FOR FURTHER DEVELOPMENTS
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(1) There some questions arise that whether the results develop in this paper hold

in generalized (F, p)-convex ? :

(2) Does the set I ={1,2,---,p} in the minimax fractional programming (P) can

be replaced by a compact subset Y of R™ ? that is, does one can discuss the
following minimax fractional programming:

163 ot

Minimize F (w) = sup
ye€Y J\T

subject to h(z) <0,

where Y is a compact subset of R™ ?
(3) Do we can discuss this minimax fractional programming in two person game
theory ?
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