GENERALIZED FRACTIONAL PROGRAMMING

J. C. LIU

Section of Mathematics, National Overseas Chinese Student University, PO Box 1-1337 Linkou, 24499, Taiwan.

Y. KIMURA

Department of Mathematics and Information Science, Graduate School of Science and Technology, Niigata University 950-21, Niigata, Japan.

and

K. TANAKA

Department of Mathematics, Niigata University, 950-21, Niigata, Japan.

Optimality conditions in generalized fractional programming involving nonsmooth Lipschitz functions are established. Subsequently, these optimality criteria are utilized as a basis for constructing one parametric and two other parametric-free dual models, and several duality theorems are derived.

KEY WORDS: Generalized fractional programming, invex, quasiinvex, pesudoinvex, duality.

1. INTRODUCTION

In this paper, we consider the following minimax fractional programming problem:

$$(P) \qquad v^* = \min_{x \in S} \max_{1 \le i \le p} [f_i(x)/g_i(x)],$$

where

- (A1) $S = \{x \in \mathbb{R}^n; h_k(x) \le 0, k = 1, 2, \dots, m\}$ is nonempty and compact;
- (A2) $f_i: X_0 \to \mathbb{R}, g_i: X_0 \to \mathbb{R}, i = 1, 2, \cdots, p, \text{ and } h_k: X_0 \to \mathbb{R}, k = 1, 2, \cdots, m \text{ are locally Lipschitz continuous and } X_0 \text{ is the open subset of } \mathbb{R}^n;$
- (A3) $g_i(x) > 0, i = 1, 2, \dots, p, x \in S;$
- (A4) if q_i is not affine, then $f_i(x) \geq 0$ for all i and all $x \in S$.

Generalized fractional programming has been of much interest in the last decades; see for example [1-4, 6, 7, 10-19]. In [7], Crouzeix *et al.* have shown that the minimax fractional program can be derived by solving the following minimax nonlinear (nondifferentiable) parametric program:

$$(P_v) \qquad \min_{x \in S} \max_{1 \le i \le p} (f_i(x) - vg_i(x))$$

where $v \in \mathbb{R}_+ \equiv [0, \infty)$ is a parameter.

It is clear that (P_v) is equivalent to the following problem (EP_v) for a given v:

$$(EP_v)$$
 $\min q,$ subject to $f_i(x) - vg_i(x) \leq q, \quad i = 1, 2, \cdots, p,$ $h_k(x) \leq 0, \quad k = 1, 2, \cdots, m.$

In [2], Bector et al. employed the problem (EP_v) to prove necessary and sufficient optimality conditions for problem (P) and establish various duality results for problem (EP_v) involving differentiable generalized convex functions (or generalized invex functions). Liu [10-12] also adapted the same approach to obtain necessary and sufficient optimality conditions; and he derived duality theorems for generalized fractional programming problems involving either nonsmooth pseudoinvex functions [11] or nonsmooth (F, ρ) -convex functions [10], and duality theorems for generalized fractional variational problems involving generalized (F, ρ) -convex functions [12].

But, all of the above necessary optimality conditions and strong duality theorems need that the constraint of (EP_v) satisfy a constraint qualification.

In order to improve this defect, we want to use problem (P_v) to establish both parametric and nonparameter necessary and sufficient optimality conditions, since a constraint qualification that is imposed on the constrains of (P) may not hold for (EP_v) but hold for (P_v) . Subsequently, these optimality criteria are utilized as a basis for constructing one parametric and two other parametric-free dual models (see [13] and [16]), and some duality results for (P) are established.

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout this paper, let \mathbb{R}^n be the *n*-dimensional Euclidean space and \mathbb{R}^n_+ be its non-negative orthant. Let X_0 be an open subset of \mathbb{R}^n .

Definition 2.1. The function $\theta: X_0 \mapsto \mathbb{R}$ is said to be **Lipschitz** on X_0 if there exists c > 0 such that for all $y, x \in X_0$,

$$|\theta(y) - \theta(x)| \le c||y - x||,$$

where $\|\cdot\|$ denotes any norm in \mathbb{R}^n .

For each d in \mathbb{R}^n , $\theta^{\circ}(x;d)$ is the generalized directional derivative of Clarke [5] defined by

$$\theta^{\circ}(x;d) = \limsup_{\substack{y \to x \\ t \downarrow 0}} [\theta(y+td) - \theta(y)]/t.$$

It then follows that

$$\theta^{\circ}(x; d) = \max\{\xi^T d \mid \xi \in \partial \theta(x)\}$$
 for any x and d ,

where $\partial \theta(\cdot)$ denotes the **Clarke's generalized gradient** [5]. The following definitions can be found in [11]:

Definition 2.2. The function $\theta : \mathbb{R}^n \to \mathbb{R}$ is said to be **invex** at x^* with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that, for each $x \in \mathbb{R}^n$,

$$\theta(x) - \theta(x^*) \ge \theta^{\circ}(x^*; \eta(x, x^*)). \tag{2.1}$$

 θ is said to be invex on \mathbb{R}^n with respect to η if there exists a mapping $\eta: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$ such that, for each $x, u \in \mathbb{R}^n$,

$$\theta(x) - \theta(u) \ge \theta^{\circ}(u; \eta(x, u)). \tag{2.2}$$

If we have strict inequality in (2.1) and (2.2), respectively, then θ is said to be **strictly** invex at x^* with respect to η and strictly invex on \mathbb{R}^n with respect to η , respectively.

Definition 2.3. The function $\theta : \mathbb{R}^n \to \mathbb{R}$ is said to be **quasiinvex** at x^* with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that, for each $x \in \mathbb{R}^n$,

$$\theta(x) \le \theta(x^*) \Rightarrow \theta^{\circ}(x^*; \eta(x, x^*)) \le 0. \tag{2.3}$$

 θ is said to be quasiinvex on \mathbb{R}^n with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$ such that, for each $x, u \in \mathbb{R}^n$,

$$\theta(x) \le \theta(u) \Rightarrow \theta^{\circ}(u; \eta(x, u)) \le 0.$$
 (2.4)

If we have strict inequality in (2.3) and (2.4), respectively, then θ is said to be **strictly** quasiinvex at x^* with respect to η and strictly quasiinvex on \mathbb{R}^n with respect to η , respectively.

Definition 2.4. The function $\theta : \mathbb{R}^n \to \mathbb{R}$ is said to be **pseudoinvex** at x^* with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that, for each $x \in \mathbb{R}^n$,

$$\theta^{\circ}(x^*; \eta(x, x^*)) \ge 0 \Rightarrow \theta(x) \ge \theta(x^*). \tag{2.5}$$

 θ is said to be pseudoinvex on \mathbb{R}^n with respect to η if there exists a mapping η : $\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$ such that, for each $x, u \in \mathbb{R}^n$,

$$\theta^{\circ}(u; \eta(x, u)) \ge 0 \Rightarrow \theta(x) \ge \theta(u).$$
 (2.6)

If we have strict inequality in (2.5) and (2.6), respectively, then θ is said to be **strictly pseudoinvex** at x^* with respect to η and strictly pseudoinvex on \mathbb{R}^n with respect to η , respectively.

We need the following lemmas.

Lemma 2.1. [16, Lemma 3.1.] Let v^* be the optimal value of (P), and let V(v) be the optimal value of (P_v) for any fixed $v \in \mathbb{R}_+$ such that (P_v) has an optimal solution. Then x^* is an optimal solution of (P) if and only if x^* is an optimal solution of (P_{v^*}) with optimal value $V(v^*) = 0$.

Lemma 2.2. [5, Proposition 2.3.12.] Let f_1, \dots, f_p be Lipschitz functions at x^* and $\alpha_i \in \mathbb{R}$ for all $i = 1, \dots, p$. Then

- (1) $\partial(\sum_{i=1}^p \alpha_i f_i)(x^*) \subset \sum_{i=1}^p \alpha_i \partial f_i(x^*),$
- (2) $\partial \left[\max_{1 \le i \le p} f_i \right](x^*) \subset \bigcup \left\{ \sum_{l \in L} \alpha_l \partial f_l(x^*); \ \alpha_l \ge 0, \sum_{l \in L} \alpha_l = 1 \right\}$ where L is the set of indices l for which

$$f_i(x^*) = \max_{1 \le i \le p} f_i(x^*).$$

Lemma 2.3. [16, Lemma 3.2.] For each $x \in S$, one has

$$\phi(x) \equiv \max_{1 \le i \le p} \left(f_i(x) / g_i(x) \right) = \max_{\beta \in U} \left(\sum_{i=1}^p \beta_i f_i(x) / \sum_{i=1}^p \beta_i g_i(x) \right)$$

where $U = \{ \beta \in \mathbb{R}^p_+ | \sum_{i=1}^p \beta_i = 1 \}.$

For convenience, we give the scalar minimization problem as follows:

$$(SP)$$
 Minimize $N(x),$ subject to $h_k(x) \leq 0, \quad k=1,2,\cdots,m$

where $N, h_k : X_0 \to \mathbb{R}, k = 1, 2, \dots, m$, are Lipschitz on X_0 . We need the following lemma.

Lemma 2.4. [8, Theorem 6.] If $x^* \in X_0$ is a local minimum for (SP) and a constraint qualification is satisfied, then there exist $z^* = (z_1^*, \dots, z_m^*) \in \mathbb{R}_+^m$ such that

$$0 \in \partial N(x^*) + \sum_{k=1}^m z_k^* \partial h_k(x^*),$$

$$z_k^* h_k(x^*) = 0, \quad \text{for all} \quad k = 1, 2, \dots, m.$$

For simplicity, throughout the paper we denote

$$U = \{ \alpha \in \mathbb{R}_{+}^{p} \mid \sum_{i=1}^{p} \alpha_{i} = 1 \},$$

$$F(x) = (f_{1}(x), \dots, f_{p}(x)),$$

$$G(x) = (g_{1}(x), \dots, g_{p}(x)), \text{ and}$$

$$H(x) = (h_{1}(x), \dots, h_{m}(x)).$$

For $z \in \mathbb{R}^m$, $z^{\top}H(x^*) = \sum_{k=1}^m z_k h_k(x^*)$, and $\partial(z^{\top}H)(x^*) = \sum_{k=1}^m z_k \partial h_k(x^*)$.

3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

In this section, we shall use Lemmas $2.1 \sim 2.4$ to establish some necessary and sufficient optimality conditions for the minimax fractional programming problem (P).

Theorem 3.1 (Necessary optimality conditions). Let $x^* \in S$. If x^* is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist $v^* = \phi(x^*) \in \mathbb{R}_+$, $y^* \in U$, $z^* \in \mathbb{R}_+^m$ such that

$$0 \in \partial(y^{*}^{\top}F)(x^{*}) - v^{*}\partial(y^{*}^{\top}G)(x^{*}) + \partial(z^{*}^{\top}H)(x^{*}), \tag{3.1}$$

$$y^{*\top} F(x^*) - v^* y^{*\top} G(x^*) = 0, (3.2)$$

$$z^{*\top}H(x^*) = 0. (3.3)$$

Proof. If x^* is an optimal solution of (P), by Lemma 2.1, it is an optimal solution of (P_{v^*}) with $v^* = \max_{1 \leq i \leq p} [f_i(x^*)/g_i(x^*)]$. Thus, by Lemma 2.4, there exist $z^* \in \mathbb{R}^m_+$, such that

$$0 \in \partial \left(\max_{1 \le i \le p} \left(f_i - v^* g_i \right) \right) (x^*) + \partial (z^{*\top} H) (x^*)$$

and

$$z^{*^{\top}}H(x^*) = 0.$$

Therefore, by Lemma 2.2, there exist $\alpha_i \geq 0, \ l \in L, \ \sum_{l \in L} \alpha_l = 1$, such that

$$0 \in \sum_{l \in L} \alpha_{l} \left(\partial f_{l}(x^{*}) + v^{*} \partial (-g_{l}(x^{*})) \right) + \partial (z^{*} H)(x^{*}). \tag{3.4}$$

It is obvious that $v^* = \max_{1 \leq i \leq p} [f_i(x^*)/g_i(x^*)]$ if and only if $\max_{1 \leq i \leq p} [f_i(x^*) - v^*g_i(x^*)] = 0$. From (3.4), if we set $y_i^* = \alpha_i$ for $i \in L$ as well as $y_i^* = 0$ for $i \in \{1, 2, \dots, p\} \setminus L$, the expressions (3.1), (3.2) and (3.3) hold.

In order to construct parameter-free duality models for problem (P), we shall formulate parameter-free versions of Theorem 3.1 as follows:

Theorem 3.2. Let $x^* \in S$. If x^* is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist $y^* \in U$ and $z^* \in \mathbb{R}_+^m$ such that

$$0 \in y^{*\top} G(x^{*}) \Big(\partial (y^{*\top} F)(x^{*}) + \partial (z^{*\top} H)(x^{*}) \Big) - y^{*\top} F(x^{*}) \partial (y^{*\top} G)(x^{*}), \tag{3.5}$$

$$z^{*\top}H(x^*) = 0, (3.6)$$

and obtain the optimal value by

$$\phi(x^*) = y^{*\top} F(x^*) / y^{*\top} G(x^*) = \max_{1 \le i \le p} (f_i(x^*) / g_i(x^*)).$$
 (3.7)

Proof. From (3.2) and (3.1), substituting $y^{*\top}F(x^*)/y^{*\top}G(x^*)$ for v^* , we can derive the results.

The conditions $(3.5) \sim (3.7)$ will be the sufficient optimality condition which we state as the following theorem.

Theorem 3.3 (Sufficient optimality conditions). Let $x^* \in S$, and assume that there exist $y^* \in U$ and $z^* \in \mathbb{R}_+^m$, such that the conditions $(3.5) \sim (3.7)$ hold. Let

$$A(x) = y^{*\top} G(x^*) y^{*\top} F(x) - y^{*\top} F(x^*) y^{*\top} G(x),$$

$$B(x) = z^{*\top} H(x), \quad \text{and} \quad C(x) = A(x) + y^{*\top} G(x^*) B(x).$$

If any one of the following conditions holds

- (a) A is pseudoinvex at x^* with respect to η and B is quasiinvex at x^* with respect to same function η ,
- (b) A is quasiinvex at x^* with respect to η and B is strictly pseudoinvex at x^* with respect to same function η ,
- (c) C is pseudoinvex at x^* with respect to η .

Then x^* is an optimal solution of (P).

Proof. Suppose contrary that x^* were not an optimal solution of (P). Then there exists a feasible solution $x_1 \in S$ such that

$$\phi(x^*) > \phi(x_1).$$

From (3.7) and Lemma 2.3, we have

$$y^{*\top}F(x^{*})/y^{*\top}G(x^{*}) > \max_{\beta \in U} (\beta^{\top}F(x_{1})/\beta^{\top}G(x_{1})) \ge y^{*\top}F(x_{1})/y^{*\top}G(x_{1}).$$

It follows that

$$A(x_1) = y^{*\top} G(x^*) y^{*\top} F(x_1) - y^{*\top} F(x^*) y^{*\top} G(x_1) < 0 = A(x^*).$$
 (3.8)

Using both the feasibility x_1 for (P) and the equality (3.6), we have

$$B(x_1) \le 0 = B(x^*). \tag{3.9}$$

Consequently, expressions (3.8) and (3.9) yield

$$C(x_1) < C(x^*). (3.10)$$

By (3.5), there exist $\xi \in \partial(y^{*\top}F)(x^{*})$, $\zeta \in \partial(z^{*\top}H)(x^{*})$, and $\rho \in \partial(-y^{*\top}G)(x^{*})$, such that

$$y^{*} G(x^{*})(\xi + \zeta) + y^{*} F(x^{*})\rho = 0.$$

From here it results

$$y^{*\top}G(x^*)(\xi^{\top}\eta(x,x^*) + \zeta^{\top}\eta(x,x^*)) + y^{*\top}F(x^*)\rho^{\top}\eta(x,x^*) = 0.$$
 (3.11)

Using the characterization of the generalized gradient of Clarke, we obtain

$$(y^{*\top}F)^{\circ}(x^{*};\eta(x,x^{*})) \ge \xi^{\top}\eta(x,x^{*}), \text{ for all } x \in S,$$
 (3.12)

$$(z^{*} H)^{\circ}(x^{*}; \eta(x, x^{*})) \ge \zeta^{\top} \eta(x, x^{*}), \text{ for all } x \in S,$$
 (3.13)

$$(-y^{*} G)^{\circ}(x^{*}; \eta(x, x^{*})) \ge \rho^{\top} \eta(x, x^{*}), \text{ for all } x \in S.$$
 (3.14)

Now, multiplying (3.12) by $y^{*\top}G(x^*)$, (3.13) by $y^{*\top}G(x^*)$, and (3.14) by $y^{*\top}F(x^*)$, and adding the resulting inequalities and with (3.11), we obtain

$$y^{*\top}G(x^{*})[(y^{*\top}F)^{\circ}(x^{*};\eta(x,x^{*})) + (z^{*\top}H)^{\circ}(x^{*};\eta(x,x^{*}))] - y^{*\top}F(x^{*})(y^{*\top}G)^{\circ}(x^{*};\eta(x,x^{*})) \ge 0, \quad \text{for all} \quad x \in S.$$
(3.15)

If hypothesis (a) holds, using the pseudoinvexity of A at x^* and the inequality (3.8), we have

$$y^{*\top}G(x^{*})(y^{*\top}F)^{\circ}(x^{*};\eta(x_{1},x^{*})) - y^{*\top}F(x^{*})(y^{*\top}G)^{\circ}(x^{*};\eta(x_{1},x^{*})) < 0.$$
 (3.16)

Consequently, the inequalities (3.15) and (3.16) yield

$$y^{*} G(x^{*})(z^{*} H)^{\circ}(x^{*}; \eta(x_{1}, x^{*})) > 0.$$

Thus, we have

$$(z^{*} H)^{\circ}(x^{*}; \eta(x_{1}, x^{*})) > 0.$$
(3.17)

Using the quasinvexity of B at x^* , we get from (3.17)

$$B(x_1) = z^{* \top} H(x_1) > z^{* \top} H(x^*) = B(x^*)$$

which contradicts the inequality (3.9).

Hypothesis (b) follows along with the same lines as (a).

If hypothesis (c) holds, using the pseudoinvexity of C at x^* and the inequality (3.10), we have

$$y^{*\top}G(x^{*})[(y^{*\top}F)^{\circ}(x^{*};\eta(x_{1},x^{*})) + (z^{*\top}H)^{\circ}(x^{*};\eta(x_{1},x^{*}))] - y^{*\top}F(x^{*})(y^{*\top}G)^{\circ}(x^{*};\eta(x_{1},x^{*})) < 0$$

which contradicts the inequality (3.15). Hence, the proof is complete.

4. THE FIRST DUAL MODEL

Utilize Theorem 3.2, in Sections 4 and 5 we shall introduce two parametric-free dual models and prove appropriate duality theorems. Indeed, we shall demonstrate that the following is dual problem for (P):

(DI) Maximize
$$(y^{\top}F(u) + z^{\top}H(u))/y^{\top}G(u)$$

subject to $0 \in y^{\top}G(u)(\partial(y^{\top}F)(u) + \partial(z^{\top}H)(u))$
 $-(y^{\top}F(u) + z^{\top}H(u))\partial(y^{\top}G)(u),$ (4.1)
 $y \in U, z \in \mathbb{R}^m_+.$ (4.2)

We denote by K_1 the set of all feasible solutions $(u, y, z) \in X_0 \times U \times \mathbb{R}_+^m$ of problem (DI). We assume throughout this section that $y^{\mathsf{T}} F(u) + z^{\mathsf{T}} H(u) \geq 0$ and $y^{\mathsf{T}} G(u) > 0$.

Theorem 4.1 (Weak Duality). Let $x \in S$ and $(u, y, z) \in K_1$ and assume that

$$D(\cdot) = \boldsymbol{y}^{\top} G(\boldsymbol{u}) [\boldsymbol{y}^{\top} F(\cdot) + \boldsymbol{z}^{\top} H(\cdot)] - \boldsymbol{y}^{\top} G(\cdot) [\boldsymbol{y}^{\top} F(\boldsymbol{u}) + \boldsymbol{z}^{\top} H(\boldsymbol{u})]$$

is a pseudoinvex function with respect to η at u. Then

$$\phi(x) \ge (y^{\mathsf{T}} F(u) + z^{\mathsf{T}} H(u)) / y^{\mathsf{T}} G(u).$$

Proof. By (4.1), there exist $\xi \in \partial(y^{\mathsf{T}}F)(u)$, $\zeta \in \partial(z^{\mathsf{T}}H)(u)$, and $\rho \in \partial(-y^{\mathsf{T}}G)(u)$, such that

$$y^{\top}G(u)(\xi + \zeta) + [y^{\top}F(u) + z^{\top}H(u)]\rho = 0.$$

From here it results

$$y^{\top}G(u)(\xi^{\top}\eta(x,u) + \zeta^{\top}\eta(x,u)) + [y^{\top}F(u) + z^{\top}H(u)]\rho^{\top}\eta(x,u) = 0.$$
 (4.3)

Using the characterization of the generalized gradient of Clarke, we obtain

$$(y^{\mathsf{T}}F)^{\circ}(u;\eta(x,u)) \ge \xi^{\mathsf{T}}\eta(x,u), \quad \text{for all} \quad x \in S,$$
 (4.4)

$$(z^{\mathsf{T}}H)^{\circ}(u;\eta(x,u)) \ge \zeta^{\mathsf{T}}\eta(x,u), \quad \text{for all} \quad x \in S,$$
 (4.5)

$$(-y^{\mathsf{T}}G)^{\circ}(u;\eta(x,u)) \ge \rho^{\mathsf{T}}\eta(x,u), \quad \text{for all} \quad x \in S.$$
 (4.6)

Now, multiplying (4.4) by $y^{\top}G(u)$, (4.5) by $y^{\top}G(u)$, and (4.6) by $y^{\top}F(u) + z^{\top}H(u)$, and adding the resulting inequalities and with (4.3), we obtain

$$y^{\top}G(u)[(y^{\top}F)^{\circ}(u;\eta(x,u)) + (z^{\top}H)^{\circ}(u;\eta(x,u))] - [y^{\top}F(u) + z^{\top}H(u)](y^{\top}G)^{\circ}(u;\eta(x,u)) \ge 0, \quad \text{for all} \quad x \in S.$$
(4.7)

We suppose that

$$\phi(x) < (y^{\mathsf{T}} F(u) + z^{\mathsf{T}} H(u)) / y^{\mathsf{T}} G(u).$$

Then, by Lemma 2.3 and $y \in U$, we have

$$y^{\mathsf{T}}F(x)/y^{\mathsf{T}}G(x) < (y^{\mathsf{T}}F(u) + z^{\mathsf{T}}H(u))/y^{\mathsf{T}}G(u).$$

Thus, we have

$$\boldsymbol{y}^{\top} \boldsymbol{G}(\boldsymbol{u}) \boldsymbol{y}^{\top} \boldsymbol{F}(\boldsymbol{x}) - \boldsymbol{y}^{\top} \boldsymbol{G}(\boldsymbol{x}) [\boldsymbol{y}^{\top} \boldsymbol{F}(\boldsymbol{u}) + \boldsymbol{z}^{\top} \boldsymbol{H}(\boldsymbol{u})] < 0.$$

Hence, we have another inequality

$$y^{\top}G(u)[y^{\top}F(x) + z^{\top}H(x)] - y^{\top}G(x)[y^{\top}F(u) + z^{\top}H(u)] < y^{\top}G(u)z^{\top}H(x).$$

Using the fact $y^{\top}G(u) > 0$, $z^{\top}H(x) \leq 0$, and the latest inequality, we have

$$D(x) < 0 = D(u).$$

Using the fact that $D(\cdot)$ is a pseudoinvex function with respect to η at u, we have

$$y^{\top}G(u)[(y^{\top}F)^{\circ}(u;\eta(x,u)) + (z^{\top}H)^{\circ}(u;\eta(x,u))] - [y^{\top}F(u) + z^{\top}H(u)](y^{\top}G)^{\circ}(u;\eta(x,u)) < 0$$

which contradicts the inequality (4.7). Hence, the proof is complete.

Theorem 4.2 (Strong Duality). If x^* is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist $y^* \in U$ and $z^* \in \mathbb{R}_+^m$, such that (x^*, y^*, z^*) is a feasible solution of (DI). Furthermore, if the conditions of Theorem 4.1 hold for all feasible solutions of (DI), then (x^*, y^*, z^*) is an optimal solution of (DI) and the optimal values of (P) and (DI) are equal; that is, $\min(P) = \max(DI)$.

Proof. By Theorem 3.2, there exist $y^* \in U$, and $z^* \in \mathbb{R}^m_+$, such that (x^*, y^*, z^*) is a feasible solution of (DI). Furthermore,

$$(y^{*\top}F(x^*) + z^{*\top}H(x^*))/y^{*\top}G(x^*) = y^{*\top}F(x^*)/y^{*\top}G(x^*) = \phi(x^*).$$

Thus, optimality of (x^*, y^*, z^*) for (DI) follows from Theorem 4.1.

Theorem 4.3 (Strict Converse Duality). Let x_1 and (x^*, y_0, z_0) be optimal solutions of (P) and (DI), respectively, and assume that the assumptions of Theorem 4.2 are fulfilled. If

$$D(\cdot) = y_0^{\top} G(x^*) [y_0^{\top} F(\cdot) + z_0^{\top} H(\cdot)] - y_0^{\top} G(\cdot) [y_0^{\top} F(x^*) + z_0^{\top} H(x^*)]$$

is a strictly pseudoinvex function with respect to η , then $x_1 = x^*$; that is, x^* is an optimal solution of (P) with the same optimal values $\phi(x_1) = (y_0^\top F(x^*) + z_0^\top H(x^*))/y_0^\top G(x^*)$.

Proof. Suppose, on the contrary, that $x_1 \neq x^*$. From Theorem 4.2 we know that there exist $y_1 \in U$ and $z_1 \in \mathbb{R}^m_+$, such that (x_1, y_1, z_1) is an optimal solution of (DI) and

$$\phi(x_1) = (y_1^{\mathsf{T}} F(x_1) + z_1^{\mathsf{T}} H(x_1)) / y_1^{\mathsf{T}} G(x_1).$$

Now proceeding as in the proof of Theorem 4.1 (replacing x by x_1 and (u, y, z) by (x^*, y_0, z_0)), we arrive at the following strict inequality:

$$\phi(x_1) > (y_0^\top F(x^*) + z_0^\top H(x^*)) / y_0^\top G(x^*).$$

This contradicts the fact that

$$\phi(x_1) = \left(y_1^\top F(x_1) + z_1^\top H(x_1)\right) / y_1^\top G(x_1) = \left(y_0^\top F(x^*) + z_0^\top H(x^*)\right) / y_0^\top G(x^*).$$

Therefore, we conclude that

$$x_1 = x^*$$
, and $\phi(x_1) = (y_0^{\mathsf{T}} F(x^*) + z_0^{\mathsf{T}} H(x^*)) / y_0^{\mathsf{T}} G(x^*)$.

We shall continue our discussion of parameter-free duality model for (P) in this section by showing that the following problem (DII) is also dual problem for (P):

(DII) Maximize
$$y^{\top} F(u)/y^{\top} G(u)$$

subject to $0 \in y^{\top} G(u) \left(\partial (y^{\top} F)(u) + \partial (z^{\top} H)(u) \right)$
 $-y^{\top} F(u) \partial (y^{\top} G)(u),$ (5.1)

$$z^{\mathsf{T}}H(u) \ge 0,\tag{5.2}$$

$$y \in U, \ z \in \mathbb{R}^m_+. \tag{5.3}$$

We denote by K_2 the set of all feasible solutions $(u, y, z) \in X_0 \times U \times \mathbb{R}_+^m$ of problem (DII). Throughout this section, we assume that $y^{\mathsf{T}}F(u) \geq 0$ and $y^{\mathsf{T}}G(u) > 0$. Then, we can prove the following weak duality, strong duality, and strict converse duality theorems.

Theorem 5.1 (Weak Duality). Let $x \in S$ and $(u, y, z) \in K_2$ and let

$$E(\cdot) = y^{\top} G(u) y^{\top} F(\cdot) - y^{\top} F(u) y^{\top} G(\cdot),$$

$$I(\cdot) = z^{\top} H(\cdot), \quad \text{and} \quad J(\cdot) = E(\cdot) + y^{\top} G(u) I(\cdot).$$

If any one of the following conditions holds

- (a) E is a pseudoinvex function with respect to η at u and I is a quasiinvex function at u with respect to same function η ,
- (b) E is a quasiinvex function with respect to η at u and I is a strictly pseudoinvex function at u with respect to same function η ,
- (c) J is a pseudoinvex function with respect to η at u.

Then

$$\phi(x) \ge y^{\mathsf{T}} F(u) / y^{\mathsf{T}} G(u).$$

Theorem 5.2 (Strong Duality). If x^* is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist $y^* \in U$ and $z^* \in \mathbb{R}^m_+$, such that (x^*, y^*, z^*) is a feasible solution of (DII). Furthermore, if the conditions of Theorem 5.1 hold for all feasible solutions of (DII), then (x^*, y^*, z^*) is an optimal solution of (DII) and the optimal values of (P) and (DII) are equal; that is, $\min(P) = \max(DII)$.

Theorem 5.3 (Strict Converse Duality). Let x_1 and (x^*, y_0, z_0) be optimal solutions of (P) and (DII), respectively, and assume that the assumptions of Theorem 5.2 are fulfilled. If $E(\cdot) = y_0^{\mathsf{T}} G(x^*) y_0^{\mathsf{T}} F(\cdot) - y_0^{\mathsf{T}} F(x^*) y_0^{\mathsf{T}} G(\cdot)$ is a strictly pseudoinvex function with respect to η and $I(\cdot) = z_0^{\mathsf{T}} H(\cdot)$ is a quasiinvex function with respect to same function η , then $x_1 = x^*$; that is, x^* is an optimal solution of (P) with the same optimal values $\phi(x_1) = y_0^{\mathsf{T}} F(x^*) / y_0^{\mathsf{T}} G(x^*)$.

6. THE THIRD DUAL MODEL

Making use of Theorem 3.1, in this section we can formulate the following parametric dual problem:

(DIII) Maximize v

subject to
$$0 \in \partial(y^{\mathsf{T}}F)(u) - v\partial(y^{\mathsf{T}}G)(u) + \partial(z^{\mathsf{T}}H)(u),$$
 (6.1)

$$y^{\top} F(u) - v y^{\top} G(u) \ge 0, \tag{6.2}$$

$$z^{\mathsf{T}}H(u) \ge 0,\tag{6.3}$$

$$y \in U, \ v \in \mathbb{R}_+, z \in \mathbb{R}_+^m. \tag{6.4}$$

We denote by K_3 the set of all feasible solutions $(u, y, z, v) \in X_0 \times U \times \mathbb{R}^m_+ \times \mathbb{R}_+$ of problem (DIII). Then a weakly duality theorem is established as follows:

Theorem 6.1 (Weak Duality). Let $x \in S$ and $(u, y, z, v) \in K_3$, and let

$$L(\cdot) = y^{\top} F(\cdot) - v y^{\top} G(\cdot),$$

$$I(\cdot) = z^{\top} H(\cdot), \quad \text{and} \quad M(\cdot) = L(\cdot) + I(\cdot).$$

If any one of the following conditions holds

- (a) L is a pseudoinvex function with respect to η at u and I is a quasiinvex function at u with respect to same function η ,
- (b) L is a quasiinvex function with respect to η at u and I is a strictly pseudoinvex function at u with respect to same function η ,
- (c) M is a pseudoinvex function with respect to η at u.

Then

$$\phi(x) \ge v$$
.

Theorem 6.2 (Strong Duality). If x^* is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist $y^* \in U$, $z^* \in \mathbb{R}^m_+$, and $v^* \in \mathbb{R}_+$, such that (x^*, y^*, z^*, v^*) is a feasible solution of (DIII). Furthermore, if the conditions of Theorem 6.1 hold for all feasible solutions of (DIII), then (x^*, y^*, z^*, v^*) is an optimal solution of (DIII) and the optimal values of (P) and (DIII) are equal; that is, $\min(P) = \max(DIII)$.

Theorem 6.3 (Strict Converse Duality). Let x_1 and (x^*, y_0, z_0, v_0) be optimal solutions of (P) and (DIII), respectively, and assume that the assumptions of Theorem 6.2 are fulfilled. If $y_0^{\top} F(\cdot) - v_0 y_0^{\top} G(\cdot)$ is a strictly pseudoinvex function with respect to η and $I(\cdot) = z_0^{\top} H(\cdot)$ is a quasiinvex function with respect to same function η , then $x_1 = x^*$; that is, x^* is an optimal solution of (P) with the same optimal values $\phi(x_1) = v_0$.

The complete proof of Theorems 5.1-5.3 and Theorems 6.1-6.3 will be appear elsewhere.

7. SOME REMARKS FOR FURTHER DEVELOPMENTS

- (1) There some questions arise that whether the results develop in this paper hold in generalized (F, ρ) -convex?
- (2) Does the set $I = \{1, 2, \dots, p\}$ in the minimax fractional programming (P) can be replaced by a compact subset Y of \mathbb{R}^m ? that is, does one can discuss the following minimax fractional programming:

Minimize
$$F(x) = \sup_{y \in Y} \frac{f(x,y)}{g(x,y)} = \sup_{y \in Y} \Psi(x,y)$$

subject to $h(x) \le 0$,

where Y is a compact subset of \mathbb{R}^m ?

(3) Do we can discuss this minimax fractional programming in two person game theory?

REFERENCES

- [1] Bector, C. R. and Suneja, S. K. (1988) Duality in nondifferentiable generalized fractional programming, Asia-Pacific J. Opera. Re. 5, 134-139.
- [2] Bector, C. R., Chandra, S., and Bector, M. K. (1989) Generalized fractional programming duality: a parametric approach, J. Optim. Theory. Appl. 60, 243-260.
- [3] Bector, C. R., Chandra, S., and Kumar, V. (1994) Duality for minimax programming involving V-invex functions, Optimization 30, 93-103.
- [4] Chandra, S., Craven, B. D., and Mond, B. (1986) Generalized fractional programming duality: a ratio game approach, J. Aust. Math. Soc. Series B. 28, 170-180.
- [5] Clarke, H. F. (1983) Optimization and Nonsmooth Analysis, Wiley-Interscience, Wiley & Sons, New York.
- [6] Crouzeix, J. P., Ferland, J. A., and Schaible, S. (1983) Duality in generalized fractional programming, Math. Prog. 27, 342-354.
- [7] Crouzeix, J. P., Ferland, J. A., and Schaible, S. (1985) An algorithm for generalized fractional programs,, J. Optim. Theory. Appl. 47, 35-49.
- [8] Hiriart-Urruty, J. B. (1978) On optimality conditions in nondifferentiable programming, Math. Prog. 14, 73-86.
- [9] Ibaraki, T. (1983) Parametric approach to fractional programs, Math. Prog. 26, 345-362.
- [10] Liu, J. C. (1996) Optimality and duality for generalized fractional programming involving non-smooth (F, ρ) -convex functions, Comp. & Math. with Appl. 32, 91-102.
- [11] Liu, J. C. (1996) Optimality and duality for generalized fractional programming involving non-smooth pseudoinvex functions, J. Math. Anal. Appl. 202, 667-685.
- [12] Liu, J. C. (1996) Optimality and duality for generalized fractional variational problems involving generalized (F, ρ) -convex functions, Optimization 37, 369-383.
- [13] Lai, H. C., Liu, J. C., and Tanaka, K. Duality without a constraint qualification for minimax fractional programming, Preprint.
- [14] Lai, H. C. and Liu, J. C. Duality for a minimax programming problem containing n-set functions, Preprint.
- [15] Preda, V. (1991) On minimax programming problems containing n-set functions, Optimization 22, 527-537.
- [16] Zalmai, G. J. (1995) Optimality conditions and duality models for generalized fractional programming problems containing locally subdifferentiable and ρ -convex functions, Optimization 32, 95-124.
- [17] Zalmai, G. J. (1989) Optimality conditions and duality for constrained measurable subset selection problems with minimax objective functions, Optimization 20, 377-395.

- [18] Zalmai, G. J. (1990) Optimality conditions and duality for a class of continuous-time generalized fractional programming problems, J. Math. Anal. Appl. 153, 356-371.
- [19] Zalmai, G. J. (1990) Duality for generalized fractional programs involving n-set functions, J. Math. Anal. Appl. 149, 339-350.