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A localization lemma and its applications*

- Tomoaki Honda
Hokkaido University

Abstract

In this article, we give alternative proofs of two famous facts, the
Poincaré-Hopf index theorem and the compatibility of two definitions
of the degree of a divisor on a compact Riemann surface, and define
a generalization of the tangential index [Br| and [Ho| and prove its
index theorem by the method of the localization of the Chern class
of a virtual bundle. Thé tangential index and its index formula was
ordinary defined and proved by M.Brunella [Br| for a curve and a sin-
gular foliation on a compact complex surface and the author reproved
it for a compact curve and a singular foliation on a complex surface -
[Ho].

1 Introduction

Let X be a C* manifold of dimension m and E a C* complex vector bundle
of rank n. We consider the Chern class ¢(F) € H*(X;C) of E. Note that
we use the complex number field C as the coefficient of the cohomology
groups although in fact ¢(F) itself is in H*(X;Z), since we use the Chern-
Weil theory for the construction of Chern classes. If F has a global section
s : X — FE, which is not identically zero, we can make a frame, including
s, of the ristriction of F to the complement of the zero set of s. Therefore
the top Chern class can be localized to the neighborhood of the zero set of
s. This fact have many applications. In this article, we consider a simple
generalization of this fact.

Let V = {V,} be an open covering of X such that the vector bundle E
has a section s, : V, — F on an open set V,,, which is not a zero section.
Assume that there exist non-vanishing functions f,g on V, N Vs such that

*This article is based on the author’s talk “A vanishing lemma and some indices” at
. RIMS. The title was changed.
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Sg = Safap and the system { fo3} is a cocycle. We denote by F the line bundle
defined by {f.s}. Then we consider the Chern class of the virtual bundle
E — F. Tt is localized to the neighborhood of each connected component of
the union of the zero set of each s,. Then we can define the index of E by
F' and get its index formula.

In section 2, we consider a localization lemma and, as examples, the
Poincaré-Hopf index formula and the compatibility of two definitions of the
degree of a divisor on a compact Riemann surface. Although the Cech-de
Rham cohomology theory and its integration theory play important roles in
this article, we refer to [BT], [Leh1], [Leh2], [LS] and [Su] for the details of
these theories. In section 3, a generalization of the tangential index [Br] and
[Ho] are defined and we prove its index formula. This index can be considered
to represent how a variety and a one dimentional singular foliation intersect,
and it is a kind of indices relative not only to a singular foliation but also
to a variety. The tangential index is defined by M.Brunella [Br] for a curve
and a singular foliation on a compact complex surface. We generalize it for
a variety and a dimension one singular foliation on X.

The author would like to thank Tatsuo Suwa for many helpful comments
and suggestions.

2 Localization lemma

Let X be a C'*° manifold of dimension m, E a complex vector bundle of rank
n, V = {V,}aeca an open covering of X and s, : V, — E a C™ section
of E on each V,. We can assume that E is trivial on each V,, if necessary
taking a refinement of V. Moreover we assume the following condition.

Assumption 2.1 For any o, B € A such that V, NV # 0, there ezsits a
non-vanishing C*™ function fog : Vo N Vg — C* such that sg = sqfap on
Va0 V5 and the system {fup} forms a cocycle.

We denote by F' the line bundle which is defined by this cocycle {fus}.
Then there exists a bunble map f : FF — FE such that

(1) f(Fp) CE,forallpe E

(2) there exist a subset S C X such that fp © Fp — Ep is injective for
peX—S.

We call S the set of singularities of the line bundle F'. Let S =] )\é AT
be the decomposition to connected components. We assume that each T) is
compact. Take an open set Uj, for each A such that Uy D T and UxNU, =0
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for A # p. Then U = {Up, (Ur)ren}, where Uy = X — S is an open covering
of X.

We consider the Cech-de Rham cohomology group H*(A*(U)) associated
with this open covering U. Note that this cohomology is isomorphic to the de
Rham cohoimology (see [BT]). The n-th Chern class ¢,(E — F) of the virtual
bundle E — F has a representative (a2, (o}),, (6%}),) in the Cech-de Rham
cohomology group H?"(A*(U)) of degree 2n, where 02 and o)) are 2n-closed
forms which are representatives of ¢,(E — F) on Uy and U), respectively,
in the de Rham cohomology group and ¢%* is a (2n — 1) form on Uy N U,
such that do2* = o, — 02. Note that we can construct 02, ¢} and ¢ from
connections of £ and F, using the Chern-Weil theory, and the Cech—de Rham
cohomology class represented by these forms is independent on the choice of
the connections.

Lemma 2.2 (localization) Let j* : H**(X, X — S;C) —» H?*(X;C) be
natural map. Then there exists c € H*(X,X — S;C) such that j*(c) =
cn(E—F).

Proof. Since F' can be considered a subbundle of F on Uy, there exists
the decomposition F' @ E’ of E. The system {s,} forms a frame of F'. Let
V{ be a trivial connection of F' respect to the frame, V& a conncetion of
E’ on Uy and & the curvature matrix of the connection Vo = V§ & V¥ of
E on Uy. Then oY = detk = 0. We can construct o} and ¢%* from V, and
conncetions of K and F on U,.

Therefore the representative of ¢,(E — F) in the Cech-de Rham coho-
mology is o = (0, (o)x, (69*)x). This is a 2n-cocyle in the Cech-de Rham
complex relative to X —S. Let 7 be a 2n-form on X corresponding to o.
Then ¢ = [r] € H*(X, X — S;C) and j*(c) = c,(E — F).

| . | 1
We denote ¢ € H**(X, X — S ; C) by ¢,(E; F). This is a localization of
cn(E—F). : _

If X is compact, there exists following commutative diagram.

H>™X, X — 8;C) —2— Hp_9,(S;C) = @®sep Hpzn(Th; C)

el Ji
~[X]

H*™(X;C) — Hp—on(X;C),

where A is the Alexander duality, ¢ the natural inclusion and [X] the funda-.
mental class of X.
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Definition 2.3 We define an indezx I(E, F;T)) € Hm_zn(TA; C) ofEby F
at Ty by
A(e) = (I(E, F;Tx))ea.

Remark 2.4 We can define the indez I (E, F;T)y) if S is compact.

From the commutativity of the above diagram, we have following theorem.
Theorem 2.5 'f X 1is compact, we have

> LI(E,F;T)) = co(E — F) ~ [X].
XeA

In the rest of this section, we assume that X is compact and S con-
sists only of isolated points. Since each T) consists of a point py under this
assumption, we can take a sufficiently small open neighborhood Uy of pj.
Then we can assume each o)) is 0 without loosing generalities. Hence the
localized Chern class ¢, (E; F') has a representative (0,0, (6%*),). So it is im-
portant to write the (2n — 1)-form 09 explicitly. We have to mention the

Bochner-Martinelli kernel for the purpose of writing ¢%* clearly.

Definition 2.6 We call following (n,n — 1)-form 3, on C™ the Bochner-
Martinelli kernel;

n L EAR AN ANdE A ANdE Adz A Ndz,

ﬁn = Chq 1)1 n ’
where |
. — (_1)n<n2—1) (n—1)!

(2m/=1)n"

Remark 2.7 Let §2»1 c C" be a (2n — 1)-5phere centered at the origin 0.
Then the Bochner-Martinelli kernel 3, is real on S*~1 and a generator of
-the cohomology group H?1(S?"=1; C):;

\/‘;Zn—'l /6'11 = 1

Theorem 2.8 Assume that py € V,, for some a. Then we have
0'2,/\ = —3;/677,)

To prove this theorem, the Chen-Weil theory and the integration along
the fiber are needed. Here the proof is omitted.
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Hereafter we assume that X is oriented. We introduce the integration on
the Cech-de Rham cohomology group.
: Let Ry be a closed neighborhood of p) such that Ry C U, for each M.
Put Ry = X — Ujea intR)y and Ry = Rp N Ry. Ry and R, are oriented as
submanifolds of X for each A and Ry as the boundary of Ry; Rgy = ORy =
—OR). We call a family R = {Rq, (Rx)x, (Rox)a} a system of honey-comb
cells adapted to the open covering U.
Then we can define the integration on the Cech-de Rham cohomology
group H™(A®*(U)) associated with U when X is compact. For any o =
[(g0, (0A)x; (0or)a)] € H™(A*(U)), we define the integration by '

/0—/ mﬁ—%/ a;ﬁ—/é%/ Oo)-

, This definition is well-defined and compatible with the integration on the
de Rham cohomology group; |
[o=[+
X X

where 7 is a 2n-form on X corresponding to o. See [Lehl], [Leh2], [LS] and
[Su] for the details and more general definitions. |
Then we describe examples. '

Corollary 2.9 Let C be a compact Riemann surface, D = {(U;, fi)} a
Cartier divisor on C, D' = Y2 ; n;p; the Weil divisor corresponding to D.

Then .
Lalo) =Y n,
¢ i=1
~ where [D] is the line bundle associated with D.

Proof. We can assume that each point p; in D’ is contained in U; and
not contained in other U;. There exists a coordinate z; on each U; such
that z;(p;) = 0 and fi(z) = 2. Then U = {Uy, (U;);}, where Uy = C —
{p1,p2,---,pn} is an open covering of C. Let R be a system of honey-
comb cell adapted to 4. Note that each f; is a section of [D] on U;. From
theorem(2.5) and (2.8), we have

a0 = X[ ks
g 1 dfi < 1 n;dz
N 1.2212#\/——_1 s fi ~;27T\/—_1 st 2

- n
= D m
i=1
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where S’zl,i is a 1-sphere in C centerd at p; and oriented natlirally. :

i
As the second example, we consider the Poincaré-Hopf index formula for

a dimension one reduced singular foliation.

Definition 2.10 A dimension one singular foliation F on a complex mani-
Jold X is determined by a triple ({Va}, Va, €ap) such that

(1) {V,} is an open covering of X and, for each «, v, is a holomorphic
vector field on V,,

(2) for each pair (o, ), eap is a non-vanishing holomorphic function on
VaNVg which satisfies the cocyle condition, e,y = eqges, on VaNVaNV,,

(3) Ug = Va€ag ON Vo N Vb

The cocycle {eqap} defines a line bundle which is called the holomorphic tan—
gent bundle of F.

Note that this definition is adapted to the assumption (2.1) if we regard
the holomorphic tangent bundle TX as a C*® complex vector bundle E.
The singular set of a foliation is defined similary. A dimension one singular
foliation is said to be reduced if its singular set consists only of isolated
points.

Corollary 2.11 (Poincaré-Hopf ) Let X be a compact complex manifold of
complex dimenson n, F = ({Va}, Va, €ap) a Teduced dimension one singular
foliation and F a holomorphic tangent bundle of . Then we have

> PH(v,p) = [ ealTX ~ ),

peES

where S is the singular set of F and PH(v,p) is the Poincaré-Hopf index of
v at p. ' '

Proof. Note that the Poincaré-Hopf index PH (v, p) is written as

* _ (12
/2n—1vﬂn—/ On s
Sp Rox .

for some A. Hence this fomula is an obvious corollary of the theorem(2.5)
and (2.8).
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Remark 2.12 The oridinal Poincaré-Hopf index formula is

Y PH(v,p) = x(X),

peS
where v s a vector field on X. If there exists a global vector field with only
1solated zero points, the tangent bundle F' is trivial and we get the classi-
cal formula using the fact / = x(X), from the theorem(2.11). This

formu_la s a special case of the Baum—Bott residue theorem [BB].

Note that some other formulas, for example, the Riemann-Hurwitz for-
mula, can be proved in this way.

3 Tangential index

Let X be a complex manifold of dimension n + k, V C X a strong locally
complete intersection (SLCI) of dimension n (See [LS] for the definition of
SLCI), V = {V,} an open covering of X and V' = Reg(V) = V — Sing(V)
a regular part of V. Since V' is an SLCI, there exists a C*™ complex vector
bundle N on a neighborhood U of V in X such that the restriction N IV' is
the normal bundle Ny of V'.

Assumption 3.1 There ezists a bundle map 7 : TX|y — N such that a
diagram
0 — TV —— TX|y» —— Ny —— 0 (exact)

TXly —— N

18 commutative.

The above assumption(3.1) is satisfied, for example, when an SLCI V
is defined by a holomorphic section s of a holomorphic vector bundle FE;
V = s71(0). In this case, E is isomorphic to N,

Let f&, f&,---, f& be defining functions of V' on V,;

VVa={ff=ff==fF=0}

We can take coordinates (2§, 2%, -+, 2%,;) on V, such that z2,, = f2 for
t=1,2,---,k. Then
0 0 0

.. 7"'~____.__
" 0xh

) T )
Oxhy’ O0z3ys
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form a frame of Ny = (T'X|v+)/TV'. We can assume N is trivial on each
VoMU and there exists a frame {ef,eg,---,e¥} of N such that

o

8 g+z

alV’ =

for each ¢. This frame is said to be associated with {f{, f&,- -, f&}.

Let F = {(Va, Va, €ag) } be a dimension one smgular foliation and F' the
holomorphic tangent bundle of F.

Assumption 3.2 The SLCI'V is not invariant by F, i.e. vo(fas) € I(V N
Vo), where I(VNV,,) is the ideal of holomorphic functions vanishing on VNV,
and generated by the defining functions of V on V.

Take a frame {e¢} of N associated with {f2}. Then we get

k
7~T(UOt)lV = zva(foz,i)ez
i=1
Let
T, = SingV U {p € VNV, | va(p) € T,V'}.

Then we have

T(va)lv = 7(vs)lvesa
To = {p € Vnv, I ’/‘:F(’Ua)(p) - 0}

So T = U,T, is well-defined. T is the set of tangential points of F and V.
Let T = ]]yea T be the decomposition to connected components and we
assume that 7' is compact. Then there exists generalized tangential index.

Theorem 3.3 (tangential index) There ezists indez
I(N, F;T)) € Hym-1)(T; C)
of N by F' at T. Moreover if V is compact,

> i (N, F; T,\)—ck(N F) ~ V]
AeA

Theorem 3.4 If n =k and T consists only of isolated points, then

I(N,Fip) = [ (x(0))"Bs,

where p € T and L is a link of V at p with a usual orientation; L = {f1 =

fo= o= fy= O, ()P + ()P + - + [0(fIF = e} for a sufficientry
small € > 0 and dargv(f1) Adargv(fa) A--- Adargv(fix) > 0.
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These two theorems are corollaries of theorem(2.5) and (2.8), respectively.
Apply these theorems to a virtual bundle N — F' and V.

This index can be considered to represent how tangent a variety and on
dimensional singular foliation. If n = k£ = 1 then we have

1 dv(f)
2r/=1J v(f)

This coincides with an intersection number (v(f), f), at p (See [GH] Chapter
5) and the original tangential index [Br] and [Ho).

I(N, F;p) =
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