
NOTE ON FLEX CURVES AND THEIR APPLICATIONS
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1. INTRODUCTION
1.1. Let $f(x, y)\in \mathrm{C}[x, y]$ be a polynomial. We consider an affine curve $C^{a}(f):=\{(x, y)\in$
$\mathrm{C}^{2};f(x, y)=0\}$ and the projective curve $C(f)$ defined by the closure of $C^{a}(f)$ in $\mathrm{P}^{2}$ .

In this talk, we introduce the notion of a flex curve of degree $\ell$ , denoted by $\mathcal{F}^{(l)}(f;P)$ , at a
smooth point $P$ of a given curve $C^{a}(f)$ .

As an application, we construct, in Section 5, another projective curve $C_{3}$ of degree 12 with
27 cusps for which $\pi_{1}(\mathrm{P}^{2}-C_{3})$ is abelian. The triple $\{C_{1}, C_{2}, c_{3}\}$ gives the first example of
a triple of projective curves such that $\deg C_{i}=12,$ $i=1,2,3$ and they have 27 cusps but
their complements are topologically not homeomorphic. This implies that the moduli space of
curves of degree 12 with 27 cusps has at least 3 irreducible components. The pair $\{\mathit{0}_{1},\mathit{0}_{3}\}$ is of
particular interest to us as the cyclic covering argument (see for example [2]) cannot distinguish
$C_{1}$ and $C_{3}$ as their Alexander polynomials are trivial.

2. $\mathrm{c}_{\mathrm{Y}\mathrm{C}\mathrm{L}\mathrm{I}\mathrm{C}}\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{E}\mathrm{R}\mathrm{I}\dot{\mathrm{N}}$ GS AND DISCRIMINANT POLYNOMIALS

We say that $f$ is a polynomial of type $(a, b;d)$ where $a,$ $b$ are coprime positive integers if the
degree of $f(x, y)$ with weight$(X)=a$ and weight$(y)=b$ is $d$ . We denote it by $\deg_{P}(f)=d$ where
$P:={}^{t}(a, b)$ . We denote the set of such polynomials by $\mathcal{M}(a, b;d)$ . For a given $f\in \mathcal{M}(a, b;d)$ ,
the $P$ -principal part at infinity of $f$ is defined by the sum of the monomials in $f(x, y)$ which has
weight $d$ and we denote it by $f^{P}$ . $f^{P}(x, y)$ is by definition a weighted homogeneous $\mathrm{p}_{\mathrm{o}1}\mathrm{y}\mathrm{n}\dot{\mathrm{o}}\mathrm{m}\mathrm{i}\mathrm{a}1$

of type $(a, b;d)$ and we can factorize it as $f^{P}(x, y)=cx^{r}y^{S} \prod i=\iota 1(ya+\alpha_{i}x^{b})^{\nu}\dot{\cdot}$ where $c\in \mathrm{C}^{*}$

and $\alpha_{1},$
$\ldots,$

$\alpha_{k}$. are mutually distinct non-zero complex numbers. We say that $f(x, y)$ is wt-
convenient at infinity, if $r=s=0$ . We say that $f$ is $wt$-generic at infinity if $f$ is wt-convenient
and $\nu_{1}=\cdots=\nu_{k}$. $=1$ .

If $f$ is $\mathrm{w}\mathrm{t}$-convenient at infinity of type $(a, b;d)$ , the. Newton diagram $\Delta(f)$ has a unique
outside face and $a,$ $b|d$ and $f$ is a monic polynomial of degree $d/b$ in $y$ (respectively of degree
$d/a$ in $x$ ) up to a multiplication of a constant.

2.1. Cyclic covering branched along a line. In this section, we assume that $f(x, y)$ is a
$\mathrm{w}\mathrm{t}$-convenient polynomial of type $(a, b;abd)$ . Let $D_{\beta}’:=\{y=\beta\}$ be a fixed horizontal line. We
consider a cyclic covering

$\varphi_{m}$ : $\mathrm{C}^{2}arrow \mathrm{C}^{2}$ , $(x, y)\vdasharrow(x, (y-\beta)m+\beta)$

which is branched along $D_{\beta}$ and put $f_{m}(x, y):=f(\varphi_{m}(x, y))$ . We are mainly interested in
constructing plane curves $C_{m}=\{f_{m}(x, y)=0\}$ , which has as many cusps as possible, starting
from a given curve $C$ . For this purpose, we often take a tangent line of a flex point as the
branching line $D_{\beta}$ . We use the following lemma which can be proved by the exact same
argument as in the proof of Theorem (3.4) of [28].
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Lemma 2.1. Let $f(x, y)$ be a $wt$-convenient polynomial of type $(a, b;abd)$ . Let

$\iota_{1}$ : $\mathrm{C}^{2}-c^{a}(f)\cup D_{\beta}arrow \mathrm{C}^{2}-c^{a}(f)$ , $\iota_{2}$ : $\mathrm{C}^{2}-c^{a}(f)\cup D_{\beta}arrow \mathrm{C}^{2}-D_{\beta}$

be the inclusion maps. Assume that the canonical homomorphism

$\iota_{1\#}\cross\iota_{2\#}$ : $\pi_{1}(\mathrm{C}^{2}-c^{a}(f)\cup D_{\beta})arrow q\ulcorner_{1}(\mathrm{C}^{2}-^{c}a(f))\cross\pi_{1}(\mathrm{C}^{2}-D_{\beta})$

is an isomorphism. Then $\varphi_{m\#}$ : $\pi_{1}(\mathrm{C}^{2}-C^{a}(f_{m}))arrow\pi_{1}(\mathrm{C}^{2}-C^{a}(f))$ is an isomorphism.
Moreover
(1) if $\pi_{1}(\mathrm{C}^{2}-c^{a}(f)\cup D_{\beta})$ is abelian, $\pi_{1}(\mathrm{C}^{2}-C^{a}(f_{m}))$ and $\pi_{1}(\mathrm{P}^{2}-C(f_{m}))$ are also abelian.
(2) If $\deg_{y}f(x, y)=\deg f(X, y),$ $\pi_{1}(\mathrm{P}^{2}-C(f_{m}))$ is a central extension of $\pi_{1}(\mathrm{P}^{2}-C(f))$ by the
cyclic group $\mathrm{Z}/m\mathrm{Z}$ . Namely we have a central extension:

$1arrow \mathrm{Z}/m\mathrm{Z}arrow\pi_{1}(\mathrm{P}^{2}-c(f_{m}))arrow\pi_{1}(\mathrm{P}^{2}-C(f))arrow 1$

(3) If $m\cross\deg_{y}f(x, y)\leq\deg f(X, y),$ $\pi_{1}(\mathrm{P}^{2}-^{c(}f_{m}))\cong\pi_{1}(\mathrm{p}^{2}-C(f))$ .

3. FLEX CURVES AND THEIR LIMITS

3.1. Flex and flex curves. Let $f(x, y)$ be a reduced polynomial. Recall that a smooth point
$P\in C^{a}(f)$ is called a fiex of order $\ell,$ $\ell\geq 1$ if the intersection multiplicity of $C^{a}(f)$ and the
tangent line $T_{P}$ at $P$ is $l+2.$ There $\mathrm{e}\mathrm{x}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{S}$ only finite number of flex points on $C^{a}(f)$ if $C^{a}(f)$

does not have any line component.
Take a smooth point $P=(\alpha, \beta)\in C^{a}(f)$ with $\partial f/\partial y(\alpha, \beta)\neq 0$ . A smooth curve

$D:=\{(x, y)\in \mathrm{C}^{2};y-(a_{0}+a_{1}x+\cdots+a_{\ell}x^{l})=0\}$

is called a flex curve of degree $\ell$ (of the first kind) for $C^{a}(f)$ at $P$ if the intersection multiplicity
of $C(f)$ and $D$ at $P$ , denoted by $I(C(f), D;P)$ , is strictly greater than $\ell$ . Consider the analytic
function $y=\varphi(x)$ which is the solution of $f(x, y)=0$ at $P$ . Then the flex curve of degree $\ell$ of
the first kind is unique and it is defined by the polynomial

$y= \beta+\varphi’(\alpha)(x-\alpha)+\cdots+\frac{\varphi^{(\ell)}}{l!}(\alpha)(x-\alpha)\ell$.

and we denote this affine curve by $\mathcal{F}^{(l)}(f;P)$ . Note that the tangent line $y-\beta=\varphi’(\alpha)(x-\alpha)$

is the flex curve of degree 1 and $P$ is a flex of order 1 if and only if $\varphi’’(\alpha)=0$ . More generally
$P$ is a flex point of order $\ell$ if and only if $\varphi^{(j)}(\alpha)=0$ for $j=2,$ $\ldots,$

$\ell+1$ .

3.2. Limit of flex curves. Let $P(t),$ $|t|\leq\epsilon$ be a parametrization of a branch $\gamma$ at infinity
such that $P(\mathrm{O})\in L_{\infty}\cap C(f)$ and $P(t)=(u(t), v(t))\in C^{a}(f)$ for $t\neq 0$ and $|u(t)|arrow\infty$ .
Let $Q={}^{t}(a, b)$ be the associated covector to $\gamma$ and $\lambda=b/a\in \mathrm{Q}$ , the ratio at infinity. As
$\mathrm{g}\mathrm{c}\mathrm{d}(a, b)=1$ and $a>0$ , we observe that $\lambda$ is an integer if and only if $a=1$ . Changing the
parametrization if necessary, we can assume that

(3.1) $u(t)=t^{-am}$ , $v(t)=t^{-bm}c(t)$ , $\xi:=c(\mathrm{O})\neq 0,$ $\mathrm{g}\mathrm{c}\mathrm{d}(a, b)=1,$ $a,$ $m>0$ .

We are interested in the behavior of the flex curve $\mathcal{F}^{(t)}(f;P(t))$ when $P(t)$ goes to infinity along
a branch $\gamma$ at infinity. The following gives a description of this limit in the case $\lambda\neq 0,.1,$

$\ldots$ , $\ell$ .

Theorem 3.2. 1. Assume that $Q$ is positive and $\lambda\neq 0,1,$ $\ldots,\ell$ . Then the limit of flex curves
$\lim_{tarrow 0}\mathcal{F}^{(l)}(f;P(t))$ in the space of projective curves of degree $\ell$ is given by $Z^{l}=0(=\ell L\infty)$ .
2. Assume that $Q$ is mixed and $b<0$ . Then $\lim_{tarrow 0}\tau^{(}l$ ) $(f;P(t))$ is equal to $\mathrm{Y}Z^{t-1}=0$ .

132



Here $X,$ $\mathrm{Y},$ $Z$ are homogeneous coordinates of $\mathrm{P}^{2}$ and $Z=0$ is the line at infinity $L_{\infty}$ .

Reduction Operation. Put $\xi:=\lim_{tarrow 0}y(t)/x(t)^{b}$ . Take the normalized automorphism of
degree $b$ :

$\varphi_{1}:\mathrm{C}^{2}arrow \mathrm{C}^{2}$ , $(x, y)\mapsto(x, y-\xi X^{b})$

and take $x_{1}=x$ , $y_{1}=y-\xi x^{b}$ as the coordinates of the target space. With respect to these
coordinates, the parametrization of $\gamma$ is given by

$x_{1}=u(t)$ , and $y_{1}=v_{1}(t)$ , where $v_{1}(t):=v(t)-\xi u(t)b$

Note that $\varphi_{1}\in G_{II}(i)’$ . By the choice of coordinates, we have
(3.3) $\mathrm{o}\mathrm{r}\mathrm{d}_{t=}0X1(t)=\mathrm{o}\mathrm{r}\mathrm{d}_{t0}=X(t)$ , $\mathrm{o}\mathrm{r}\mathrm{d}_{t=0^{v}}1(t)>\mathrm{o}\mathrm{r}\mathrm{d}_{t=0}v(t)$

We call this operation the reduction operation for $P(t)$ . The coordinates $(x_{1}, y_{1})$ are called
the primitive limit tangential coordinates and $\varphi_{1}$ is called the primitive limit tangential au-
tomorphism. Let $Q_{1}={}^{t}(a_{1}, b_{1})$ be the associated covector and let $\lambda_{1}$ be the ratio at in-
finity with respect to the coordinates $(x_{1}, y_{1})$ . Note that $\lambda_{1}$ (and thus $Q_{1}$ ) is characterized
by the equality $\lambda_{1}=\lim_{tarrow 0}\log|y_{1}(t)|/\log|x_{1}(t)|$ . By (3.3), we have that $\lambda_{1}<\lambda$ . If $\lambda_{1}$ is
still positive integer (so $a_{1}=1$ ) and $P(t)$ is still not reduced with respect to the coordinates
$(x_{1}, y_{1})$ , we put $\xi_{1}:=\lim_{tarrow 0y_{1}}(t)/x_{1}(t)^{\lambda_{1}}$ and we do another reduction operation, putting
$x_{2}=x_{1},$ $y_{2}:=y_{1}-\xi 1x_{1}x_{1}$ . Note that reduction operations stops at a finite step. In fact, each
operation strictly decrease the ratio at infinity. Assume that the reduction operation stops
at $\beta$-th step and let $(x_{\beta}, y_{\beta})$ be the last coordinates and let $Q_{\beta}={}^{t}(a_{\beta}, b_{\beta})$ be the associated
covector with respect to this coordinates. By the assumption, either (a) $Q_{\beta}={}^{t}(a_{\beta}, b_{\beta})$ is a
positive covector with $a_{\beta}>1$ , or (b) $Q_{\beta}$ is mixed.

Definition 3.4. We say that $P(t)$ is of a positive type or of a mixed type depending on whether
$Q_{\beta}$ is positive or mixed respectively. In any case, we can write $x_{\beta}=x$ , $y_{\beta}=y+ \sum_{i=0}^{b}Ci^{X}i$

for $c_{0},$
$\ldots,$

$c_{b}\in$ C. Define $\psi(x, y)=(x, y+\sum_{i=0}^{b}CiX^{i})$ . Then $\psi\in G_{II}(b)’\subset G_{II}(\ell)’$ . We call
$\psi$ the limit tangential automorphism of the branch $P(t)$ . Clearly $\psi$ is the composition of the
primitive limit tangential automorphisms.

Theorem 3.5. Let $P(t)$ be a branch $\gamma$ at infinity and let $\psi(x, y)=(x, y+\sum_{i}\ell=0C_{i}X)i$ be the limit
tangential automorphism of $P(t)$ . If the type of $P(t)$ is positive, $\lim_{tarrow 0}\mathcal{F}^{(l)}(f;P(t))$ is given by
$lL_{\infty}$ . If the type of $P(t)$ is mixed, $\lim_{tarrow 0}\mathcal{F}^{(\ell)}(f;P(t))$ is given by $\mathrm{Y}Z^{\ell-1}+\sum_{i=0^{C_{i}X^{i}Z^{t})}}^{l}-i=0$ .
Thus $\lim_{tarrow 0}\mathcal{F}(l)(f;P(t))\cap \mathrm{C}^{2}=\{y+\sum_{i=0}^{b}Ci^{X}i=0\}$ .

In the case that $P(t)$ is of a positive type, we simply say that the flex curves $\mathcal{F}^{(l)}(f;P(t))$

disappear at infinity, as $\lim_{tarrow 0}\mathcal{F}^{(\ell)}(f;P(t))\cap \mathrm{C}^{2}=\emptyset$ .

4. FLEX COVERING

4.1. Flex covering. In this section, we introduce the notion of flex coverings.

Proposition 4.1. Assume that $f$ is an irreducible polynomial and let $P\in C^{a}(f)$ be a smooth
point with a generic flex curves of degree $\ell\geq 2$ and $\mathcal{F}^{(l)}(f;P)\neq C^{a}(f)$ . Then the topology of
the pair $(\mathrm{P}^{2}, C(f)\cup \mathcal{F}^{(l)}(f;P)\cup L_{\infty})$ does not depend on a generic $P$ .
Definition 4.2. Let $P=(\alpha, \beta)$ be a smooth point of $C^{a}(f)$ and let $h(x, y):=y-(a_{0}+a_{1}x+$
. $.+a_{\ell^{X^{\ell})}}$ be the defining polynomial of $\mathcal{F}^{(t)}(f;P)$ . We consider the automorphism $\psi\in G_{II}(\ell)’$

and the admissible change of coordinates $(x_{1}, y_{1})$ defined by
$\psi(x, y)=(x_{1}, y_{1})$ , $x_{1}=x$ , $y_{1}=y-(a_{0}+a_{1}x+\cdots+a_{l^{X^{\ell})}}$
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As $f^{\psi}(x_{1,y_{1})}=f(x_{1}, y_{1}+(a_{0}+a_{1}x_{1}+\cdots+a_{l}x_{1}^{\ell})),$ $f^{\psi}(\alpha, 0)=f(\alpha, \beta)=0$ and $(\alpha, 0)$ is a flex
point of order $\geq\ell+1$ of $C^{a}(f^{\psi})$ with the tangent line $y_{1}=0$ by Proposition ?? and $h^{\psi}=y_{1}$ .

Now we take the cyclic covering transform of $C^{a}(f^{\psi})$ of degree $\ell$ branched along $y=0$ and
we define

$f(x, y)\sim:=f^{\psi}(x, y)\ell=f(x, y^{\ell}+(a_{0}+a_{1}x+\cdot\cdot i+a_{l}x)\ell)$

and put $C^{(\ell)}(f;P)’:=C^{a}(f)\sim$ . We call $C^{(\ell}$) $(f;P)$ the flex covering transform of degree $\ell$ of $C^{a}(f)$

at $P$ . Put $\varphi_{\ell}(x, y)=(x, y^{\ell})$ and $\varphi_{\ell}’:=\psi^{-1}\circ\varphi\ell$ . Then $\varphi_{t}’$ : $(\mathrm{C}^{2}, C^{(\ell})(f;P))arrow(\mathrm{C}^{2}, C^{a}(f))$ can
be considered as a cyclic covering branched along $\mathcal{F}^{(l)}(f;P)$ . We call $C^{(\ell)}(f;P)$ the generic flex
covering transform of degree $l$ at $P$ , if $F^{(\ell)}(f;P)$ is a generic flex curve of degree $\ell$ .

$\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{u}\cdot \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}S\ell={}^{t}(1, \ell)$. The following is immediate from the definition.

Proposition 4.3. Assume that $f$ is a polynomial of type $(1, l;d)$ , $l\geq 2$ , and $C^{(t)}(f;P)$

is the generic flex covering $tranS\underline{f}orm$ of degree $\ell$ at P. We assume also that $d>\ell$ and
thus $\mathcal{F}^{(\ell)}(f;P)\neq C^{a}(f)$ . Then $f(x, y)$ is a polynomial of type $($ 1, 1; $d)$ . If $f^{S_{\ell}}$ is given by
$cx^{rs}y \prod_{i=1}\iota(y+\alpha_{i^{X^{\ell})^{\nu}}}\cdot$ , we have $f^{S_{1}}(x, y) \sim=cx^{r}(y^{t}+a_{\ell}X^{\ell})^{\epsilon}\prod i=1k(y^{\ell}+(\alpha_{i}+a_{\ell})_{X^{t}})\nu:$ .

4.2. Flex curves and limit flex curves of polynomials of type $(a, b;d)$ . In this section we
assume that $f(x, y)$ is a $\mathrm{w}\mathrm{t}$-convenient irreducible polynomial of type $(a, b;d)$ and we consider
flex curves of degree $\ell$ with $l\leq[b/a]$ . First we write $f$ as

(4.4) $f(x, y)=c \prod_{j=1}^{k}(\dot{y}-a\xi jXb)\nu_{j}+$ ( $\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$ terms), $c\neq 0$

Let $P(t),$ $|t|\leq\epsilon$ , be the parametrization of a branch at infinity. If $a>1,$ $b/a\not\in \mathrm{Z}$ and by
Theorem 3.2, $\mathcal{F}^{(l)}(f;P)$ disappears. Assume that $a=1$ and $\ell=b$ . The following describes the
limit of flex curves in the simplest case.
Proposition 4.5. Assume that $a=1$ and suppose that $P(t)$ corresponds to the factor $y-\xi_{p^{X^{l}}}$

with $\nu_{p}=1$ . Then $\lim_{t0}arrow F^{(l)}(f;P(t))$ is a (unique) smooth curve $C$ defined by $y- \sum_{i0}^{t}=a_{i}x^{i}=0$

where $a_{0},$ $\ldots,$
$a\ell$ are characterized by $a_{l}=\xi_{p}$ and $\deg_{x}f(X, \sum^{l}i=0aix^{i})<d-\ell$ .

It turns out that flex covering transforms often give interesting $\mathrm{n}\dot{\mathrm{e}}\mathrm{w}$ curves starting from a
simpler curve $C^{a}(f)$ . In [26], we have constructed Zariski’s three cuspidal quartic and a non-
conical six cuspidal sextics, using flex covering. The following criterion is useful to construct a
curve with an abelian fundamental group.

Theorem 4.6. Assume that $f$ is an irreducible polynomial and $\pi_{1}(\mathrm{C}^{2}-C^{a}(f))\cong \mathrm{z}$ . Assume
further that for a smooth point $P=(\alpha, \beta)$ of $C^{a}(f)$ with $\partial f/\partial y(\alpha, \beta)\neq 0\pi_{1}(\mathrm{C}^{2}-C^{a}(f)\cup$

$F^{(\ell)}(f;P))$ is abelian. Then the fundamental groups $\pi_{1}(\mathrm{C}^{2}-c(^{\ell})(f;P))$ and $\pi_{1}(\mathrm{P}^{2}-C(t)(f;P))$

are abelian.

Corollary 4.7. Assume that $f(x, y)$ is a convenient irreducible polynomial of type $(a, b;abd)$

and $\pi_{1}(\mathrm{C}^{2}-C^{a}(f))\cong \mathrm{Z}$ and $\deg_{S_{\ell}}f>l+1$ . Assume also that $C^{a}(f)$ has a disappearing
generic flex curve of degree $\ell$ . Then $\pi_{1}(\mathrm{C}^{2}-c(^{\ell})(f;P))$ is abelian for any generic $P$ .

5. CONSTRUCTION OF ZARISKI’S TRIPLE

5.1. Zariski’s non-conical six cuspidal sextic. In our previous paper [28], we have con-
structed a Zariski pair of projective curves $\{C_{1}, C_{2}\}$ of degree 12 with 27 $(2,3)$ -cusps such that
$\pi_{1}(\mathrm{P}^{2}-c_{1})$ is a finite non-abelian (meta-cyclic) group of order 36 and $\pi_{1}(\mathrm{P}^{2}-C_{2})$ is isomorphic
to $G(2,3;4)$ which is a $\mathrm{Z}_{2}$-extension of the free product $\mathrm{Z}_{2}*\mathrm{Z}_{3}$ .
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FIGURE 1. Graph of $B_{1}$

The purpose of this section is to construct another projective curve $C_{3}$ of degree 12 with 27
cusps such that $\pi_{1}(\mathrm{P}^{2}-C_{3})$ is abelian. The triple $\{C_{1}, C_{2}, c_{3}\}$ gives the first example of a
triple of projective curves whose $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}.1\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ are topologically different. Therefore the moduli
space of curves of degree 12 with 27 cusps has at least 3 irreducible components.

We start with the following family of affine curves $B_{1}(t)$ of type (1,2;6) which is defined by
$B_{1}(t):=\{(x, y)\in \mathrm{C}^{2}; f_{t}(X, y)=0\},$ $t\in$ R. In [26], we have used this family to construct a
non-conical six cuspidal sextic where:

(5.1) $f_{t}(x, y)$ $:=x^{2}(x-1)^{2}(X2+2x+a_{00})+x(x-1)(a_{1}2X^{2}+a_{11}x+a_{10})(y-1)$

$+(a_{22}x^{2}+a_{21}x+a_{20})(y-1)^{2}+a_{30}(y-1)^{3}$

where $h=1-3t+3t^{2}$ and

$\{$

$a00=-(3t-2)^{2}/h$ , $a_{12}=(-7+24t-27t^{2}+9t^{3})/h$ , $a_{11}=3(1-2t-t2+3t^{3})/h$ ,
$a_{10}=4-6t$ , $a_{22}=3t^{2}-9t+5$ , $a_{21}=-4+6t$ , $a_{20}=-h$ , $a_{30}=(t-1)^{3}$

Note that $B_{1}(t)$ has two cusps at $(1,1)$ , $(0,1)$ and two flexes of order 1 at $(\pm\sqrt{t}, 0)$ with the same
tangent line $y=0$ . The pull-back by the flex double covering $\varphi$ : $\mathrm{C}^{2}arrow \mathrm{C}^{2},$ $\varphi(x, y)=(x, y^{2})$

gives a family of six cuspidal sextics $B_{2}(t)$ which is defined by the polynomial $\hat{f}_{t}(X, y)$ $:=$

$f_{t}(x, y^{2})$ . We will study the fiber $B_{1}(2/3)$ and $B_{2}(2/3)$ in detail, as they are of special interest.
They are defined by the polynomials:

(5.2) $f_{2/3}(x, y)=x(2x-1)^{2}((X+1)^{2}-y)+(_{X^{2}}-1)(y-1)^{2}/3-(y-1)^{3}/27$

(5.3) $\hat{f}_{2/3}(x, y)=x^{2}(x-1)2((X+1)^{2}-y^{2})+(x^{2}-1)(y^{2}-1)^{2}/3-(y^{2}-1)3/27$

This family of curves enjoys the following properties.

(a) The polynomials $f_{t}$ and $\hat{f}_{t}$ are generic at infinity for $t\neq 2/3$ but $f_{2/3}$ and $\hat{f}_{2/3}$ are degenerated
and their principal parts at infinity are given by $(y-3x^{2})3/27$ and $(y^{2}-3X^{2})3/27$ respectively.
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However the curve $B_{2}(2/3)$ has no singularity at infinity but it has two flex points at infinity
$[1; \pm\sqrt{3};0]$ with their common tangent line $L_{\infty}:=\{Z=0\}$ .

(b) For each $t,$ $B_{1}(t)$ has two cusps at $S_{1}:=(1,1)$ and $S_{2}:=(0,1)$ . The tangent cone at $S_{1}$ is
constant and it is defined by $x^{2}=0$ . The tangent cone at $S_{2}$ is not constant. For $B_{1}(2/3)$ , it
is given by $y^{2}=0$ .

(c) The discriminant $\Delta_{y}(f_{2/3})(x)$ is given by

(5.4) $\Delta_{y}(f)(x)=x^{3}(-8+9x)(2x+1)^{2}(x-1)4$

and $\deg_{\dot{x}}(\Delta(yf2/3))=10$ and $\deg_{x}(\Delta_{y}(f_{t}))=12$ for $t\neq 2/3$ . (Two roots of $\triangle_{y}(f_{t})(x)=0$

disappear at infinity when $tarrow 2/3.$) $x=0$ and $x=1$ are roots of $\Delta_{y}(f_{t})(x)=0$ of multiplicity
3 and 4 respectively and

$(\star)$ : other roots of $\Delta_{y}(f_{t})(x)=0$ are simple for a generic $t$ .

For the last assertion $(\star)$ , by the algebraicity of the condition, it is enough to give one generic
$t$ such that this is the case. For example, $\triangle_{y}(f_{3/4})(X)$ is given by

$-x^{3}(5504X4704x-2204\mathrm{s}_{-1}48X^{3}+81816x-5712X-401321)(x-1)^{4}/87808$

(d) The discriminant of $\hat{f}$ is given by ?? and the equality $f_{2/3}(x, 0)=(3x^{2}-2)^{3}/27$, as

(5.5) $\Delta_{y}(\hat{f}_{2/3})(x)=cx^{6}(-8+9x)^{2}(2X+1)^{4}(x-1)^{8}(3_{X^{2}}-2)^{3}$

(e) $(-1/2, -5/4)$ is a flex of order 1 of $B_{1}(2/3)$ whose tangent line is the vertical line $x=-1/2$ .
Thus $C^{a}(\hat{f}_{2/3})$ has two flexes at $(-1/2, \pm\sqrt{5}i/2)$ with the common tangent line $x=-1/2$ .

We have seen in section 3 that a smooth point $P\in C^{a}(f)$ is a flex point of order 1 if and
only if $d^{2}y/dx^{2}$ vanishes at $P$ . As $dy/dx=- \frac{\partial f}{\theta x}/\frac{\partial f}{\partial y}$ , this is equivalent to $\mathcal{F}(f)(P)=0$ where

$\mathcal{F}(f):=\frac{\partial^{2}f}{\partial x^{2}}(\frac{\partial f}{\partial y})^{2}-2\frac{\partial^{2}f}{\partial x\partial y}\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}+\frac{\partial^{2}f}{\partial y^{2}}(\frac{\partial f}{\partial x}$

.
$)^{2}$

Using the algebraicity of this condition and the information from the real graph of $B_{1}(t)$ and
$B_{2}(t)$ for $|t-2/3|\leq\epsilon$ with $\epsilon$ sufficiently small, we can show that

(f) there exists a family offlexes $(\alpha(t), \beta(t))$ of $B_{1}(t)for|t-2/3|\leq\epsilon$ ($\epsilon$ : sufficiently small) such
that $(\alpha(2/3), \beta(2/3))=(-1/2, -5/4)$ . Similarly there exists two families offlexes $(\gamma(t), \pm\delta(t)i)$

of $B_{2}(t)$ such that $(\gamma(2/3), \delta(2/3)i)=(-1/2, \sqrt{5}i/2)$ .

For example, $F(f_{2/3})(0, -8)>0$ and $\mathcal{F}(f_{2/3})(-3/4, b)<0$ where $b$ is the real solution of
$f_{2/3}(-3/4, b)=0$ . For the existence of flexes for $B_{2}(t)$ , we consider the graph of the real curve
$C^{a}(f’)$ with $f’(x, y, t):=f(x, iy, t)$ . Then $(\gamma(t), \pm\delta(t))$ are real flexes of $C^{a}(f’)$ . For later
purpose, we put $A_{\pm}(t)=(\gamma(t), \pm\delta(t)i)$ . Note that $\gamma(t)\neq\alpha(t)$ for $t\neq 2/3$ . $\alpha(t),$ $\beta(t),$ $\gamma(t)$ and
$\delta(t)$ are real numbers and we may assume $\delta(t)>0$ .

(g) The tangent lines at $A_{+}(t)$ and $A_{-}(t)$ are not vertical for $t\neq 2/3$ .

Note that the inverse image of a flex point of $B_{1}(t)$ is not a flex of $B_{2}(t)$ if the tangent line of
a flex is not vertical. Here “vertical” implies $\partial f/\partial y$ vanishes. In fact, assume that $\gamma(t)=\alpha(t)$

and the tangent line at $(\alpha(t), \beta(t))$ is vertical. This implies that $\triangle_{y}(f_{t}, y)(x)$ has the factor
$(x-\gamma(t))^{2}$ by Example ??, 2 of Section 2. However this is impossible as we have seen in (c).
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5.2. Recipe of the construction of a curve $C_{3}$ . The generic $(2,2)$ -fold cyclic covering
$C_{2,2}(B_{2}(t))$ of $B_{2}(t)$ gives a curve of degree 12 with 24 cusps with $\pi_{1}(\mathrm{P}^{2}-C_{2,2}(B_{2}(t)))\cong$

$\mathrm{Z}_{12}$ . See [28]. It is the purpose of this section to put three more cusps without breaking the
commutativity of the fundamental group. We first take the double covering along the tangent
line at the flex $A_{-}(t)$ and we denote the pull-back of $B_{2}(t)$ by $B_{3}(t)$ . We have seen that the
tangent lines at $A_{\pm}(t)$ degenerate at $t=2/3$ into the same line $x=-1/2$ . Thus $B_{3}(t)$ has
13 cusps for $t\neq 2/3$ and 14 cusps for $t=2/3$ . Let $g_{t}(x, y)$ be the defining polynomial of
$B_{3}(t)$ . Though $\pi_{1}(\mathrm{C}^{2}-B_{3}(2/3))$ may be not abelian, we can show, using the geometry of this
degeneration, that $\pi_{1}(\mathrm{C}^{2}-B3(t))$ is abelian for any $t$ , provided $|t-2/3|$ is sufficiently small
and $t\neq 2/3$ (thus abelian for any generic $t$ ). We will see that flex curves of $B_{3}(2/3)$ disappear
at infinity. Finally we take a generic flex double covering $\mathcal{F}^{(2)}(gt;P)$ which is a curve of degree
12 with 27 cusps and we put $C_{3}:=\mathcal{F}^{(2)}(g_{t;}P)$ . We will refer the detail of the proof to [30].

6. $\mathrm{A}_{\mathrm{L}\mathrm{E}\mathrm{x}}\mathrm{A}\mathrm{N}\mathrm{D}\mathrm{E}\mathrm{R}$ POLYNOMIAL

6.1. Alexander polynomial through Fox calculus. We quickly recall the definition of
Alexander polynomial of a finitely representable group $G$ with a surjective homomorphism
$\varphi$ : $Garrow \mathrm{Z}$ . Let $F_{n}$ be a free group with $n$-generators $X_{1},$

$\ldots$ , $X_{n}$ and let $G$ be a finitely
represented group with $n$-generators $x_{1},$ $\ldots$ , $x_{n}$ and assume that the kernel of the surjective
map $\psi$ : $F_{n}arrow G$ , defined by $\psi(x_{i})=x_{i}$ , is normally generated by $R_{1},$

$\ldots,$
$R_{s}\in F_{n}$ . Let $C[F_{n}]$ ,

$\mathrm{C}[G]$ and $\mathrm{C}[\mathrm{Z}]$ be the respective group rings of $F_{n},$ $G$ and $\mathrm{Z}$ with $\mathrm{C}$ coefficients. We can
identify $\mathrm{C}[\mathrm{Z}]$ with the Laurent polynomial ring $\mathrm{C}[t, t^{-1}]$ , under a fixed generator $t\in \mathrm{Z}$ . There
are canonical homomorphisms $\psi_{*}:$ $C[F]narrow \mathrm{C}[G]$ and $\varphi_{*}:$ $\mathrm{C}[c]arrow \mathrm{C}[t,t^{-1}]$ which are induced
by $\psi$ and $\varphi$ . The j-th Fox derivative $\partial/\partial X_{j}$ is a linear map $\mathrm{C}[F_{n}]arrow \mathrm{C}[F_{n}]$ , characterized by
the following properties:

$\frac{\partial X_{i}}{\partial X_{j}}=\delta_{ij}$ , $\frac{\partial uv}{\partial X_{j}}=\frac{\partial u}{\partial X_{j}}+u\frac{\partial v}{\partial X_{j}}$ , $u,$ $v\in \mathrm{C}[F_{n}]$

To $(G, \psi, \varphi)$ , we associate $s\cross n$-matrix $M$ of $\mathrm{C}[t, t^{-1}]$ coefficients whose $(i, j)$ -entry is given by
$a_{ij}:= \varphi_{*}(\psi_{*}(\frac{\partial R}{\partial X_{j}}))$ . The Alexander polynomial of $G$ with respect to $\varphi$ : $Garrow \mathrm{Z}$ is defined by
the greatest common divisor of $(n-1)\cross(n-1)$ -minors of $M$ . This does not depend on the
choice of the representation $\psi$ and the choice of generators $R_{1},$

$\ldots,$
$R_{\epsilon}$ of the kernel. See [8] and

[21] for further detail.
Let $C$ be an irreducible affine curve of degree $d$ . Then we know that $H_{1}(\mathrm{C}^{2}-c;\mathrm{z})\cong \mathrm{Z}$ and

the Hurewicz homomorphism together with this identification gives a surjective homomorphism
$\xi$ : $\pi_{1}(\mathrm{C}^{2}-C)arrow H_{1}(\mathrm{c}^{2}-c;\mathrm{z})\cong \mathrm{z}$

We fix a generator $t\in H_{1}(\mathrm{C}^{2}-\mathit{0};\mathrm{z})$ so that any lasso $\tau\in\pi_{1}(\mathrm{C}^{2}-C)$ for $C$ corresponds to
$t$ through the Hurewicz homomorphism. The Alexander polynomial of $C$ is defined by that of
$\pi_{1}(\mathrm{C}^{2}-C)$ with respect to the Hurewicz homomorphism $\xi$ and we denote it by $A_{C}(t)$ .

Example 6.1. 1. Let $C$ be an irreducible affine curve with an abelian fundamental group.
Then we can use the trivial representation $\psi=\mathrm{i}\mathrm{d}:F_{1}arrow \mathrm{Z}$ . Thus $A_{C}(t)=\dot{1}$ .

2. Let $Z_{6}$ be a six cuspidal conical sextic with respect to a generic line at infinity (see [Z1]).
Then the fundamental group $\pi_{1}(\mathrm{C}^{2}-Z_{6})$ has the representation $\langle x,y;Xyx=yxy\rangle$ (see for
example [26] $)$ . As the generators $x,$ $y$ are lassos for $Z_{6}$ , they corresponds to $t$ via Hurewicz
homomorphism. We can take $s=1,$ $R_{1}=X\mathrm{Y}X\mathrm{Y}^{-1}X-1\mathrm{Y}^{-1}$ . Then $\partial R_{1}/\partial X$ and $\partial R_{1}/\partial \mathrm{Y}$

$\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\pm(t^{2}-t+1)$ respectively. Thus $A_{Z_{6}}(t)=t^{2}-t+1$ .
3. Let $Z_{4}$ be the three cuspidal quartic with respect to a generic line at infinity. Then

$\pi_{1}(\mathrm{C}^{2}-Z_{4})$ is generated by two generators $x,$ $y$ with two relations $R_{1}=xyx(yxy)-1$ and
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$R_{2}=x^{2}y^{-2}$ . Then $\partial R_{1}/\partial X$ and $\partial R_{1}/\partial \mathrm{Y}$ give the same polynomial $t^{2}-t+1$ . $\partial R_{2}/\partial X$ and
$\partial R_{2}/\partial \mathrm{Y}$ give the linear $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\pm(t+1)$ . Thus we have $A_{Z_{4}}(t)=1$ .

The following is an immediate consequence of Lemma 2.1.
Lemma 6.2. Let $f(x, y)$ be a $wt$-convenient polynomial of type $(a, b;d)$ and let $D=\{y=0\}$
and $f_{m}(x, y):=f(x, y^{m})$ . Let $\iota_{1}$ : $\mathrm{C}^{2}-c^{a}(f)\cup Darrow \mathrm{C}^{2}-c^{a}(f)$ and $\iota_{2}$ : $\mathrm{C}^{2}-c^{a}(f)\cup Darrow$

$\mathrm{C}^{2}-D$ be the respectiv’e inclusion map and assume that the canonical homomorphism
$\iota_{1\#}\cross\iota_{2\#}$ : $\pi_{1}(\mathrm{C}^{2}-ca(f)\cup D)arrow\pi_{1}(\mathrm{C}^{2}-^{c}a(f))\mathrm{x}\pi_{1}(\mathrm{C}^{2}-D)$

is isomorphism. Then the Alexander polynomial of $C^{a}(f_{m})$ is equal to that of $C^{a}(f)$ .
Applying this lemma to the generic $(3,3)$-covering transform $C_{1}:=C_{3,3}(Z_{4})$ of the Zariski’s

three cuspidal quartic $Z_{4}$ and the curve $C_{3}$ which we have constructed in the section 5, we
obtain:

Corollary 6.3. The Alexander polynomials of $C_{1}$ and $C_{3}$ coincide.

Such a pair of non-irreducible plane curves are known by [3]
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