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Abstract

For a ramified covering $f:\mathrm{Y}arrow X$ between compact complex manifolds, we
establish a formula relating the Chern numbers of $\mathrm{Y}$ and $X$ . We obtain the formula
by localizing characteristic classes via the \v{C}ech-de Rham cohomology theory. As
corollaries,we deduce generalizations of the Riemann-Hurwitz formula and a for-
mula of Hirzebruch for the signature, as well as formulas for other invariants such
as the Todd genus.

1 Introduction
Let $f:Yarrow X$ be a ramified co.vering between $n$-dimensional compact complex manifolds
with covering multiplicity $\mu$ . Let $R_{f}=\Sigma_{i}r_{i}R_{i}$ be the ramification divisor of $f$ , and
$B_{f}=\Sigma_{i}b_{i}B_{i}$ the branch locus of $f$ . We assume that the ramification divisor and the
irreducible component of the branch locus are all non-singular. Our main result is

$c_{1}^{N_{1}}\cdots C^{N}(nYn)-\mu\cdot cc^{N}(1N1\ldots xn^{n})$

$= \sum_{i}(H_{\tau}^{(N_{1}\cdots N)}n(R.1(CLR.))\wedge[R_{i}]-\frac{b_{i}(r_{i}+1)}{r_{i}}H_{T}n((N_{1}\cdots N)B\dot{.}c_{1}(LB_{*}.))-[B_{i}])$

$= \sum_{i}\sum_{\alpha=0}^{n-1}\frac{b_{i}(1-(r_{i}+1)^{\alpha}+1)}{r_{i}(r_{i}+1)^{\alpha}}P_{\alpha}(_{C_{1}}(B_{i})\cdots Cn-1(Bi))\cdot c_{1}(LB)^{\alpha}-[B_{i}]$ .

In the above, $\Sigma_{i=1}^{n}\dot{i}N_{i}=n$ and we set formally

$H_{\xi}^{(N_{1}}\ldots(N_{\mathfrak{n}})l)=l-1$ . $((_{i=1} \prod^{n}(ci(\xi)+Ci-1(\xi)\cdot l)N*\cdot)-C_{1}^{N_{1}}\cdots c_{n^{n}}(N\xi)\mathrm{I}=\sum_{\alpha\simeq 0}^{n-1}P\alpha(_{C_{11}}\cdots cn-)l\alpha$,

where $P_{\alpha}$ is the coefficient of $l^{\alpha}$ of $H(l)$ as a polynomial in $l$ .
We prove the formula for Chern numbers by applying the framework of the localization

of characteristic classes based on the \v{C}ech de-Rham cohomology theory. ([L1], [L2],
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[LS].) Our methods of proof are very elementary and computational. Classically, all
sorts of topological invariants can be calculated as the integral value of differential forms
through the de Rham theorem, which gives the representation of cohomology classes
and describe the explicit corespondence in the Poincar\’e duality. The \v{C}ech-de Rham
cohomology theorey plays the same role for relative cohomology groups as the Alexander
duality. So applying this analogy, we can localize Chern classes at the ramification set,
which gives us more specific geometric information about what is caused by degenerancy
of holomorphic maps.

2 Preliminaries

2.1 \v{C}ech-de Rham cohomology theory
First we will give a brief sketch of the \v{C}ech-de Rham cohomology theory. (see [BT], [L1],
[L2], [S].)

1 Definition.
Let $X$ be an $n$-dimensional $C^{\infty}$-manifold and $\mathcal{U}=\{U_{\alpha}\}_{\alpha\in I}$ an open covering of $X$ ,

whose index set $I$ is a countable ordered set such that $(\alpha_{0}, \ldots, \alpha_{p})\in I^{p+1}$ is totally
ordered if $U_{\alpha_{0}}\cap\ldots\cap U_{\alpha_{p}}\neq\phi$. Let us consider the de Rham Comple..X of sheaves of germs
of smooth forms on $X$

$0arrow A^{0_{arrow A^{1_{arrow Aarrow}}}}dd2dA^{3}arrow\ldots$

Now let $C^{p}(\mathcal{U}, A^{q})$ be the group of \v{C}ech cochains of degree $p$ with values in $A^{q}$ . The
commutativity of the two operators, the \v{C}ech coboundary operator $\delta$ and the exterior
derivative $d$ , gives rise to a double complex’ $\{C^{pq}=C^{p}(\mathcal{U}, A^{q});\delta, d\}$ . The associated
single complex $(A^{\cdot}(\mathcal{U}), D)$ is defined by

$A^{r}( \mathcal{U})=\bigoplus_{p+q=r}C^{p}(\mathcal{U}, A^{q})$

$D=\delta+(-1)pd$ .
We call the cohomology groups $H^{r}(A^{\cdot}(\mathcal{U}))$ of this associate single complex, the \v{C}ech-de
Rham cohomology groups of $X$ . This cohomology is canonically isomorphic to the clas-
sical de Rham cohomology $([\mathrm{B}\mathrm{T}])$ .

2 Product structure.
We also define a product structure $A^{r}(\mathcal{U})\cross A^{s}(\mathcal{U})arrow A^{r+s}(\mathcal{U})$ as

$( \sigma\cdot\tau)_{\alpha_{0}\cdots\alpha_{p}}=\nu=\sum(p0-1)^{(-}r\nu)(p-\nu)\sigma\alpha 0\cdots\alpha_{\nu}$ A $\tau_{\alpha_{\nu}\cdots\alpha_{p}}$ .

Then it induces the cup product structure for the cohomology of the \v{C}ech de-Rham
complex, which is, via the above isomo.rphism, compatible with the usuall product in de
Rham cohomology. . . .
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3 Integration.
Next we define the integration on the \v{C}ech-de Rham cohomology group which is

compatible with the usual integration on the de Rham cohomology group $([\mathrm{L}1])$ . Suppose
now that the manifold $X$ is oriented. Before making our definition, we introduce the
following concept.

Definition. Let $\mathcal{U}$ and $X$ be as above. A family $\{R_{\alpha}\}_{\alpha\in I}$ of $n$-dimensional manifolds
$R_{\alpha}$ with piecewise smooth boundary in $X$ is called a system of honey-comb cells adapted
to $\mathcal{U}$ if:
(1) $R_{\alpha}\subset U_{\alpha},$ $X= \bigcup_{\alpha}R_{\alpha}$ .
(2) Int $(R_{\alpha})\cap Int(R_{\beta})=\phi$ if $\alpha\neq\beta$ .
(3) $R_{\alpha_{0}\cdots\alpha_{p}}= \bigcap_{\nu=0^{R_{\alpha}}\nu}^{p}$ is an $(n-p)$-dimensional manifold with piecewise smooth bound-
ary for any $(\alpha_{0}\cdots\alpha_{p})\in I^{p+1}$ .
(4) If $(\alpha_{0}\cdots\alpha_{p})$ is maximal, $R_{\alpha_{0}\cdots\alpha_{p}}$ has no boundary.

We also give $R_{\alpha_{0}\cdots\alpha_{p}}$ an orientation by the following rules.
(1) Each $R_{\alpha}$ has the same orientation as $X$ .
(2) $R_{\alpha \mathrm{o}(0)\cdots\alpha_{p}()}p=sgn(\rho)\cdot R_{\alpha_{0}}\ldots\alpha_{p}$ for a permutation $\rho$ .
(3) $\partial R_{\alpha_{0}\cdots\alpha_{p}}=\Sigma_{\alpha}R_{\alpha\alpha_{p}}0\cdots\alpha$ .

Now suppose that $X$ is compact, and $\{R_{\alpha}\}_{\alpha\in I}$ a system of honey-comb cells adapted
to $\mathcal{U}$ . We define the integration on $A^{n}(\mathcal{U})$ as:

$\int_{\mathrm{x}^{:A^{n}((\mathcal{U}}}A^{\cdot}))arrow \mathrm{C}$ ,

$\int_{X}\sigma=\sum_{P^{=}0}^{n}(\alpha_{0}\cdots\alpha\sum_{\mathrm{p}\in \mathrm{p}+I1}\int_{R_{\alpha_{0p}}}\cdots\alpha\sigma_{\alpha_{0}}\ldots\alpha_{p})$ , $\sigma\in A^{n}(\mathcal{U})$ .

Then we see, from the fact that this integration is independent of the choice of the system
of honey-comb cells for $D$-cocycles and it vanishes for $D$-coboundaries, that it induces
the integration on the cohomology group

$\int_{x^{:H^{n}((\mathcal{U}}}A^{\cdot}))arrow \mathrm{C}$ ,

which is compatible with the usual integration on the de Rham cohomology.

4 Alexander-Lefschetz duality.
Finally, we describe the Alexander duality in terms of the \v{C}ech-de Rham cohomology

([L1] [L2] [S]). We suppose that $X$ is the same as above, and let $S\subset X$ be a compact
subse-t of $X$ which admits a regular neighborhood, $U_{0}=X-S$ , and $U_{1}$ a reguler neigh-
borhood of $S$ . Now we set $\mathcal{U}=\{U_{0}, U_{1}\}$ and consider the \v{C}ech-de Rham cohomology
of $X$ associated with the covering $\mathcal{U}$ . We set $A^{r}(\mathcal{U}, U_{0})=\mathrm{k}\mathrm{e}\mathrm{r}(A^{r}(\mathcal{U}).arrow A^{r}(U_{0}.))=$

$\{(\sigma_{0,1,01}\sigma\sigma)|\sigma_{0}=0\}$ so that we have the exact sequence

$0arrow A^{r}(\mathcal{U}, U_{0})arrow A^{r}(\mathcal{U})arrow A^{r}(U_{0})arrow 0$ .
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Then we conclude $H^{r}(A(\mathcal{U}, U_{0}))\cong Hr(x,x_{-}s;\mathrm{c})$ from the de Rham theorem and
the five lemma.

Let $\{R_{0}, R_{1}\}$ be a system of honey-comb celles adapted to $\mathcal{U}$ . Then we still have the
integration

$\int_{\mathrm{x}^{:A^{n}}}(u, U\mathrm{o})arrow \mathrm{C}$ ,

given $\dot{\mathrm{b}}\mathrm{y}$

$\int_{\mathrm{x}}\sigma=\int_{R_{1}}\sigma 1+\int R01\sigma_{01}$ ,

for $\sigma=(.0, \sigma_{1}, \sigma 01)\in A^{n}(\mathcal{U}, U\mathrm{o})$ . This again induces the integration on the relative coho-
mol.o$\mathrm{g}\mathrm{y}$

$\int_{\mathrm{x}^{:H^{n}((U_{0}}}A^{\cdot}\mathcal{U},))arrow \mathrm{C}$ .
$\cdot$ .

The cup product induces the pairing $A^{r}(\mathcal{U}, U\mathrm{o})\cross A^{n-r}(U_{1}.)arrow A^{n}(\mathcal{U}, U\mathrm{o})$, which fol-
lowed by the integration, gives a bilinier pairing

$A^{r}(\mathcal{U}, U_{0})\cross A^{n}-r(U_{1})arrow \mathrm{C}$ ,

which induces the Alexander duality

$H^{r}(X,x-s;^{\mathrm{c})\dot{H}}\cong k(A^{\cdot}(\mathcal{U}, U_{0}))\cong H^{n}-r(U1;\mathrm{C})^{*}\cong H_{n-k}(S;\mathrm{c})$.

5 Chern-Weil theory for \v{C}ech-de Rham cohomology.
We recall some fundamental results of the Chern-Weil theory, the differential geomet-

ric treatment of characteristic classes (see [GH]).
Let $X$ be an $n$-dimensional $C^{\infty}$-manifold and $\pi:Earrow X$ a $C^{\infty}$ -complex vector

bundle of rank $r$ over $X$ . Then the $\dot{i}$ -th Chern class $c_{i}(E)$ in $H_{DR}^{2i}(X:\mathrm{c})$ is represented
by

$c_{i}( \nabla)=(\frac{\sqrt{-1}}{2\pi})^{i}P^{i}(\ominus)$ ,

where we denote by $P^{i}$ the $\dot{i}$-th elementary symmetric polynomial, and $\ominus$ the curvature
matrix of a connection $\nabla$ on $E$ in terms of some frame for $E$ . Then there is the following
well-known result for invariant polynomials determined by connection forms $([\mathrm{B}])$ .

Suppose that $\pi:Earrow X$ is a $C^{\infty}$ -complex vector bundle of rank $r$ over $X$, and
$\nabla_{0},$

$\cdots,$ $\nabla_{p}$ , connections on E. Then there exists $P^{i}(\nabla_{0}\cdots\nabla_{p})\in A^{2(n-i})-p(X)$ such that

$dP^{i}( \nabla_{0}\cdot\cdot\phi\nabla p)=\sum^{p}(-1)j-p-1Pj=1i(\nabla 0\cdots\check{\nabla}j\ldots\nabla)p$ .

The immediate construction of the above secondary term is given as follows. Let us
consider the trivial extension $E\cross \mathrm{R}^{p}arrow X\cross \mathrm{R}^{p}$ of the vector bundle $E$ over $X\cross \mathrm{R}^{p}$ ,
and $\tilde{\pi}:X\cross \mathrm{R}^{p}arrow X$ the canonical projection. We take $\tilde{\nabla}=$ $(1-t_{1} -. .. -t_{p})\nabla_{0}+$

$t_{1}\nabla_{1}+\cdots+t_{p}\nabla_{p}$ as a connection on $E\cross \mathrm{R}^{p}$ and we set

$P^{i}(\mathrm{v}_{0p}\ldots\nabla)=\tilde{\pi}*(P^{i}(\tilde{\nabla}))$ ,
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then it has the desired property. Here ”
$\tilde{\pi}_{*}$

” means the integration along the fibers. By
applying the above result for invariant polynomials determind by connection forms, we
can express the $\dot{i}$-th Chern class $c_{i}(E)$ in $H^{2i}(A^{\cdot}(\mathcal{U}))$ as follows. ([L1], [L2], [LS].) Let
$\nabla_{\alpha}$ be a connection on $E|_{U_{\alpha}}$ over $U_{\alpha}$ ,

$H_{DR}^{2i}(X;\mathrm{R})\cong H^{2i}(A^{\cdot}(\mathcal{U}))$

$c_{i}(E)rightarrow[((_{C_{i}}(\nabla_{\alpha})_{\alpha}, ((Ci(\nabla_{\overline{\alpha}})_{\overline{\alpha}}\in I\mathrm{p}))_{p})]$ .

In particular, for the case where the covering is given by $\mathcal{U}=\{U_{0}, U_{1}\}$ , the \v{C}ech-de
Rham cocycle $(c_{i}(\nabla 0), c_{i}(\nabla_{1}),$ $c_{i}(\nabla_{0}, \nabla_{1}))$ represents the i-th Chern class of $E$ .

6 Correspondence between fundamental classes and cohomology classes of
divisors.

Let $X$ be an $n$-dimensional compact complex manifold, and $D$ a divisor on $X$ , with
local defining functions $\{f_{\alpha}\}$ over some open covering $\{U_{\alpha}\}$ of $X$ . Then, $D=\{f_{\alpha}, U_{\alpha}\}$

defines naturally a complex line bundle $L_{D}$ which has the system of transition functions
$\{g_{\alpha\beta}=f\alpha/f_{\beta}\}$ . We know that, in the Poincar\’e duality, the Chern class $c_{1}(L_{D})$ represents
the $\mathrm{d}\mathrm{u},\mathrm{a}\mathrm{l}$ of the fundamental class of the divisor $D$ ,

$H_{DR}^{2}$ $(X; \mathrm{C})\cong H_{2n-2}(X;\mathrm{c})$ ,

$c_{1}(L_{D})rightarrow[D]$ ,

$( \int_{\mathrm{x}^{C_{1}(L}}D)\wedge\varphi=\int_{D}\varphi$, $\forall_{\varphi\in Z}2n-2(X))$ .

Here, we find a more specific correspondence between the fundamental homology class
and the Chern class of $D$ in the Alexander duality, by localizing the Chern class in terms
of the \v{C}ech de Rham cohomology theory. For simplification, here we assume that the
divisor $D$ is non-singular. (Indeed the following discussion can be applied to the general
case. (Originally due to [S].)

Let $X$ be an $n$-dimensional complex manifold, $D$ a compact non-singular divisor on
$X$ , and $L_{D}arrow X$ the associated line bundle of $D$ . If $D$ is given by local defining
functions $\{f_{\alpha}\}$ , then those functions clearly give a section $f_{D}=(f_{\alpha}, U_{\alpha})$ of $L_{D}$ , whose
zero locus coincides with $D$ itself. We set $U_{0}=X-D,$ $\pi:U_{1}arrow D$ a sufficiently small
tubular neighborhood, $R_{1}$ a closed disk bundle over $D$ which is contained in $U_{1}$ , and $R_{0}$

the complement of the interior of $R_{1}$ .
We consider the covering $\mathcal{U}=\{U_{0}, U_{1}\}$ with a system of honey-comb cells $\{R_{0}, R_{1}\}$

adapted to $\mathcal{U}$ . Then as is discussed in the previous sections, the class

$c_{1}(L_{D})=(_{C}1(\nabla 0), C_{1}(\nabla_{1}),$ $C_{1}(\nabla 0, \nabla_{1}))$

in the \v{C}ech-de Rham cohomology can be localized at $D$ , by taking an $f_{D}$-trivial connec-
tion $\nabla_{f_{D}}$ as the connection $\nabla_{0}$ on $U_{0}$ so that $c_{1}(,\nabla_{f_{D}})=0$ .

Now let us consider the pairng

$A^{2}(\mathcal{U}, U\mathrm{o})\cross A2n-2(U_{1})arrow \mathrm{C}$ ,
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and compute

$\int_{X}c_{1}(LD)\cdot\tau_{1^{--}}\int_{R_{1}}c_{1}(\nabla_{1})\wedge\tau 1+\int_{R_{01}}C_{1}(\nabla_{0}, \nabla 1)\wedge \mathcal{T}1$

for $\tau_{1}\in A^{2n-2}(U_{1})$ . We note that the elements of $A^{2}(\mathcal{U}, U_{0})$ are expressed as cocycles
whose component on $U_{0}$ vanishes.

Since $\pi:U_{1}arrow D$ is a deformation retract, $U_{1}$ and $D$ have the same homotopy type.
So we have $H^{2n-2}(U_{1})\cong_{H^{2}()}n-2D$ , which implies

$\tau_{1}=\pi^{*}\theta+d\rho$ ,

for some $\theta\in A^{2n-2}(D),$ $\mathrm{a}\mathrm{n}\mathrm{d}\rho\sim\in A^{2n-3}(U_{1})$ . Using the Stokes’ theorem and $\partial R_{1}=-R_{01}$ ,
we compute

$\int_{R_{1}}C_{1}(\nabla_{1})$ A $\tau_{1}=\int_{R_{1}}c_{1}(\nabla_{1})\wedge\pi^{*}\theta+\int_{R_{1}}c_{1}(\nabla_{1})\wedge d\rho=\int_{R_{1}}c_{1}(\nabla_{1})\wedge\pi^{*}\theta-\int_{R_{01}}c_{1}(\nabla_{1})\wedge\rho$,

$\int_{R_{01}}c_{1}(\nabla 0, \nabla_{1})$ A $\tau_{1}$ $=$ $\int_{R_{01}}.C1(\nabla_{0}, \nabla_{1})$ A $\pi^{*}\theta+\int_{R_{01}}C_{1}(\nabla 0, \nabla 1)$ A $d\rho$

$=$ $\int_{R_{01}}C_{1}(\nabla 0, \nabla_{1})\wedge\pi^{*}\theta+\int_{R_{01}}c_{1}(\nabla_{1})\wedge\rho+\int_{\partial R_{01}}C_{1}(\nabla 0, \nabla 1)\wedge\rho$ .

Hence we have

$\int_{R_{1}}C_{1}(\nabla_{1})$ A $\tau_{1}+\int_{R_{01}}C_{1}(\nabla 0, \nabla_{1})$ A $\tau_{1}=\int_{R_{1}}C_{1}(\nabla_{1})$ A $\pi^{*}\theta+\int_{R_{01}}c1(\nabla 0, \nabla 1)$ A $\pi^{*}\theta$ .

Let $\nabla_{N_{D}}$ be a connection on the normal bundle $N_{D}$ of $D$ . Since $L_{D}|_{D}\cong N_{D}$ , and also
$L_{D}|_{U_{1}}\cong\pi^{*}N_{D}$ , we can take $\pi^{*}\nabla_{N_{D}}$ as the connection $\nabla_{1}$ on $L_{D}|_{U_{1}}$ so that we have

$\int_{R_{1}}C_{1}(\nabla_{1})$ A $\pi^{*}\theta=\int_{R_{1}}c_{1}(\pi^{*}\nabla_{N})D$ A $\pi^{*}\theta=\int_{R_{1}}\pi^{*}$ ( $c_{1}(\nabla_{N}D)$ A $\theta$ ) $= \int_{D}c_{1}(\nabla_{N_{D}})$ A $\theta=0$ ,

because the last term is the integration of a $2n$-form on a $(2n-2)$-dimensional subman-
ifold.

Next, we compute the boundary integral $\int_{R_{01}}c_{1}(\nabla 0, \nabla 1)$ A $\pi^{*}\theta$ . Since the question
is purely local, for any fixed point $p\in D$ , and $V_{p}\subset D$ a neighborhood of $p$ , we set
$U_{p}=\pi^{-1}(V_{p})$ , and take a local coordinate system $(U_{p}, z)$ around $p$ sufficiently small so
that we may assume that $D=\{z_{1}=0\}$ on $U_{p},$ $U_{p}\subset U_{1}$ , and $N_{D}|_{V_{\mathrm{p}}}$ has a non-vanishing
section $s_{N}$ . Then $\pi^{*}s_{N}$ gives a section on $U$ for $L_{D}$ . If we give a trivialization of $L_{D}$ by
$\pi^{*}s_{N}$ , then on $U_{p}-D$

$f_{D}=Z_{1}=z1^{\cdot}\pi^{*}SN$ ,

and therefore the connection form $\theta_{f_{D}}$ of $\nabla_{f_{D}}$ with respect to the frame $\pi^{*}s_{N}$ has the form
$df_{D}/f_{D}=dz_{1}/z_{1}$ of the Cauchy kernel on $U$ . To compute the secondary term $c_{1}(\nabla 0, \nabla_{1})$ ,
let $\tilde{\theta}=(1-t)\theta f_{D}+t\theta 1$

12



$c_{1}(\nabla 0, \nabla 1)=\tilde{\pi}*(d\tilde{\theta}-\tilde{\theta}\wedge\tilde{\theta})=\theta f-\theta 1$ .

Now by the Cauchy integral formula, we have

$\int_{R_{01}\cap U_{\mathrm{p}}}c1(\nabla 0, \nabla 1)$ A $\pi^{*}\theta=\int_{D\cap U_{p}}\theta=\int_{D\cap U}\tau 1$ ,

which implies
$\int_{R_{01}}c_{1}(\nabla 0, \nabla 1)$ A $\pi^{*}\theta=\int_{D}\theta=\int_{D}\tau_{1}$ .

To organize the results of the above calculation, we obtain the correspondence

$H^{2}(X,x_{-}D;\mathrm{c})\cong H2(A^{\cdot}(\mathcal{U}, U_{0}))\cong H_{2n-2}(D;\mathrm{c})$ .

$(\mathrm{o}, C_{1}(\nabla_{1}),$ $C1(\nabla 0, \nabla 1))rightarrow[D]$

We remark that the above correspondence is more precise than that of the Poincar\’e
duality. (1): We do not need the compactness of the ambient space X. (2): The dual of
the Chern class is found in $H.(D)$ , which indicates explicitly the location of singularities.

3 Proof of the main theorem
In this section, we give the proof of the main theorem. Let $X$ and $Y$ be n-dimensional
compact complex manifolds, and $f:Yarrow X$ a ramified covering with covering multi-
plicity $\mu$ . If $f$ gives a simple $(\cdot \mathrm{u}\mathrm{n}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d})\mu$-sheeted covering, then we see that $c_{*}(Y)-$

$\mu c_{*}(X)=0$ , which suggests us that the gap is brought about the ramification. So we
expect that the difference of the Chern classes can be localized at the ramification set.

We recall some basic facts about ramified coverings.
The ramification divisor $R_{f}$ of $f$ is defined as the analytic hypersurface defined by

$\{\det(df)=0\}$ . Let $R_{f}= \sum r_{i}R_{i}$ be the irreducible decomposition of $R_{f}$ . Then we have

$r_{i}+1=[\mathcal{O}_{Y},y:f*\mathcal{O}x_{f(},y)]$ ,

the degree of integral extention $\mathcal{O}_{Y,y}$ over $f^{*}\mathcal{O}_{\mathrm{x}},f(y)$ for a generic point $y$ on $R_{i}$ . In other
words, $r_{i}$ indicates the number of deceasing of sheets at $R_{i}$ .

The branch locus $B_{f}$ of $f$ is defined by the direct image $f^{*}R_{f}$ of $R_{f}$ under $f$ . Let
$B_{f}= \sum b_{i}B_{i}$ be the irreducible decomposition of $B_{f}$ . Then we have

$b_{i}=\mu-\# f-1(X)$

for a generic point $x$ on $B_{i}$ .
Now we assume that the ramification divisor of $f$ and the $\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\dot{\mathrm{c}}$ible components of

the branch locus of $f$ are all non-singular. Here we remark that the branch locus possibly
has some self-intersection between other components. It followes from the assamption
that the ramificcation divisor of $f$ is $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\dot{\mathrm{a}}\mathrm{r}$ , that $f|_{R}$. : $R_{i}arrow B_{i}$ is non-degenerate
so that it gives the un-ramified covering over $B_{i}$ , with covering multiplicity $r_{i}/b_{i}$ .
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First let us consider the case where the ramification divisor $R_{f}$ has only one compo-
nent, hence the branch locus $B_{f}$ also does. We set $R_{f}=r\cdot R$ , and $B_{f}=b\cdot B$ .

Let $\omega:V_{1}arrow B$ be a tubular neighborhood of $B$ , and we take a covering $\mathcal{U}=$ $\{U_{0}, U_{1}\}$

of $\mathrm{Y}$ with, $U_{0}=\mathrm{Y}-R$ , and $\pi:U_{1}arrow R$ , a tubular neighborhood of $R$ such that
$U_{1}\subset f^{-1}(V_{1})$ . We consider the \v{C}ech-de Rham cohomology of $Y$ associate with the
covering of $\mathcal{U}$ , and set, in $H_{DR}^{2i}(\mathrm{Y})\cong H^{2i}(A^{\cdot}(\mathcal{U}))$ , that

$c_{i}(T\mathrm{Y})rightarrow(c_{i}(\nabla 0), C_{i}(\nabla_{1}),$ $c_{i}(\nabla 0, \nabla 1))$ ,
$c_{i}(f^{*\tau x})rightarrow(c_{i}(\tilde{\nabla}0), C_{i}(\tilde{\nabla}_{1}),$ $ci(\tilde{\nabla}0,\tilde{\nabla}1))$ .

Since $df:TYarrow TX$ gives a bundle homomorphism outside the ramification, and
since $U_{1}$ and $V_{1}$ are tubular neighborhoods of $R$ and $B$ respectively, we have

$T\mathrm{Y}|_{YR}-\cong f^{*}\tau X|Y-R$ ,
$TY|_{U_{1}}\cong\pi^{*}N_{R}\oplus\pi^{*}TR\cong L_{R}|_{U_{1}}\oplus\pi^{*}TR$ ,

$f^{*\tau x}|_{U_{1}}\cong f^{*}(\omega^{*}N_{B}\oplus\omega^{*}TB)\cong f^{*}(L_{B}\oplus\omega^{*}\tau B)$ .

In particular on $U_{1}-R,$ $L_{R}\cong f^{*}LB$ are isomorphic as trivial bundles. Thus we can take
connections on each neighborhood as follows:

$\nabla_{0}=\tilde{\nabla}_{0}$

such that

$\tilde{\nabla}_{0}|_{V_{1^{-B}}}$ $=$ $\nabla_{f^{n}f}\oplus Bf**\omega\nabla\tau B$ ,

$\nabla_{0}|_{U_{1}-R}$ $=$ $\nabla_{f^{*}f_{B^{\oplus\nabla\tau R}}}\pi^{*}$

$=$ $\nabla_{f_{R}}\oplus\pi^{*}\nabla\tau R$ ,

and
$\tilde{\nabla}_{1}=f^{*}\nabla_{L}\oplus Bf*\omega\nabla*\tau B$ ,

$\nabla_{1}=\nabla_{L_{R^{\oplus}}}\pi^{*}\nabla TR$ .

In the above, for a non-singular divisor $D$ we denote by $f_{D},$ $\nabla_{f_{D}}$ and $\nabla_{TD}$ , the section of
$D$ , the $f_{D}$-trivial connection, and a connection of the tangent bundle of $D$ respectively.

Next we do local computation for secondary terms. Notation and choice of local
neighborhood and frames are the same as in 3.1.

$\tilde{A}=$ $(1-t)+t$
$=$

$=$
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Thus

$P^{i}(d\tilde{A}-\tilde{A}\wedge\tilde{A})$ $=P^{i}(d\pi^{*}\theta_{TR^{-}}\pi^{*}\theta\tau 0R$
A

$\pi^{*}\theta_{TR}d\tilde{\theta}-\tilde{\theta}0$

A
$\tilde{\theta})$

$=$ $(d\tilde{\theta}-\tilde{\theta}\wedge\tilde{\theta})$ A $P^{i-1}$ ( $d\pi*\theta_{T}R^{-}\pi*\theta_{\tau R}$ A $\pi^{*}\theta_{TR}$)
$+P^{i}(d\pi^{*}\theta\tau R-\pi^{*}\theta_{\tau}R^{\wedge\theta_{\tau R}}\pi*)$ .

Since only $\tilde{\theta}$ involves the fiber coordinate $t$ , it follows from the projection formula that

$c_{i}(\nabla 0, \nabla 1)$ $=$ $\tilde{\pi}_{*}P^{i}$ ( $d\tilde{A}-\tilde{A}$ A $\tilde{A}$ )
$=$ $\tilde{\pi}_{*}$ { $(d\tilde{\theta}-\tilde{\theta}$ A $\tilde{\theta}$) A $P^{i-1}(\pi^{*}(d\theta R^{-}\theta_{R}\wedge\theta_{R}))$ }
$=$ $c_{1}(\nabla_{f_{R}}, \nabla L_{R})$ A $\pi^{*}C_{i-1}(R)$ .

To express the secondary term of $c_{1}^{N_{1}}\cdot$ . . $c_{n}^{N_{n}}(\mathrm{Y})\in H^{2n}(A^{\cdot}(\mathcal{U}))$ , we set

$H_{\xi}^{(N_{1}\cdots N_{N})}(l)=l^{-1}(n \prod_{i=1}(ci(\xi)+ci-1.(\xi)\cdot l)N.\cdot-c_{1}^{N..N}c(1.n\xi n))=\sum_{\alpha=0}^{n-1}P_{\alpha}(C_{1n}\ldots C-1)l^{\alpha}.\cdot$

Then the \v{C}ech-de Rham class of $c_{1n}^{N_{1}N_{n}}\ldots c(Y)$ is represented by,

$( \pi^{*}(c_{1}^{N_{1}\ldots N_{n}}C)n(R),\prod_{i=1}^{n}(\pi^{*}ci(R)+\pi^{*}Ci-1(R)C_{1}(L_{R}))^{N_{*}},\cdot c_{1}(\nabla_{f_{R}},\nabla_{L_{D}})\wedge H(TN_{1}R\ldots N_{n})(c_{1}(L_{R})))$

This can be proved by induction for the number of indeterminate $c_{i}$ as follows. Here we
remark that the degree of the class is not necessarily equal to $n$ , the dimension of the
ambient spaces. It follows from the inductive hypothesis that

$c_{1}^{N_{1}}\cdots C_{k}^{N}k(Y)=$

$( \pi^{*}(C_{1}^{N_{1}\ldots N_{k}}c_{k})(R),\prod_{=}(\pi^{*}Ci(R)+\pi^{*}ci-1(i1kR)c_{1}(LR))N:,$ $c1(\nabla_{f}, \nabla L_{R})R$ A $H_{TR}^{()}k(CN_{1}\cdots N1(LR))\mathrm{I}$

$c_{k1}^{N_{k}}++1(\mathrm{Y})=$

$(C_{k+1}^{N_{k+1}}(R),$ $(\pi^{*}c_{k+}1(R)+\pi^{*}Ck(R)C1(L_{R}))^{N_{k}}+1,$ $c_{1}(\nabla_{fR}, \nabla_{L_{R}})\wedge HT(N_{k1}R+)(C1(L_{R})))$ .

Thus, the secondary term of $c_{1}^{N_{1}}\cdots c_{k}N_{k+1}(\mathrm{Y})$ is

$c_{1}^{N_{1}}\cdots c_{k}^{N}+1k+1(\nabla 0, \nabla 1)$
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$=c_{1^{1}}^{N}\cdots c_{k}N_{k}(\nabla_{0})\wedge c_{k}(Nk+1\nabla 0, \nabla+11)+C_{1}\cdot\cdot C^{N_{k}}(N_{1}.\nabla_{0}, \nabla k1)$ A $c_{k1}^{N_{k+1}}(+\nabla_{1})$

$=c_{1}(\nabla_{f_{r}}, \nabla L_{R})$ A $c_{1}(L_{R})^{-1}(_{i=1}^{k+1} \prod(\pi^{*}Ci(R)+\pi C_{i1}-(*R)C_{1}(LR))^{N}:-cN_{1}\ldots 11k+C^{N_{k+}}1(R)\mathrm{I}$

$=c_{1}(\nabla_{f_{R}}, \nabla_{L_{D}})$ A $H_{T}^{(N_{1}\cdots N_{k+}}\mathrm{x}1$
)
$(c1(L_{R}))$ ,

which completes the induction.
In particular for the case when $n= \sum_{i=1}^{n}\dot{i}\cdot N_{i}$ , from our assumption that the ramifi-

cation divisor has degree $r$ we have $f^{*}L_{B}=(L_{R})^{\otimes r+1}$ , thus $f^{*}c_{1}(L_{B})=(r+1)\cdot c_{1}(L_{R})$ .
Since $f|_{R}:Rarrow B$ is non-degenerate, it follows from $TR\cong f^{*\tau}B$ that $c_{i}(R)=f^{*}c_{i}(B)$ .
Therefore we have

$H_{T}^{(N_{1}\cdots N)}n(RC_{1}(L_{R}))-[R]$ $=$ $H_{f^{*}T}^{(N_{1}\cdots N_{n}})(B(r+1)^{-1}\cdot c1(f*(L_{B})))\wedge[(b/r)\cdot B]$

$=$ $\sum_{\alpha=0}^{n-1}\frac{b}{r(r+1)^{\alpha}}P_{\alpha}(c1\ldots C)n-1^{\cdot}C_{1}(LB)^{\alpha}-[B]$ .

By calculating the $\check{\mathrm{C}}\mathrm{e}\mathrm{c}\mathrm{h}- \mathrm{d}\dot{\mathrm{e}}$ Rham class of $c_{1}^{N_{1}}\cdots c_{n}Nn(f^{*\tau X})$ all the same, we obtain

$c_{1}^{N_{1}}\cdots C_{n}^{N}(nTY)-C_{1^{1}n}^{N\ldots N}Cn(f*TX)=$

($0,$ $(***),$ $c_{1}(\nabla_{f_{R}}, \nabla L_{R})$ A $(H_{TR}^{(}n(N_{1}\cdots N)c_{1}(LR))-(r+1)H(N_{1,\tau}\cdots N_{n})(_{C_{1}}f*B(f^{*}LB)))\mathrm{I}$ .

(We omit the component on $U_{1}$ since it vanishes by evaluating on $R$ because of overdegree,
which gives integration of $2n$-forms on hypersurface, as observed in 3.1. )
Now, as discused in 3.1, it follows from the correspondence of the Alexander duality that

$c_{1}^{N_{1}}\cdot’\cdot C_{n}^{N}(nTY)-[Y]-\mu\cdot c_{1^{1}n}^{N}\ldots C(N_{n}TX)\sim[X]$

$= \int_{R}c_{1}(\nabla_{f}\nabla_{L})R’ R$ A $(H_{\tau R}^{(N_{1}}\ldots N_{n})(C_{1}(LR))-(r+1)H^{(}*B(fTN_{1}\cdots N_{n})f*c_{1}(LB)))$

$=H_{\tau^{N_{1}\cdots N_{k+}}}^{()}R1(_{C_{1}(}L_{R}))-[R]-(r+1)H^{()}k+1(_{C_{1}}\tau^{N_{1}\cdots N}B(L_{B}))\sim[(b/r)\cdot B]$

$= \sum_{\alpha=0}^{n-1}\frac{b(1-(r+1)^{\alpha+}1)}{r(r+1)^{\alpha}}P\alpha(c1(B)\cdots cn-1(B))\cdot c1(LB)^{\alpha}-[B]$ .

We assumed that the ramification divisor of $f$ is non-singular, so we can assume that
the tubular neighborhoods of irreducible components of the divisor do not intersect each
other. Hence taking independent sum we conclude:

Theorem [Chern number formula for ramified coverings]
Let $f:Yarrow X$ be a ramified covering with covering multiplicity $\mu$ between compact
complex $man\dot{i}foldS$ of dimension $n,$ $R_{f}= \sum_{i}r_{i}R_{i}$ the ramification divisor of $f$ , and $B_{f}=$

$\sum_{i}b_{i}B_{i}$ the branch locus of $f$ . We assume that the ramification divisor and the irreducible
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components $B_{i}$ of the branch locus $B_{f}$ are all non-singular, and suppose that $n=\Sigma_{i+1}^{n}i$ .
$N_{i}$ . Then:

$c_{1}^{N_{1}}\cdots C_{n^{n}}N(\tau Y)-[Y]-\mu\cdot c_{1}^{N_{1}}\cdots c_{n}^{N}n(\tau X)\sim[x]$

$= \sum_{i}(H_{\tau}(N_{1}.\cdots N_{n})(R.C1(LR\dot{.}))arrow[R_{i}]-(r_{i}+1)\cdot H^{(N}1N_{n}(c_{1}(LB\cdot)*)\tau B\dot{.}\cdots)-[B_{i}])$

$= \sum_{i}\sum_{\alpha=0}^{1}n-\frac{b_{i}(1-(ri+1)^{\alpha+}1)}{r_{i}(r_{i}+1)^{\alpha}}P_{\alpha}(C1(B_{i})\cdots Cn-1(Bi))\cdot c1(L_{B})^{\alpha}:-[B_{i}]$ ,

where we set

$H_{\xi}^{(N_{1}\cdots N_{n})}(l)=l^{-1}(_{i=1} \prod^{n}(_{C_{i}(}\xi)+C_{i1}-(.\xi)\cdot l)N\dot{.}-C^{N_{1}}\cdots C_{n}^{N}(1\mathfrak{n}\xi))=\sum_{\alpha=0}^{n-1}P_{\alpha}(_{C_{1}}\cdots c_{n}-1)l^{\alpha}$ .

3.1 Applications
In this section, we give some applications of our formula.

The result for the top Chern class implies the generalized Riemann-Hurwitz formula

$\chi(Y)-\mu\cdot\chi(x)=-\sum_{i}bi$
. $x(Bi)$ ,

which is a special case of the formula proved by Y.Yomdin, [Y].

In case that $(\mathrm{n}=2)$ :

The result for the second Chern class inplies

$c_{2}(TY)-[Y]- \mu\cdot c_{2}(Tx)-[X]=-\sum_{i}bi$
. $x(Bi)$ .

We remark that the more general formula is proved for algebraic cases. (see [I].)
We can also deduce the formula for the square of the first Chern classes as follows:

$c_{1}(TY)^{2_{\wedge}}[Y]-. \mu\cdot c1(TX)2\wedge[X]=-\sum_{i}(2b_{i}\cdot\chi(Bi)+\frac{b_{i}(r_{i}+2)}{r_{i}+1}Bi$ . $B_{i})$ .

Now from the fact that the signature of the surface is expressed by $L_{1}=(1/3)p_{1}=$
$\frac{1}{3}(-2c_{2}+c_{1}^{2})$ , (The calculation for $\mathrm{T}$ and $\mathrm{L}$-genus is found in [H1]), we obtain:

Theorem [The formula for signature for ramified coverings]
Let $f:Yarrow X$ be a ramified covering between compact complex analytic surfaces with
covering multiplicity $\mu,$ $R_{f}= \sum_{i}r_{i}R_{i}$ the ramification divisor of $f$ , and $B_{f}= \sum_{i}b_{i}B_{i}$ the
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branch locus of $f$ . We assume that ramification divisor and irreducible components $B_{i}$ of
the branch locus $B_{f}$ are all non-singular. Then

Sign$(Y)-\mu\cdot S\dot{i}gn(X)$ $=$ $\frac{1}{3}(p_{1}(Y)-\mu\cdot p_{1}(x))$

$=$ $\frac{1}{3}\{(c_{1}(Y)2-\mu\cdot c1(X)^{2})-2(c_{2}(Y)-\mu\cdot c_{2}(x))\}$

$=$ $- \sum_{i}\frac{b_{i}(r_{i}+2)}{3(r_{i}+1)}B_{i}\cdot B_{i}$ .

Originally, the formula for signature for cyclic coverings is $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}}1\mathrm{a}\mathrm{t}\mathrm{e}\dot{\mathrm{d}}$ for 4-manifold as
follows.

Theorem [Hirzebruch [H1]] Let $X$ be a compact oriented differentiable manifold of
dimension 4 without boundary on which the cyclic groups $G_{n}$ of order $n$ acts by orien-
tation preserving diffeomorphisms. Suppose that $Y$ is differential submanifold of $X$ , not
necessarily connected, and has codimension 2. And $G_{n}$ operates freely on $X-\mathrm{Y}$ . Then

Sign$(X)-n \cdot s\dot{i}gn(x/cn)=-\frac{n^{2}-1}{3n}Y’\cdot Y’$ .

where $\mathrm{Y}^{r}$ is the branch locus in $X/G_{n}$ .

We can also deduce the formula for the Todd genus, which is $\frac{1}{12}(c_{2}+c_{1}^{2})$ :

Theorem Under the $sam\dot{e}$ assumption of the above theorem,

$T(\mathrm{Y})-\mu\cdot T(x)$ $=$ $\frac{1}{12}\{(c_{2}(Y)-\mu\cdot C2(X))+(c_{1}(Y)^{2}-\mu\cdot c1(x)^{2})\}$

$=$ $- \sum_{i}(\frac{b_{i}}{2}T_{1}(Bi)+\frac{b_{i}((r_{i}+1)2-1)}{12r_{i}(r_{i}+1)}.Bi$ . $B_{i})$ .

In general, however, the calculation for the $\mathrm{T}$-genus or the $\mathrm{L}$-genus is more compli-
cated, as examples we introduce formulas for the cases $n=3,4,5$ , and 6. (Also see [H1].)
$(\mathrm{n}=3)$ :

$T_{3}= \frac{1}{24}C_{1}c_{2}$ ,
$H(l)= \frac{1}{24}((C_{2}+c^{2})1+c_{1}l)$ .

$T( \mathrm{Y})-\mu\cdot T(x)---\sum_{i}(b_{i^{\frac{T_{2}(B_{i})}{2}+}}\frac{b_{i}(1-(r_{i}+1)^{2})}{r_{i}(r_{i}+1)}\int_{B}i\frac{T_{1}(B_{i})}{12}\cdot C1(N_{B}):\mathrm{I}\cdot$

$(\mathrm{n}=4)$ :

$T_{4}= \frac{1}{720}\cdot(-C4+c_{3}c1+3c_{2}^{2}+4C2C_{1}-c124)$ ,
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$H(l)= \frac{1}{720}(15C2c1+5(C2+c_{1})2l-l^{3})$ .

$T(Y)-\mu\cdot T(x)$ $=$ $- \sum_{i}\frac{T_{3}(B_{i})}{2}$

$+ \sum_{i}\frac{b_{i}(1-(r_{i}+1)^{2})}{r_{i}(r_{i}+1)}\int_{B}:\frac{T_{2}(B_{i})}{12}\cdot C_{1}(NB_{i})$

$+ \sum_{i}\frac{b_{i}(1-(r_{i}+1)^{3})}{r_{i}(r_{i}+1)^{2}}\int_{B_{*}}\frac{c_{1}^{3}(N_{B_{i}})}{720}$ .

We can also define the signature for $n=4$, as

$L_{2}= \frac{1}{45}(7p2-p_{1})2\frac{1}{45}=(14c4^{-}14C_{3^{C}1}+3C^{2}+24c_{2}C^{2}-1c_{1})4$.
$H(l)= \frac{1}{45}((-10c_{2}+5c_{1})2l-l^{3})$ .

Sign $(Y)- \mu\cdot S\dot{i}gn(x)=-\sum_{i}\frac{b_{i}(1-(r_{i}+1)^{2})}{r_{i}(r_{i}+1)}\int_{B}:\frac{L_{1}(B_{i})}{3}\cdot C_{1}(LB:)$

$- \sum_{i}\frac{b_{i}(1-(r_{i}+1)^{4})}{r_{i}(r_{i}+1)^{3}}\int_{B}\dot{.}\frac{c_{1}(L_{B}\dot{.})^{3}}{45}$

$(\mathrm{n}=5)$ :

$T_{5}= \frac{1}{1440}(-c_{4}C_{1}+c3C221^{+3C)}C_{2^{C}1}1-c23$ ,
$H(l)= \frac{1}{1440}\{(-c_{4}+C_{3}c_{1}+3C_{2^{+c}}^{2}. 4C_{2}C^{24}-1)1+5C_{21}cl-c_{1}l3\}$ .

$T(Y)-\mu\cdot T(x)$ $=$ $- \sum_{i}\frac{T_{4}(B_{i})}{2}$

$+ \sum_{i}\frac{b_{i}(1-(r_{i}+1)^{2})}{r_{i}(r_{i}+1)}\int_{B_{i}}\frac{T_{3}(B_{i})}{12}\cdot c1(NB_{*}.)$

$- \sum_{i}\frac{b_{i}(1-r_{i}+1^{4})}{r_{i}(r_{i}+1)^{3}}\int_{B}i\frac{T_{1}(B_{i})}{720}\cdot c_{1}^{3}(NB_{i})$.

$(\mathrm{n}=6)$ :

$L_{3}= \frac{1}{3^{3}\cdot 5\cdot 7}(62p_{3^{-}}13p2p_{1}+2p_{1}^{3})$

$= \frac{1}{3^{3}\cdot 5\cdot 7}(-124c_{6}+124c_{5^{C}}1-72c4^{C_{2}}-26c4c12$

+62$C_{3^{-52c}21}^{2}3^{Cc}+26c_{3}c_{1}^{3}+10c_{2}^{3}+11C_{2}^{2}c_{1}-212C2C_{1}^{4}+2c_{1}^{6}$ ).

$H(l)= \frac{1}{3^{3}\cdot 5\cdot 7}\{(98c4-98c_{3}C_{1}+21c_{22}+28Cc-2271C_{1}4)\cdot l+(14C2-7c_{1})2. l^{35}+2l\}$ .

$S_{\dot{i}}gn(Y)- \mu\cdot Sign(x)=-\sum_{i}\frac{b_{i}(1-(r_{i}+1)^{2})}{r_{i}(r_{i}+1)}\int_{B_{i}}\frac{L_{2}(B_{i})}{3}\cdot C1(L_{B}.)$
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$- \sum_{i}\frac{b_{i}(1-(r_{i}+1)^{4})}{r_{i}(r_{i}+1)^{3}}\int_{B}$. $\frac{L_{1}(B_{i})}{45}arrow c\mathrm{i}(L_{B})^{3}$:

$- \sum_{i}\frac{b_{i}(1-(r_{i}+1)^{6})}{r_{i}(r_{i}+1)^{5}}\int_{B}\dot{.}\frac{2c_{1}(L_{B}.)^{5}}{945}$

.
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