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Abstract

We introduce some criteria of a minimization programming problem whose objec-
tive function is a set-valued map. For such criteria, we define some semicontinuities
and prove certain theorems with respect to existence of solutions of the problem.

1. Introduction
Recently, set-valued analysis has been developed and many concepts and properties

for set-valued maps are produced, see [2, 3, 4, 5]. Such a number of these concepts and
properties are simple generalizations of the concepts in vector-valued optimization, how-
ever, such concepts are often not suitable for set-valued optimization, because they are
only depend on some element of values of set-valued maps and not based on comparisons
among values of set-valued maps. It is necessary and important to define concepts which
are suitable for set-valued optimization.

In this paper, we consider what notions of set-valued maps are suitable for set-valued
optimization, and then, we propose certain criteria, which are called by ‘natural criteria’,
of solutions for set-valued optimization. Also, we investigate some properties for such
solutions with such criteria.

2. The Natural Criteria and Minimal Solutions
First, we give some preliminary terminorogy in the paper. Let $X$ be a topological

space, $S$ a nonempty subset of $X,$ $\mathrm{Y}$ an ordered topological vector space with an ordering
convex cone $K$ , and $F$ a map from $X$ to $2^{Y}$ .
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Our set-valued optimization problem is written by
(P) Minimize $F(x)$

subject to $x\in S$

Above $‘ \mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{i}^{k}\mathrm{Z}\mathrm{e}’ \mathrm{i}\mathrm{S}$ often interpreted like this way [3, 4, 5]:

$x_{0}\in S$ is a solution if
$\mathrm{c}1F(X_{0})\cap{\rm Min}\bigcup_{x\in s}F(X)\neq\emptyset$ .

However, the above solution $x_{0}$ only depends on some element of $F(x_{0})$ and it does not
depend on comparisons between the value $F(x_{0})$ and another value of $F$ , therefore the
above interpretation is not suitable for set-valued optimization.

In this point of view, we assert that

some of criteria for set-valued optimization should be obtained by
comparisons of values of the (set-valued) objective function.

We call such criteria based on the philosophy above ‘Natural Criteria’.
To define such natural criteria, we introduce some relations between two sets like the

order relation in topological vector spaces; though the number types of such relations is
six, we treat two important relations of them, see, [6].

Definition 2.1. (SET RELATIONS)
For nonempty subsets $A,$ $B$ of $\mathrm{Y}$ ,

$\bullet A\leq^{l}B\Leftrightarrow^{\mathrm{d}\mathrm{e}\mathrm{f}}A+K\supset B$

$\bullet A\leq^{u}B\Leftrightarrow^{\mathrm{d}\mathrm{e}\mathrm{f}}A\subset B-K$

We can see that $A\leq^{l}B$ and $B\leq^{l}$ $A$ imply ${\rm Min} A={\rm Min} B$ , and $A\leq^{u}B$ and $B\leq^{u}A$

imply ${\rm Max} A={\rm Max} B$ , where ${\rm Min} A=\{x\in A|A\cap(X-K)=\{x\}\}$ and ${\rm Max}=-{\rm Min}(-A)$ .
By using the set relations above, we define two types criteria of minimal solutions. In

this paper, we assume that $F(x)+K(\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}. F(x)-K)$ is closed for each $x\in X$ when we
consider $l$-type($\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{p}$ . $u$-type) minimal solution.

Definition 2.2. (Minimal Solutions)

$\bullet$ $x_{0}\in S$ is $l$-type minimal solution of (P) if
$F(x)\leq^{l}F(x_{0})$ and $x\in..S$ imply $F(x_{0})\leq^{l}F(X)$

$\bullet$ $x_{0}\in S$ is $u$-type minimal solution of (P) if
$F(x)\leq^{u}F(x_{0})$ and $x\in S$ imply $F(x_{0})\leq^{u}F(X)$
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3. $l$-Type Semicontinuity of Set-Valued Maps and Ex-
istence Theorems

In the rest of the paper, we prove some existence theorems for our solutions defined
by previous section. In this section, we investigate $l$-type solution and $u$-type in the next.

First, remember classical results with respect to existence of solution of some mini-
mization problems:

(i) Let $Z$ be a topological space, $D$ a compact set in $Z$ , and $f$ a lower semicontinuous
real-valued function on $D$ . Then, $f$ attains its minimum on $D$ .

$(\mathrm{i}\mathrm{i}.)$ Let $Z$ be a complete metric space, $f$ : $Zarrow \mathrm{R}\cup\{\infty\}$ a lower $\mathrm{s}\mathrm{e}\mathrm{m}$

,
icontinuous and

proper function which is bounded from below. Then there exists $z_{0}\in Z$ such that
$f(z)\geq f(z_{0})-\epsilon d(z, z_{0})$ for all $z\in Z$ . (Ekeland’s variational theorem, [1])

(iii) Let $Z$ be a Banach space, $C$ a closed convex cone in $Z,$ $C\subset\{z\in Z|\langle z, z^{*}\rangle+\epsilon||z||\geq 0\}$

for some $z^{*}\in Z,$ $\epsilon>0$ , and $D$ a nonempty closed subset of $Z$ such that $z^{*}$ is bounded
from below on $D$ . Then, ${\rm Min} D\neq\emptyset$ . (Phelps’ extreme theorem, [1])

We can find that some of theorems are concerned with concept of lower-semicontinuity

of real-valued functions. Remember the lower-semicontinuity of set-valued maps: A set-
valued function $F:Xarrow 2^{Y}$ said to be lower semicontinuous at $\overline{x}$ if for any $y\in F(\overline{x})$ and
for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x}$ , there exists a net of elements $y_{\lambda}\in F(x_{\lambda})$ converging to $y$ .
However, the notion is a generalization of the continuity of real-valued functions, it is not
a generalization of the lower-semicontinuity. Then, we define some lower-semicontinuities
of set-valued maps which are generalizations of the lower-semicontinuities of real-valued
functions. To this end, we define the upper limit and the lower limit of $\{A_{\lambda}\}$ , see [2].

Definition 3.1. (Lim $\inf_{\lambda}A_{\lambda}$ )
For $\{A_{\lambda}\}\subset 2^{Y},$ $(\Lambda, <)$ : a directed set,

$\mathrm{L}\mathrm{i}\mathrm{m}_{\lambda}$ inf $A_{\lambda}=\mathrm{t}\mathrm{h}\mathrm{e}$ set of limit points of $\{a_{\lambda}\},$ $a_{\lambda}\in A_{\lambda;}$

$\mathrm{L}\mathrm{i}\mathrm{m}_{\lambda}\sup A_{\lambda}=\mathrm{t}\mathrm{h}\mathrm{e}$
set of cluster points of $\{a_{\lambda}\},$ $a_{\lambda}\in A_{\lambda}$ .

In general,

$\mathrm{L}\mathrm{i}\mathrm{m}_{\lambda}$ inf $A_{\lambda} \subset \mathrm{L}\mathrm{i}\mathrm{m}_{\lambda}\sup A_{\lambda}$

By using this, we define four kinds of $l$ -type lower semicontinuity of set-valued maps.

Definition 3.2. ($l$-type Lower Semicontinuity)
A set-valued map $F$ is said to be

$\bullet$
$l$-type (A) lower semicontinuous if
for each net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x}$ and for each open set $U$ with $U\leq^{l}F(\overline{x})$ , there exists

$\hat{\lambda}$ such that $\hat{\lambda}<\lambda$ implies $U\leq^{l}F(x_{\lambda})$ .
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$\bullet$ $l$-type (B) lower semicontinuous if
for each net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x},$ $F(\overline{x})\leq^{l}$ Lim $\inf_{\lambda}.(F(X_{\lambda})+K)$ .

$\bullet$ $l- \mathrm{t}\mathrm{y}\mathrm{P}^{\mathrm{e}}$

.
$(\mathrm{C})$ lower semicontinuous if

for each $\overline{x},$ $l-c(F(\overline{x}))=\{x\in S|F(x)\leq^{l}F(\overline{x})\}$ is closed.

$\bullet$
$l$-type (D) lower semicontinuous if
for each net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x}$ and $\lambda<\lambda’$ implies $F(X_{\lambda’})\leq^{l}F(x_{\lambda}),$ $F(\overline{x})\leq^{l}$

Lim $\inf_{\lambda}(F(X_{\lambda})+K)$ .

Note that, if a set-valued map $F$ is presented by $F(x)=\{f(X)\}$ for each $x\in X,$ $f$ : $Xarrow \mathrm{R}$ ,
$l$-type (A), $l$-type (B), or $l$-type (C) lower-semicontinuous are equivalent to the ordinary
lower-semicontinuous of real-valued functions.

Proposition 3.1. We have the following:

$\bullet$ $l$-type (A) l.s.c. $\Rightarrow l$-type (B) l.s.c.

$\bullet$
$l$-type (B) l.s.c. $\Rightarrow l$-type (C) l.s.c.

$\bullet$
$l$-type (C) l.s.c. $\Rightarrow l$-type (D) l.s.c.

Theorem 3.1. (Existence of $l$-type Solutions 1)
Let $X$ be a topological space and $\mathrm{Y}$ an ordered topological vector space. If $S$ is a nonempty
compact subset of $X$ and $F$ : $Sarrow 2^{\mathrm{Y}}$ is a $l$-type (D) l.s.c. set-valued map, then there
exists a $l$-type minimal solution of (P).

Theorem 3.2. (Existence of $l$-type Solutions 2)
(X, $d$): a complete metric space

$\mathrm{Y}$ : an ordered locally convex space with the cone $K$

$F:Xarrow 2^{Y}$ satisfies the following conditions:

$\bullet$ there exists $y^{*}\in K^{+}\backslash \{\theta\}$ such that

inf $\langle y^{*}, F(\cdot)\rangle$ : $Sarrow \mathrm{R}$

$F(x_{1})\leq^{l}F(X_{2}),$ $X_{1},$ $X_{2} \in S\Rightarrow\inf\langle y^{*}, F(x_{2})\rangle$ –inf $\langle y^{*}, F(x_{1})\rangle\geq d(x_{2,1}x)$

$\bullet$ $F:Sarrow 2^{\mathrm{Y}}$ is $l$-type (C) l.s.c.

Then, there exists a $l$-type minimal solution of (P).
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4. $u$-Type Semicontinuity of Set-Valued Maps and Ex-
istence Theorems

In this section, we investigate set-valued optimization with the $u$-type relation in the
same way as the last section. First we define lower-semicontinuities of set-valued maps.

Definition 4.1. ( $u$-type Lower Semicontinuity) A set-valued map $F$ is said to be

$\bullet$ $u$-type (A) lower semicontinuous if
for each net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x}$ and for each open set $U$ with $F(\overline{x})\cap U\neq\emptyset$ , for any
$\lambda$ , there exists $\lambda’>\lambda$ such that $(F(x_{\lambda})-K)\cap U\neq\emptyset$ .

$\bullet$ $u$-type (B) lower semicontinuous if
for each net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x},$ $F(\overline{x})\leq^{u}$ Lim $\sup_{\lambda}(F(X_{\lambda})-K)$ .

$\bullet$ $u$-type (C) lower semicontinuous if
for each $\overline{x},$ $u- \mathcal{L}(F(\overline{x}))=\{x|F(x)\leq^{u}F(\overline{x})\}$ is closed.

$\bullet$ $u$-type (D) lower semicontinuous if
for each net $\{x_{\lambda}\}$ with $x_{\lambda}arrow\overline{x}$ and $\lambda<\lambda’$ implies $F(X_{\lambda’})\leq^{u}F(x_{\lambda}),$ $F(\overline{x})\leq^{u}$

Lim $\sup_{\lambda}(F(x_{\lambda})-K)$ .

We can see that, if a set-valued map $F$ is written by $F(x)=\{f(X)\}$ for each $x\in X$ ,
$f$ : $Xarrow \mathrm{R},$ $u$-type (A), $u$-type (B), or $u$-type (C) lower-semicontinuous are equivalent to
the ordinary lower-semicontinuous of real-valued functions.

Proposition 4.1. ( $u$-type Lower $\mathrm{S}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{y}$) $\mathrm{W}\mathrm{e}$ have the following:

$\bullet$ $u$-type (B) l.s.c. $\Rightarrow u$-type (A) l.s.c.

$\bullet$ $u$-type (B) l.s.c. $\Rightarrow u$-type (C) l.s.c.

$\bullet$ $u$-type (C) l.s.c. $\Rightarrow u$-type (D) l.s.c.

Then, we have two theorems with respect to existence of $u$-type solutions:

Theorem 4.1. (Existence of $u$-type Solutions 1)
Let $X$ be a topological space and $\mathrm{Y}$ an ordered topological vector space. If $S$ is a nonempty
compact subset of $X$ and $F$ : $Sarrow 2^{Y}$ is a $u$-type (D) l.s.c. set-valued map, then there
exists a $u$-type minimal solution of (P).

Theorem 4.2. (Existence of $u$-type Solutions 2)
(X, $d$) : a complete metric space

$\mathrm{Y}$ : an ordered locally convex space with the cone $K$

$F:Xarrow 2^{Y}$ satisfies the following conditions:
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$\bullet$ there exists $y^{*}\in K^{+}\backslash \{\theta\}$ such that

$\sup\langle y^{*p},(\cdot)\rangle$ : $Sarrow \mathrm{R}$

$F(x_{1})\leq^{u}F(X_{2}),$ $x_{1},$ $X_{2} \in S\Rightarrow\sup\langle y^{*}, F(x_{2})\rangle-\sup\langle y^{*}, F(x_{1})\rangle\geq d(x_{2,1}x)$

$\bullet$ $F:Sarrow 2^{Y}$ is $u$-type (C) l.s.c.

Then, there exists a $u$-type minimal solution of (P).
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