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Fixed Points of Multivalued Nonexpansive Mappings in Certain Convex
Metric Spaces

Tokyo Inst. Tech. S% Jkéﬁ ﬁﬁ (Tomoo Shimizu)

1. Introduction. The investigation concerning convexity in metric spaces was
initiated by Menger [11] in 1928. This investigation was developed by several
authors [1]. The terms "metrically convex” and ”convex metric space” are
due to Blumenthal[l]. Throughout this report, let X be a metric space with
metric d.

Definition 1 z € X is said to be a between-point of z,y if
stz 2#y, and d(z,y) =d(s,2)+d(z,y).

Definition 2 X is metrically convez if for each pair z,y € X such that
T # y, there exists z € X that is a between-point of x,y. Then X is said to
be a conver metric space.

Let T be a mapping of X into itself. T is said to be nonexpansive [2], if for
each z,y € X,

d(Tz,Ty) < d(z,y).

In 1970, W.Takahashi [14] introduced a notion of convexity into met-
ric spaces, studied properties of such spaces and proved several fixed point
theorems for nonexpansive mappings.

Definition 3 Put I = [0,1]. A mapping W : X x X x I — X is said to be
a convez structure on X if for each (z,y,A\) € X x X x [ andue X,

d(u, W (z,y,A)) < Ad(u,z) + (1 - N)d(u,y).
X 15 called a conver metric space, if it has a convex structure.

Such kind of convex metric space seems to be often called w-convex metric
space.

In 1981/82, Kirk [7] introduced a notion of a metric space of hyperbolic
type and showed that it is a w-convex metric space. As a consequence of the
proof of theorem 1 [7], we have the following result.
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Theorem 1 Let X be a bounded w-conver metric space that has a unique
conver structure and T be a nonezpansive mapping of X into itself. Then
infzexd(z,Tz) = 0. (ie., X has the almost fized poznt property for nonez-
pansive mappings )

On the other hand, in 1987, Kijima [5] generalized, in certain sense [cf.
15], the notion of w-convex metric spaces. - o |

Definition 4 X is said to be a conver metric space if for each pairz,y € X
there exists z € X such that

d(z,u) +d(y,v)

d(z,u) < 5

forall ue X. (%)

We shall call such X a metric space with property (S).

Example 1 A dyadic cube in R™.

X={(54 - 5) €R" : ki=0,1,2,-,2™ , mi=1,2,--- , i= L-om }.

Recently, Kijima[6] proved the following result and generalized theorem 1.

Let X be a bounded metric space with property (S). Theninf cxd (z,Tz) =
0. (i.e., X has the almost fized point property for nonezpansive mappings
of X into itself )

‘This result is .proved for the case of Banach space, using the Banach
contraction principle; for instance, see [2]. However, the proof dose not carry
over to the case of metric space with property (S). Kijima [6] proved the
result by introducing an (€, n)-sequence without using the Banach contraction
principle.

Let K(X) be the class of all nonempty compact subsets of X. A mapping
T of X into K(X) is said to be nonexpansive, if for each pair z,y € X,

M (Tz,Ty) < d(z,y).

where # is the Hausdorff metric on K(X). |
In 1992, Shimizu and Takahashi[12] generalized Kijima's result in the case
of multivalued nonexpansive mappings with nonempty compact-values.
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Theorem 2 Let X be a bounded metric space with property (S) and T be a
multivalued nonezpansive mapping of X into K(X). Then inf exd(z,Tz) =
0, where d(z,Tz) = infyer.d(z,y). ( i.e., X has the almost fized point
property for multivalued nonezpansive mappings of X into K(X) )

We sketch the outline of the proof. 7
Suppose that inf exd (z,Tz) =28 > 0. Ye > 0, 3z¢ € X s.t.

d((L'o, T.’Eo) < 20 + €.
Since T'zy is nonempty compact, 3y, € X s.t.
d(xo,yo) S 2(6+ C) .

Define {z,} and {yo} inductivery. Assume that z; and yo s.t. yx € Tzs are
known. Choose 441 € X form () such that

d(zg,u) +d (yk,Au)
2

d (xk-{-la 'LL) ..<_

forall u e X. ,
Since T'zy4, is nonempty compact, we can choose yry; € X such that

Yks1 € Txyy and d(ykayk+1) = d(ykéTka)'

d (Yk> Yrt1) d(yg, TThy1) |

SUPyetz, 4 (U, TTh41)
H (T(L’k, T$k+1)

d (xk, 33k+1) .

IN N A

By this inequality and induction using (¢, n)-sequences, we have
d(xk,ka) < o+ ¢

and
d(zk,ye) < 2(6 +¢)

for all nonnegative integer k. And by these inequalities and induction using
(e,n)-sequences, we have

d(Zk, Yrin) 2 (n+2) (6 +¢) - 2™
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for all nonnegative integer £ and n.
By this inequality, we can choose {z'} , {y™} C X such that

d(zg,Tzy) < 26 + 2—(;-
and

d(zg,ym)> (m+2)(6+¢€) - 2’"*’1557—71— > mé.

Hence we have
im, . o0d (23, y7) = o0.

This contradicts the boundedness of X. Therefore we have

infzexd(z,Tz) = 0.

By theorem 2, we have

Theorem 3 Let X be a nonempty compact metric space with property (S)
and T' be a multivalued nonezpansive mapping of X into K (X). Then T has
a fized point, i.e., there exists o € X such that zo € Tzo.

Concerning fixed point theorems for multivalued nonexpansive mappings, in
1968, Markin [10] proved the first fixed point theorem.

Theorem 4 Let H be a Hilbert space and C be a nonemty bounded closed
convez subset of H and T be a multivalued nonezpansive mapping of C into
K(C) such that Tz is convez for each z € C. Then T has a fized point.

He proved this theorem by proving that (I — T) (C) is a closed subset of C.
This theorem was generalized by several authors[3,16].

In 1974, Lim([8] generalized Markin’s result to uniformly convex Banach
spaces by transfinite induction as follows.

Theorem 5 Let C be a nonempty bounded closed convez subset of uniformly
convez Banach space E and T be a multivalued nonezpansive mapping of C

into K (C). Then T has a fized point.
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We introduce a notion of uniformly convexity into convex metric spaces
and prove a fixed point theorem for multivalued nonexpansive mappings in
such spaces. Our theorem generalizes Lim’s result and we can prove the
theorem smartly by virture the filter theory. '

2. Main results {13]. Let X be a w-convex metric space and W be its convex
structure.

Definition 5 X is said to be uniformly convez if for any € > 0, there exists
a = a(e€) such that, for allr > 0 and z,y,z € X withd (z,z) < r, d(z,y) <
rand d(z,y) > re, :

d(z,W(z,y,1/2)) < r(l-a) <.
Example 2 Uniformly conver Banach spaces.

Example 3 Let H be a Hilbert space and X be a nonempty closed subset of
{re X : ||z|| =1} such that if z,y € X and o,f € [0,1] witha+ (3 =1
then (az + By) /llaz + Byl € X 6(X) < V2/2. Let d(z,y) = cos™ {(z,y)}
for all z,y € X, where (-,-) is the inner product of H. When we define a
convez structure W for (X, d) adiquately, it is easily seen that (X, d) becomes
a complete and uniformly convex metric space[9].

A convex metric space X is said to have a property(C) if every decreasing
sequence of nonempty bounded closed convex subsets of X has a nonempty
intersection. The authors proved the following results.

Theorem 6 Let X be a complete and uniformly convezr metric space. Then
X has the property(C).

We sckech the outline of the proof. Let { K}, , be a decreasing sequence of
nonempty bounded closed convex subsets of X. Suppose that for each n > 1,
6 (K,) > 0. Then for each n > 1, there exists z,y € K, such that

————= and d(z,z) < 6 (K,) , d(z,y) < 6(K,) forallze K,.

Since X is uniformly convex, for each n > 1, there exists ul € K, such that

d(z,u}l) <6 (K)(1-a) forall ze K,.
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Put .
K! = {u}z,u}lﬂ,- : }
Then we have for each n > 1, | |
K'# ¢ K1 C K,, and K},, 2 K1,
Supposev that for each n > 1, 5(K,1;) > 0. Put for each n > 1,
By =B [uhsr:6 (KD)].

Note that for each n > 1,%K} C B, §(K}) < §(K,) (1~ a) and

5 (eok}) < 6(BL) < 6(B[u, 8 (KY)]) < 26 (Kn)(1- a).
And we have for each n > 1, there exist z,y € K} such that

5(;{")7d(2, T) < 5([{;) and d(z,y) < § <K111> for all z € ToK}.

d(z,y) >
Since X is ﬁniformly convex, there exists uive e K} such that
d(z,u2) < 6(K,)(1- o)

for all z € @K}, Put K? = {u%,uiﬂ, . } ‘"Then we have for each n > 1,

§ (w0K?) < 26(Kn) (1 - @)™
By the same method as above, we obtain for each n > 1,

=3 K3 a5 K¢ 3 .4
coK,,c0K,, -, and u,,ul, ...
And we have for each n > 1,
rn gl o s 2
K, 2tK, 2K, - -

and i .
6(coK') < 26(Kn)(1-a)™ =0, asm — 0.

Since X is COmplete, for each n > 1, there exists u, € K, such that -

ﬂ:___laj]{:?: {un} .
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Since for each n > 1, N @K 2 Ny=1C0K]",,, we have
ul = Unz = ...
Hence we have, for each n > 1, there exists u € X such that
© __,. .
u € ﬂm=1cofx;" C K.

So we have

N Kn # 6.

To prove our main theorem, we need a lemma about filters on X. Concerning
the filter theory, for instance, see[4]. Let B be a filterbase on X that contains
at least one nonempty bounded subset in B. Put for each z € X

- r(z,B) = infgepsupyead (z,7) .

We denote by ﬁmAegsupyeAd (z,y) the righthand side of above definition.

Lemma 1 Let X be a complete and uniformly conver metric space. Let K
be a nonempty closed convez subset of X and F be a filter on X that contains

at least one nonempty bounded set of F. Then, there exists a unique ug € K
such that

r (uo, F) = infyexr (z,F).

We sketch the Qutline of the proof. Put r = inf cxr (:1:, F) and

an{zEK : r(z,]—')gr+£}.

n

Then {K,} is a decreasing sequence of bounded closed convex subsets of K.
By the previous theorem, we have

K # ¢.
So there exists ug € K such that
r(uo, F) = infrexr (z,F).

The uniqueness of ug follows from uniformly convexity of X.

Our main theorem is as follows.
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Theorem 7 Let X be a bounded, complete and uniformly conver metric
space. If T is a multivalued nonezpansive mapping of X into K (X). Then
T has a fized point.

We sketch the outline of the proof. By theorem 2, there exists {z,} such
that
lim,d(z,,Tz,) = 0.

Put A, = {Zn,Tny1, -} for every n > 1. Since {A,} is a filterbase on X,
1t generates the filter 7 on X. Hence there exists an ultrafilter 4 on X and
inf geusupe4d (z,Tz) = 0. On the other hand, by lemma 1, there exists a
unique ug € X such that

r (uo,U ) = infzexr (z,U) .

Since T'r is nonempty compact for all z € X, there exist Sz € Tz and
Pz € Tug such that

d(z,Sz) =d(z,Tz) and d(Sz,Pz)=d(Sz,Tuo).

Since P is a mapping of X into Tug, P (i) is a filterbase on Tug and generates
an ultrafilter on Two. Since Tug is compact, P (/) converges to a point
Po € T'Uo. ’

inf gcsup,ec 4d (po, z) | |

Inf 4euSUPLina {d (po, Pz) + d (Pz,Sz) + d(Sz,z)}
infaeusup,eq {d (po, Pz) + d (Sz,Tus) + d (z,Tz)}
ianeasupreA {d(po, Pz) + H (Tz,Tuo) +d(z,Tz)}
inf geusup, ey {d(po, Pz) + d(z,u0) + d (z,Tz)}

inf gcysup,cad(z, uo)

T (uo,U).

T (po,U)

IIA

A A

By lemma 1, we have
o = po € Tuo.
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