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1. lntroduction. The investigation concerning convexity in metric spaces was
initiated by Menger [11] in 1928. This investigation was developed by several
authors [1]. The terms ”metrically convex” and ”convex metric space” are
due to $\mathrm{B}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{l}[1]$ . Throughout this report, let $X$ be a metric space with
metric $d$ .

Definition 1 $z\in X$ is said to be a between-point of $x,$ $y$ if
$z\neq xz\neq y$ , and $d(x, y)=d(x, z)+d(z, y)$ .

Definition 2 $X$ is metrically convex if for each pair $x,$ $y\in X$ such that
$x\neq y$ , there exists $z\in X$ that is a between-point of $x,$ $y$ . Then $X$ is said to
be a convex metric space.

Let $T$ be a mapping of $X$ into itself. $T$ is said to be nonexpansive [2], if for
each $x,$ $y\in X$ ,

$d(\tau_{x}, \tau_{y})\leq d(x, y)$ .
In 1970, W.Takahashi [14] introduced a notion of convexity into met-

ric spaces, studied properties of such spaces and proved several fixed point
theorems for nonexpansive mappings.

Definition 3 P.ut $I=[0,1].$ A mapping $W:X\cross X\cross Iarrow X$ is said to be
a convex structure on $X$ if for each $(x, y, \lambda)\in X\cross X\cross I$ and $u\in X_{f}$

$d(u, W(x, y, \lambda))\leq\lambda d(u, x)+(1-\lambda)d(u, y)$ .

$X$ is called a convex metric space, if it has a convex structure.

Such kind of convex metric space seems to be often called $\mathrm{w}$-convex metric
space.

In 1981/82, Kirk [7] introduced a notion of a metric space of hyperbolic
type and showed that it is a $\mathrm{w}$-convex metric space. As a consequence of the
proof of theorem 1 [7], we have the following result.
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Theorem 1 Let $X$ be a bounded $w$-convex metric space that has a unique
convex structure and $T$ be a nonexpansive mapping of $X$ into itself. Then
$\inf_{x\in x}d(X, T_{X})=0$ . ( $i.e.,$ $X$ has the almost fixed point property for nonex-
pansive mappings)

On the other hand, in 1987, Kijima [5] generalized, in certain sense [cf.
15], the notion of $\mathrm{w}$-convex metric spaces.

Definition 4 $X$ is said to be a convex met $r\dot{\tau}c$ space if for each pair $x,$ $y\in X$

there exists $z\in X$ such that

$d(z,u) \leq\frac{d(_{X},u)+d(y,u)}{2}$ for all $u\in X.$ $(*)$

We shall call such $X$ a metric space with property (S).

Example 1 A dyadic cube in $R^{n}$ .

$X= \{ (\frac{k_{1}}{2^{m_{1}}},\cdot.. , \frac{k}{2^{n}n})\in R^{n} : k:=0,1,2,\cdots,2^{m}\cdot, m.\cdot=1,2,\cdots, i=1,\cdots,n\}$ .

Recently, $\mathrm{K}\mathrm{i}\mathrm{j}\mathrm{i}\mathrm{m}\mathrm{a}[6]$ proved the following result and generalized theorem 1.

Let $X$ be a bounded metric space with property $(S)$ . Then $\inf_{x\in X}d(x, T_{X})=$

$0$ . ( $i.e,.X$ has t..he almost fixed poin. $t$ property for nonexpansive mappings
of $X$ into itself)

This result is -proved for the case of Banach space, using the Banach
contraction principle; for instance, see [2]. However, the proof dose not carry
over to the case of metric space with property (S). Kijima [6] proved the
result by introducing an $(\epsilon, n)$ -sequence without using the Banach contraction
principle.

Let $K(X)$ be the class of all nonempty compact subsets of $X$ . A mapping
$T$ of $X$ into $K(X)$ is said to be nonexpansive, if for each pair $x,$ $y\in X$ ,

$\mathcal{H}(T_{X}, Ty)\leq d(x, y)$ .

where $\mathcal{H}$ is the Hausdorff metric on $K(X)$ .
In 1992, Shimizu and $\mathrm{T}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{S}\mathrm{h}\mathrm{i}[12]$ generalized Kijima’s result in the case

of multivalued nonexpansive mappings with nonempty compact-values.
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Theorem 2 Let $X$ be a bounded metric space with property $(S)$ and $T$ be a
multivafued nonexpansive mapping of $X$ into $K(X)$ . Then $\inf_{x\in X}d(x, Tx)=$

$0_{J}$ where $d(x, T_{X})= \inf_{y\in Tx}d(x, y)$ . ( $i.e.,$ $X$ has the almost fixed point
property for multivalued nonexpansive mappings of $X$ into $K(X))$

We sketch the outline of the proof.
Suppose that $\inf_{x\in X}d(x, T_{X})=2\delta>0$ . $\forall\epsilon>0,$ $\exists x_{0}\in X\mathrm{s}.\mathrm{t}$ .

$d(_{X_{0},\tau_{X}}0)\leq 2\delta+\epsilon$ .

Since $Tx_{0}$ is nonempty compact, $\exists y_{0}\in X\mathrm{s}.\mathrm{t}$ .
$d(x_{0}, y_{0})\leq 2(\delta+\epsilon)$ .

Define $\{x_{n}\}$ and $\{y_{0}\}$ inductivery. Assume that $x_{k}$ and $y_{0}\mathrm{s}.\mathrm{t}$ . $y_{k}\in Tx_{k}$ are
known. Choose $x_{k+1}\in X$ form $(*)$ such that

$d(_{X_{k+1}}, u) \leq\frac{d(x_{k},u)+d(yk,u)}{2}$

for all $u\in X$ .
Since $Tx_{k+\iota}$ is nonempty compact, we can choose $y_{k+1}\in X$ such that

$y_{k+1}\in Tx_{k+1}$ and $d(y_{k}, yk+1)=d(y_{k}, Tx_{k+1})$ .

$d(y_{k}, y_{k+1})$ $=$ $d(yk, \tau_{X_{k}}+1)$

$\leq$ $\sup_{y\in Tx_{k}}d(y, Tx_{k+1})$

$\leq$ $\mathcal{H}(Tx_{k}, TX_{k1}+)$

$\leq$ $d(x_{k}, x_{k+}1)$ .

By this inequality and induction using $(\epsilon, n)$ -sequences, we have

$d(_{X_{k,k}}x+1)\leq\delta+\epsilon$

and
$d(x_{k}, y_{k})\leq 2(\delta+\epsilon)$

for all nonnegative integer $k$ . And by these inequalities and induction using
$(\epsilon,n)$-sequences, we have

$d(x_{k}, y_{kn}+)\geq(n+2)(\delta+\epsilon)-2^{n+1}\epsilon$
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for all nonnegative integer $k$ and $n$ .
By this inequality, we can choose $\{x_{n}^{m}\}$ , $\{y_{n}^{m}\}\subseteq X$ such that

$d(x_{0}^{m}, \tau x_{0}^{m})\leq 2\delta+\frac{\delta}{2^{m}}$

and
$d(x_{0}^{mm}, y_{m}) \geq(m+2)(\delta+\epsilon)-2^{m+}1\frac{\delta}{2^{m}}>m\delta$.

Hence we. have
$\lim_{marrow\infty}d(x_{0}^{m}, y^{m}m)=\infty$ .

This contradicts the boundedness of $X$ . Therefore we have

$\inf_{x\in X}d(x, TX)=0$ .

By theorem 2, we have

Theorem 3 Let $X$ be a nonempty compact metric space with property $(S)$

and $T$ be a muftivaIued nonexpansive mapping of $X$ into $K(X)$ . Then $T$ has
a fixed point, $i.e,$. there exists $x_{0}\in X$ such that $x_{0}\in Tx_{0}$ .

Concerning fixed point theorems for multivalued nonexpansive mappings, in
1968, Markin [10] proved the first fixed point theorem.

Theorem 4 Let $H$ be a Hilbert space and $C$ be a nonemty bounded closed
convex subset of $H$ and $T$ be a multivalued nonexpansive mapping of $C$ into
$K(C)$ such that $Tx$ is convex for each $x\in C.$ Then $T$ has a fixed point.

He proved this theorem by proving that $(I-T)(C)$ is a closed subset of $C$ .
This theorem was generalized by several $\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{S}[3,16]$ .

In 1974, $\mathrm{L}\mathrm{i}\mathrm{m}[8]$ generalized Markin’s result to uniformly convex Banach
spaces by transfinite induction as follows.

Theorem 5 Let $C$ be a nonempty bounded closed convex subset of uniformly
convex Banach space $E$ and $T$ be a $mult\prime i\prime ualued$ nonexpansive mapping of $C$

into $K(C)$ . Then $T$ has a fixed point.
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We introduce a notion of uniformly convexity into convex metric spaces
and prove a fixed point theorem for multivalued nonexpansive mappings in
such spaces. Our theorem generalizes Lim’s result and we can prove the
theorem smartly by virture the filter theory.

2. Main results [13]. Let $X$ be a $\mathrm{w}$-convex metric space and $W$ be its convex
structure.

Definition 5 $X$ is said to be uniformly convex if for any $\epsilon>0$ , there exists
$\alpha=\alpha(\epsilon)$ such that, for all $r>0$ and $x,$ $y,$ $z\in X$ with $d(z, x)\leq r$ , $d(z, y)\leq$

$r$ and $d(x, y)\geq r\epsilon$ ,

$d(z, W(X, y, 1/2))\leq r(1-\alpha)<r$ .

Example 2 Uniformly convex Banach spaces.

Example 3 Let $H$ be a Hilbert space and $X$ be a nonempty cfosed subset of
$\{x\in X : ||x||=1\}$ such that if $x,$ $y\in X$ and $\alpha,$ $\beta\in[0,1]$ with $\alpha+\beta=1$

then $(\alpha x+\beta y)/||\alpha x+\beta y||\in X\delta(X)\leq\sqrt{2}/2$ . Let $d(x, y)=\cos^{-1}\{(x, y)\}$

for all $x,$ $y\in X$ , where (., $\cdot$ ) is the inner product of H. When we define a
convex structure $W$ for (X, $d$) adiquately, it is easily seen that (X, $d$) becomes
a complete and uniformly convex metric $spaCe[\mathit{9}\mathit{1}\cdot$

A convex metric space $X$ is said to have a property(C) if every decreasing
sequence of nonempty bounded closed convex subsets of $X$ has a nonempty
intersection. The authors proved the following results.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}6$ Let $X$ be a complete and uniformly convex metric space. Then
$X$ has the property$(c)$ .

We sckech the outline of the proof. Let $\{K_{n}\}_{n=1}^{\infty}$ be a decreasing sequence of
nonempty bounded closed convex subsets of $X$ . Suppose that for each $n\geq 1$ ,
$\delta(K_{n})>0$ . Then for each $n\geq 1$ , there exists $x,$ $y\in I\mathrm{f}_{n}$ such that

$d(x, y) \geq\frac{\delta(K_{n})}{2}$ and $d(z, x)\leq\delta(K_{n})$ : $d(z, y)\leq\delta(I.\zeta_{n})$ for all $z\in IC_{n}$ .

Since $X$ is uniformly convex, for each $n\geq 1$ , there exists $u_{n}^{1}\in I\iota_{n}’$ such that

$d(z,$ $u_{n})\iota\leq\delta(I\iota_{n}’)(1-\alpha)$ for all $z\in IC_{n}$ .
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Put .

$J\mathrm{f}_{n}^{1}=\{u_{n}^{1},$ $u_{n}\cdots\}1+1’$ .
Then we have for each $n\geq 1$ ,

$I\zeta_{n}^{1}\neq\phi,$ $I\zeta_{n}^{1}\subseteq I\mathrm{f}_{n}$ , and $I\zeta_{n+1}^{1}\supseteq I\zeta_{n}^{1}$ .

Suppose that for each $n\geq 1,$ $\delta(K_{n}^{1})>0$ . Put for each $n\geq 1$ ,

$B_{n}^{1}=\mathrm{n}^{\infty}k=0B[u_{n+k}^{1},$ $\delta(I\zeta_{n}^{1}\mathrm{I}]\cdot$

Note $\mathrm{t}\mathrm{h}\dot{\mathrm{a}}\mathrm{t}$ for $\mathrm{e}\mathrm{a}\dot{\mathrm{c}}\mathrm{h}n\geq\acute{1}$ , $\overline{co}K_{n}^{1}\subseteq B_{n}^{1},$ $\delta(\dot{R}_{n}’1)\leq\delta(K_{n})(1-\alpha)$ and

$\delta(\overline{co}K1)n\leq\delta(B_{n}^{1})\leq\delta(B[u_{n}^{1},$ $\delta(K_{n}^{1})])\leq 2\delta(K_{n})(1-\alpha)$ .

And we have for each $n\geq 1$ , there exist $x,$ $y\in I\zeta_{n}^{1}$ such that

$d(x, y) \geq\frac{\delta(K_{n}^{1})}{2},$ $d(z, x)\leq\delta(K_{n}^{1})$ and $d(z, y)\leq\delta(K_{n}^{1})$ for $aflz\in\overline{co}K_{n}^{1}$ .

Since $X$ is uniformly convex, there exists $u_{n}^{2}\in\overline{co}I\zeta^{1}n$ such that

$d(z,$ $u_{n}^{2})\leq\delta(I\zeta_{n})(1-\alpha)^{2}$

for all $z\in\overline{co}I\zeta_{n}^{1}$ . Put $I\mathrm{f}_{n}^{2}=\{u_{n}^{2},$ $u_{n+}^{2}\cdots\}1’$ . Then we have for each $n\geq 1$ ,

$\delta(\overline{co}IC_{n}^{2})\leq 2\delta(I\zeta_{n})(1-\alpha)^{2}$

By the same method as above, we obtain for each $n\geq 1$ ,

$\overline{co}Ic_{n’ n}3\overline{CO}Ic4,$ $\cdots$ , and $u_{n}^{3},$ $u_{n}^{4},$ $\cdots$ .

And we have for each $n\geq 1$ ,

$I\mathrm{f}_{n}\supseteq\overline{co}I\acute{\iota}_{n}^{1}\supseteq\overline{co}K_{n}^{2}\supseteq\cdots$

and
$\delta(_{\overline{CO}I}\zeta_{n}m)\leq 2\delta(I\mathrm{f}_{n})(1-\alpha)^{\dot{m}}arrow 0$ , as $marrow..\cdot\infty$ .

Since $X$ is complete, for each $n\geq 1$ , there exists $u_{n}\in I\zeta_{n}$ such that

$\mathrm{n}_{m=1^{\overline{C}}}^{\infty}o\mathrm{A}_{n}’m\mathrm{f}=$ u}n .
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Since for each $n\geq 1,$ $\bigcap_{m=1^{\overline{C}}}^{\infty}oI\zeta^{m}n\supseteq\cap^{\infty}m=1^{\overline{C}}Io\zeta^{m}n+1$

’ we have

$u_{1}=u_{2}=\cdots$ .

Hence we have, for each $n\geq 1$ , there exists $u\in X$ such that

$u \in\bigcap_{m=1^{\overline{co}}}\infty\subseteq I\mathrm{t}_{n}^{\prime m}K_{n}$ .

So we have
$\bigcap_{n1}^{\infty}=\phi I\zeta\neq n$ .

To prove our main theorem, we need a lemma about filters on $X$ . Concerning
the filter theory, for instance, $\mathrm{s}\mathrm{e}\mathrm{e}[4]$ . Let $\mathcal{B}$ be a filterbase on $X$ that contains
at least one nonempty bounded subset in $B$ . Put for each $x\in X$

$r(x, \mathcal{B})=.\mathrm{i}\mathrm{n}\mathrm{f}A\in \mathcal{B}\sup_{y\in A}ddef(x, y)$ .

We denote by $\lim_{A\in \mathcal{B}}\sup_{y\in A}d(x, y)$ the righthand side of above definition.

Lemma 1 Let $X$ be a complete and $unifom\iota\iota_{y}$ convex metric space. Let $K$

be a nonempty closed convex subset of $X$ and $\mathcal{F}$ be a filter on $X$ that contains
at least one nonempty bounded set of $\mathcal{F}$ . Then, there exists a unique $u_{0}\in K$

such that
$r(u_{0}, \mathcal{F})=\inf_{x\in K}r(x, \mathcal{F})$ .

We sketch the outline of the proof. Put $r= \inf_{x\in \mathrm{A}^{-}}r(x, \mathcal{F})$ and

$IC_{n}=\{z\in K$ : $r(z, \mathcal{F})\leq r+\frac{1}{n}\}$ .

Then $\{I\mathrm{f}_{n}\}$ is a decreasing sequence of bounded closed convex subsets of $K$ .
By the previous theorem, we have

$\cap I_{1}’n\neq\phi$ .

So there exists $u_{0}\in K$ such that

$r(u_{0}, \mathcal{F})=\inf_{x\in K^{\Gamma}}(x, \mathcal{F})$ .

The uniqueness of $u_{0}$ follows from uniformly convexity of $X$ .

Our main theorem is as follows.
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Theorem 7 Let $X$ be a bounded, complete and uniformly convex met$7\dot{7}C$

space. If $T$ is a multivalued nonexpansive mapping of $X$ into $K(X)$ . Then
$T$ has a fixed point.

We sketch the outline of the proof. By theorem 2, there exists $\{x_{n}\}$ such
that

$\lim_{n}d(x_{n}, Tx_{n})=\mathit{0}$ .
Put $A_{n}=\{x_{n}, x_{n}+1, \cdots\}$ for every $n\geq 1$ . Since $\{A_{n}\}$ is a filterbase on $X$ ,
it generates the filter $\mathcal{F}$ on $X$ . Hence there exists an ultrafilter $\mathcal{U}$ on $X$ and
$\inf_{A\in u\sup_{x\in A}}d(x, Tx)=0$ . On the other hand, by lemma 1, there exists a
unique $u_{0}\in X$ such that

$r(u_{0}, \mathcal{U})=\inf_{x\in xr}(x,\mathcal{U})$ .

Since $Tx$ is nonempty compact for all $x\in X$ , there exist $Sx\in Tx$ and
$Px\in Tu_{0}$ such that

$d(x,$ $S_{X)}=d(x, T_{X})$ and $d(Sx, Px)=d(s_{X},$ $\tau_{u)}0\cdot$

Since $P$ is a mapping of $X$ into $Tu_{0},$ $P(\mathcal{U})$ is a filterbase on $Tu_{0}$ and generates
an ultrafilter on $Tu_{0}$ . Since $Tu_{0}$ is compact, $P(.\mathcal{U})$ converges to a point
$p\mathrm{o}\in Tu_{0}$ .

$r(p_{0,\mathcal{U}})$ $=$ $\inf_{A\in \mathcal{U}}\sup_{x}\in Ad(p_{0}, x)$

$\leq$ $\inf_{A\in \mathcal{U}}\sup_{xi}nA\{d(p_{0}, Px)+d(Px, Sx)+d(S_{X,X})\}$

$=$ $\inf_{A\in u\sup_{x}}\in A\{d(p_{0}, Px)+d(s_{x}, \tau_{u_{0}})+d(x, T_{X})\}$

$\leq$ $\inf_{A\in \mathcal{U}\sup}x\in A\{d(p_{0}, Px)+\mathcal{H}(TX, \tau u0)+d(x, T_{X})\}$

$\leq$ $\inf_{A\in u\sup}x\in A\{d(p_{0}, Px)+d(x, u\mathrm{o})+d(x, T_{X})\}$

$=$ $\inf_{A\in u\sup_{x}(X}\in Ad,$ $u_{0})$

$=$ $r(u_{0,\mathcal{U}})$ .

By lemma 1, we have
$u_{0}=p_{0}\in Tu_{0}$ .
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