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1. Statement of results

In this talk, we will present a generalization of Zariski’s hyperplane section theorem.

Let $S$ be a hypersurface in a complex projective space $\mathrm{P}^{n}$ of dimension $\geq 2$ . We take
a linear plane $\mathrm{P}^{2}$ in $\mathrm{P}^{n}$ in a general position with respect to $S$ . Zariski’s hyperplane section
theorem asserts the following isomorphism:

$\pi_{1}(\mathrm{P}^{2}\backslash (\mathrm{P}^{2}\cap S))$ $\cong$ $\pi_{1}(\mathrm{P}^{n}\backslash S)$ .

This enables us to calculate the fundamental group of the complement to a hypersurface
by van-Kampen Zariski method. This theorem was stated by Zariski in [Z], but the proof
had a gap. The first rigorous proof was given by Hamm and L\^e in [H-L]. They used the
Morse theory.

Now we are going to consider the following situation. Let $U$ be a complex homogeneous
variety on which a connected affine algebraic group $G$ acts transitively. The stabilizer group
$H_{p}$ of a point $p$ of $U$ is assumed to be connected. Let $f$ : $Xarrow U$ be a morphism from a
non-singular connected algebraic variety $X$ . We do not assume that $f$ is proper. For an
element $\gamma\in G$ , let $\gamma f$ : $Xarrow U$ be the composite of $f$ with the action $\gamma$ : $Uarrow U$ of $\gamma$ on
$U$ . Suppose that we$\cdot$ are given a non-zero reduced effective divisor $D$ of $U$ .

Now we consider the following three conditions of $f$ .

(C1) The image of $f$ is of dimension at least 2.
(C2) The locus of all points of $X$ at which the tangential map of $f$ is of rank zero is of

codimension at least 2;

$\dim\{x\in X ; \dim f_{*,x}(T_{x}x)=0\}$ $\leq\dim X-2$ .

(C3) A morphism $\overline{f}:\overline{X}arrow U$ is said to be a nonsingular projective completion of $f$ if $\overline{X}$ is a
nonsi,ngular algebr.aic variety which contains $X$ as its Zariski open dense subset and $\overline{f}$

is a projective morphism which coincides with $f$ on $X\subset\overline{X}$ . Now the third condition
$\mathrm{i}\mathrm{s}_{-}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$, there is a non-singular projective completion $\overline{f}:\overline{X}arrow U$ of $f$ such that, if $W_{k}$

is an irreducible component of the boundary $W:=\overline{X}\backslash X$ with codimension 1 in $\overline{X}$ ,
$\mathrm{t}\mathrm{h}\dot{\mathrm{e}}\mathrm{n}\dim\overline{f}(W_{k})$ is at least one.

Our purpose is to calculate the fundamental group $\pi_{1}(^{\gamma}f^{-1}(U\backslash D))$ in terms of $\pi_{1}(X)$

and $\pi_{1}(U\backslash D)$ when $\gamma$ is chosen generally from $G$ . We can give a clear answer to this
problem in the following situations.
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I. Projective spaces

Let $U$ be a projective space $\mathrm{P}^{n}$ with $n\geq 2$ , and $G$ the group $\mathrm{G}\mathrm{L}(n+1)$ of general
linear transformations.

Theorem (P). Suppose that $f$ satisfies the th$\mathrm{r}ee$ conditions. Then, for a general $\gamma\in G$ ,
the morphism

$\gamma f^{-1}(^{\mathrm{p}^{n}}\backslash D)arrow(\mathrm{P}^{n}\backslash D)\cross X$

given by $x\mapsto(^{\gamma}f(x), x)$ induces a surjective homomorphism on the fundamental groups

$\pi_{1}(^{\gamma}f^{-}1(\mathrm{p}^{n}\backslash D))arrow\pi_{1}(\mathrm{p}^{n}\backslash D)\mathrm{X}\pi 1(x)$ ,

and its kernel is isomorphic to the cokernel of the homomorphism $\pi_{2}(X)arrow\pi_{2}(\mathrm{P}^{n})$ indu$ced$

by $f$ .
Since $\pi_{2}(\mathrm{P}^{n})$ is an infinite cyclic group, the kernel is always a cyclic group.

When $X$ is a projective plane and $f$ is a linear embedding, this theorem is nothing
but Zariski’s hyperplane section theorem.

II. $A$ffine spaces

Let $U$ be an affine space $\mathrm{A}^{n}$ with $n\geq 2$ , and let $G$ be the group of all affine automor-
phisms of $\mathrm{A}^{n}$ , which is a subgroup of $\mathrm{G}\mathrm{L}(n+1)$ .

Theorem (A). Suppose that $f$ satisfies the conditions (1), (2) and (3) above. Then,
for a general $\gamma\in G$ , the $nat$ural morphism $\gamma f^{-1}(\mathrm{A}^{n}\backslash D)arrow(\mathrm{A}^{n}\backslash D)\cross X$ induces an
$\mathrm{i}somo\mathrm{r}_{\mathrm{P}}$.hism

$\pi_{1}(^{\gamma}f^{-}1(\mathrm{A}^{n}\backslash D))\cong\pi_{1}(\mathrm{A}^{n}\backslash D)x\pi_{1}(X)$.

III. Grassmannian varieties

It is natural to expect that theorem of this type holds for o.ther homogeneous varieties.
However, even when we consider simple examples like Grassmannian varieties, we have to
put some additional conditions on the morphism $f$ .

Let $U$ be the Grassmannian variety Grass$(r, m)$ of all $r$ -dimensional linear subspaces
of an $m$-dimensional linear space $V$ , where $2\leq r\leq m-2$ . On this variety, the general
linear group $G=\mathrm{G}\mathrm{L}(V)$ acts transitively with connected stabilizer subgroups. As before,
let $D$ be a non-zero reduced effective divisor of $U$ .

Theorem (G). Suppose that $f$ : $Xarrow U$ satisfies the conditions (2) and (3) and moreover
$\dim f(X)\geq\max(r, m-r)+1$ . Then, for a general $\gamma\in G$ , we $h\mathrm{a}ve$ an $e\mathrm{x}\mathrm{a}ct$ sequence

$1arrow \mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}(\pi_{2}(X)arrow\pi_{2}(U))arrow\pi_{1}(^{\gamma}f^{-1}(U\backslash D))arrow\pi_{1}(X)\cross\pi_{1}(U\backslash D)arrow 1$ .

There is an $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}_{\mathrm{P}^{1\mathrm{e}}}$. such t..hat $\dim f(X)=2$ and the exact sequence does not holds.

Example. Let $U$ be the Grassmannian variety Grass $(\mathrm{P}^{1}, \mathrm{P}\mathrm{a})$ of all lines in a projective
space $\mathrm{P}^{3}$ . We choose a point $P\in \mathrm{P}^{3}$ and three lines $l_{1},$ $l_{2}$ and $l_{3}$ passing through $P$ in
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such a way that there are no planes containing three of them. We take as $D$ the reduced
divisor of $U$ whose support is given by

{ $p\in U$ ; $L(p)\cap(l_{1^{\cup l\cup l)\neq\}}}23\emptyset$ ,

where $L(p)\subset \mathrm{P}^{3}$ is the line corresponding to $p\in U$ . Let $Q\in \mathrm{P}^{3}$ be another point, and
$f$ : $Xarrow U$ the inclusion of the nonsingular subvariety

$X$ $:=$ $\{ p\in U;. Q\in L(p)\}$

of $U$ , which is isomorphic to a projective plane. The fundamental group $\pi_{1}(U\backslash D)$ is
isomorphic to $\mathbb{Z}^{2}$ . Indeed, let $H\subset \mathrm{P}^{3}$ be a plane such that $P\not\in H$ , and let $P_{i}$ be the
intersection point of $l_{i}$ with $H$ . Let $H^{\vee}$ be the dual projective plane of $H$ , and $L_{i}\subset H^{\vee}$

the locus of all lines on $H$ passing through $P_{i}$ . The projection

$\mathrm{P}^{3}\backslash (l_{1^{\cup}}l_{2s}\cup l)$ $arrow H\backslash \{P_{1}, P_{2}, P_{3}\}$

with the center $P$ induces a locally trivial morphism

$U\backslash Darrow H^{\vee}\backslash (L_{1}\cup L_{2}\cup L_{3})$ ,

every fiber of which is isomorphic to $\mathrm{A}^{2}$ . Since $l_{1},$ $l_{2}$ and $l_{3}$ are not on any plane, the three
lines $L_{1},$ $L_{2}$ and $L_{3}$ do not pass. through a common point. Hence we have

$\pi_{1}(U\backslash D)\cong\pi_{1}(H^{\vee}\backslash (L_{1}\cup L_{2}\cup L_{3}))\cong \mathbb{Z}^{2}$ .

On the other hand, for a general $\gamma\in G=$ GL (4), $\pi_{1}(^{\gamma}f^{-1}(U\backslash D))$ is isomorphic to the
free group $F_{2}$ generated by two elements. Indeed, let $H’\subset \mathrm{P}^{3}$ be a general plane. Then
the projection

$p_{\gamma}$ : $\mathrm{P}^{3}\backslash \{\gamma(Q)\}$ $arrow H’$

with the center $\gamma(Q)\in \mathrm{P}^{3}$ induces an isomorphism

$\gamma f^{-1}(U\backslash D)\cong H’\backslash (p_{\gamma}(l1)\cup p\gamma(l2)\cup p_{\gamma}(l3))$ .

Since $p_{\gamma}(l_{1}),$ $p_{\gamma}(l2)$ and $p_{\gamma}(l_{3})$ are three lines on $H’$ passing through the point $p_{\gamma}(P)$ , we
obtain

$\pi_{1}(H’\backslash (p_{\gamma}(l_{1})\cup p\gamma(l2)\cup p_{\gamma}(l_{3})))\cong F_{2}$.
It is $\mathrm{o}_{\vee}\mathrm{b}$vious that $F_{2}$ cannot be an extension of $\mathbb{Z}^{2}$ by a cyclic group.

2. Corollaries

Theorem (A) has the following corollary. Let $S$ be a non-singular connected surface
equipped with a finite morphism $\overline{f}$ : $Sarrow \mathrm{A}^{2}$ onto the affine plane. Let $B\subset \mathrm{A}^{2}$ be the
branch locus of $\overline{f}$. Let $D$ be a reduced curve on $\mathrm{A}^{2}$ and $W$ a curve on $S$ .
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Corollary. We denote by $E\subset \mathrm{A}^{2}$ the reduced divisor whose support is the union of the
branched curve $B$ and the image $\overline{f}(W)$ of W. Suppos$\mathrm{e}$ that $E$ intersects $D$ at distinct
$\deg D\cdot\deg E$ points. Then the fundamental group $\pi_{1}(S\backslash (W\cup\overline{f}^{-1}(D)))$ is isomorphic to
$\pi_{1}(s\backslash W)\mathrm{X}\pi 1(\mathrm{A}2\backslash D)$.
Indeed, the condition

Card$(E\cap D)=\deg D\cdot\deg E$

means that $E$ and $D$ intersect transversely at their non-singular points, and that they do
not have any intersection points at infinity. Hence, under this condition, the homeomor-
phism type of the space $S\backslash (W\cup\overline{f}^{-1}(D))$ does not change even when the morphism $\overline{f}$ is
perturbed to $\gamma\overline{f}$ by a general affine automorphism $\gamma$ of the affine plane. Hence, applying
Theorem (A) to the restriction $f$ : $S\backslash Warrow \mathrm{A}^{2}$ of $\overline{f}$ to $S\backslash W$ , we obtain the corollary.

In particular, when $S=\mathrm{A}^{2}$ and $W=\emptyset$ , we obtain the invariance theorem of the
fundamental group of the complement to affine curve. Let $\overline{f}$ : $\mathrm{A}^{2}arrow \mathrm{A}^{2}$ be a finite
morphism.

Corollary. Suppose that the branch locus $B$ of $\overline{f}$ intersects $D$ at distinct $\deg D\cdot\deg B$

points. Then $\pi_{1}(\mathrm{A}^{2}\backslash \overline{f}^{-1}(D))$ is isomorphic to $\pi_{1}(\mathrm{A}^{2}\backslash D)$ .
On the other hand, when $\overline{f}$ is the identity, this corollary gives Oka-Sakamoto’s product

theorem ([O-S]).

3. Sketch of the proof

The method of the proof is rather elementary. Most part of the proof consists of
simple dimension counts. And we hope that the same method can be applied to other
homogeneous varieties. The main ingredient of the proof is the following:

Theorem $([\mathrm{S}1])$ . Let $F$ be a nonsingular connected projective variety. Let $Z$ be a
reduced effective divisor of the product space $\mathrm{A}^{N}\cross F$ of an affine space with F. For a
point $a\in \mathrm{A}^{N}$ , let $Z_{a}$ denote the scheme-theoretic intersection of $Z$ with $\{a\}\cross F$ , which
is regard$\mathrm{e}d$ as a subscheme of F. Suppose that the $loc\mathrm{u}s_{\cup}^{-}-$ of all $a\in \mathrm{A}^{N}$ such that $Z_{a}$ is
not a reduced divisor of $F$ is of codimension $\geq 2$ in $\mathrm{A}^{N}$ . Then, for a general $a\in \mathrm{A}^{N}$ , the
inclusion $\{a\}\cross F^{\mathrm{L}}arrow \mathrm{A}^{N}\cross F$ in $d\mathrm{u}$ces an isomorph$\mathrm{i}sm\pi_{1}(F\backslash Z_{a})\cong\pi_{1}((\mathrm{A}^{N}\cross F)\backslash Z)$ .
The proof of this theorem has been already published in [S1]. Roughly speaking, this
theorem is shown by regarding the first projection $(\mathrm{A}^{N}\cross F)\backslash Zarrow \mathrm{A}^{N}$ from the complement
to $Z$ to the affine space $\mathrm{A}^{N}$ as something like a local trivial fiber space. Of course, there
are some points $a’\in \mathrm{A}^{N}$ such that $Z_{a’}$ has worse singularity than that of the divisor $Z_{a}$

over a general point $a$ . Hence the projection $(\mathrm{A}^{N}\cross F)\backslash Zarrow \mathrm{A}^{N}$ is not locally trivial over
$\mathrm{A}^{N}$ . Nevertheless, the fundamental group of algebraic variety is not affected by changing
a locus of codimension at least 2. Hence, $\mathrm{u}\mathrm{n}\acute{\mathrm{d}}$ er the condition $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}_{\cup}^{-}-\mathrm{i}_{\mathrm{S}}$ of codimension $\geq 2$

in $\mathrm{A}^{N}$ , the first piece of the homotopy exact sequence

$\pi_{2}(\mathrm{A}^{N})=0arrow\pi_{1}(F\backslash Z_{a})arrow\pi_{1}((\mathrm{A}^{N}\cross F)\backslash Z)arrow\pi_{1}(\mathrm{A}^{N})=0$

still holds.
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Now we will show how to derive the generalized Zariski’s hyperplane section theorems
from Theorem $([\mathrm{S}1])$ in the case of projective spaces and Grassmannian varieties

First note that we may assume that $W:=\overline{X}\backslash W$ is purely of codimension one. Because
removing the locus of codimension larger than one from the non-singular algebraic variety
does not affect the topological fundamental group. Therefore we can ignore the irreducible
component of $W$ with codimension larger than one.

Let $U$ be the Grassmannian variety Grass $(r, V)$ of all $r$-dimensional linear subspaces
in a linear space $V$ , where $1\leq r\leq\dim V-2$ . This setting covers both of the projective
spaces and the Grassmannian varieties. The point of the proofs of Theorems (P) and (G)
is to apply Theorem $([\mathrm{S}1])$ to the case $\mathrm{A}^{N}=\mathrm{E}\mathrm{n}\mathrm{d}(V)$ . There is a rational map

End (V) $\cross U$ $...arrow$ $U$

extending the action of the general linear group $G=\mathrm{G}\mathrm{L}(V)$ on $U$ . The indeterminate
locus of this rational map is of codimension at least 2, so that, as far as the fundamental
groups are concerned, we can neglect it. Let

$G\cross\overline{X}$ $arrow U\mathrm{x}\overline{X}$

be the morphism given by $(\gamma, x)rightarrow(^{\gamma}\overline{f}(x), x)$ . This morphism can also be extended to the
rational map

End (V) $\cross\overline{X}$

$...arrow$ $U\mathrm{x}\overline{X}$ .

The indeterminate locus of $\mathrm{t}\mathrm{h}\mathrm{i}_{\mathrm{S}}.$ ational map is also of codimension at least 2. Let $\overline{\mathcal{X}}$ be
the Zariski open dense subset of End (V) $\cross\overline{X}$ on which the rational map is defined. The
point is that the morphism

$\psi$ : $\overline{\mathcal{X}}arrow U\cross\overline{X}$

is locally trivial. The fiber is isomorphic to the space

$\{\gamma\in \mathrm{E}\mathrm{n}\mathrm{d}(V) ; \gamma(L)=L\}$

of all endomorphisms of $V$ which maps a fixed $r$-dimensional linear subspace $L\in U$ onto $L$

isomorphically. Let us denote this space by $\Gamma_{0}$ . Then $\Gamma_{0}$ is isomorphic to GL $(r)\mathrm{X}\mathrm{A}^{m}(m-\Gamma)$ .
Now we consider the non-zero reduced divisor

$E:=D\cross\overline{X}+U\cross W$

on $U\cross\overline{X}$ . We regard the boundary $W$ as a reduced divisor of $\overline{X}$ . Then we have a homotopy
exact sequence

1 $arrow-\pi_{2}((U\cross\overline{X})\backslash E)$ $arrow\pi_{1}(\mathrm{r}_{0})$ $arrow\pi_{1}(\overline{\mathcal{X}}\backslash \psi-1(E))$ $arrow\pi_{1}((U\cross\overline{X})\backslash E)$ $arrow$ $1$

associated with $\psi$ . Since the complement of the divisor $E$ is nothing but the product of
$U\backslash D$ and $X=\overline{X}\backslash W$ , we have

$\pi_{2}((U\cross D)\backslash E)\cong\pi_{2}(U\backslash D)\cross\pi_{2}(X)$, $\pi_{1}((U\mathrm{X}D)\backslash E)\cong\pi_{1}(U\backslash D)\cross\pi_{1}(X)$ .
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On the other hand, let $Z$ be the closure of the divisor $\psi^{*}(E)$ of $\overline{\mathcal{X}}$ in End $(V)\cross\overline{X}$ ;
that is, $Z$ is the divisor on End (V) $\cross\overline{X}$ whose support is the closure of the support of
$\psi^{*}(E)$ and whose restriction to $\overline{\mathcal{X}}$ coincides with $\psi^{*}(E)$ . Since the complement of $\overline{\mathcal{X}}$ in
End (V) $\mathrm{x}\overline{X}$ is of codimension $\geq 2$ , we have

$\pi_{1}(\overline{\mathcal{X}}\backslash \psi^{-1}(E))\cong\pi_{1}((\mathrm{E}\mathrm{n}\mathrm{d}(V)\cross\overline{X})\backslash Z)$ .

Now we can prove the following:

Claim. There is a natural natural isomorphism between $\pi_{1}(\mathrm{r}_{0})$ and $\pi_{2}(U)$ such that the
cokernel of the boundary homomorphism $\partial$ : $\pi_{2}(U\backslash D)\cross\pi_{2}(X)arrow\pi_{1}(\Gamma_{0})$ is identified
with the cokernel of $f_{*}:$ $\pi_{2}(X)arrow\pi_{2}(U)$ .

In the proof of this claim, we use the assumption that $D$ is non-zero, so that the
homomorphism $\pi_{2}(U\backslash D)arrow\pi_{2}(U)$ induced by the inclusion is a zero map.

Now we have an exact sequence

$1arrow \mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}(T_{2}(X)arrow\pi_{2}(U))arrow\pi_{1}((\mathrm{E}\mathrm{n}\mathrm{d}(V)\cross\overline{X})\backslash Z)arrow\pi_{1}(U\backslash D)\mathrm{x}\pi_{1}(X)arrow 1$ .

As before, for an element $\gamma \mathrm{o}\mathrm{f}\dot{\mathrm{E}}\mathrm{n}\mathrm{d}(V)$, let $Z_{\gamma}$ denote the scheme-theoretic intersection of
$Z$ with $\{\gamma\}\cross\overline{X}$ , and we consider it as a sub-scheme of $\overline{X}$ . Then, by the definition of $Z$ ,
if $\gamma\in$ GL (V), the subscheme $Z_{\gamma}$ coincides with $W+\gamma\overline{f}^{*}(D)$ , and hence its complement
coincides with $\gamma f^{-1}(U\backslash D)$ ;

$X\backslash Z_{\gamma}=\gamma f^{-1}(U\backslash D)$ .

Hence, by Theorem$([\mathrm{S}\mathrm{l}])$ , we have

Claim. If the locus

$\cup--:=$ { $\gamma\in \mathrm{E}\mathrm{n}\mathrm{d}(V)$ ; $Z_{\gamma}$ is not a reduced divisor of $\overline{X}$ }

is of codimension $\geq 2$ in the affine space End (V), then $\pi_{1}(^{\gamma}f^{-1}(U\backslash D))$ is isomorphic to
$\pi_{1}((\mathrm{E}\mathrm{n}\mathrm{d}(V)\cross\overline{X})\backslash Z)$ for a general $\gamma\in \mathrm{E}\mathrm{n}\mathrm{d}(V)$ .

Therefore the proof of theorems has been reduced to the estimation of the dimension
$\mathrm{o}\mathrm{f}_{\cup}^{-}-$ . It is rather technical, but we can prove the following:

Claim. Suppose that $\gamma$ is a general element of the irreducible hypersurface $\triangle$
$:=\mathrm{E}\mathrm{n}\mathrm{d}(V)\backslash$

GL (V). Then $Z_{\gamma}$ is a reduced divisor of $\overline{X}$ ; that is, $\cup--\cap\triangle$ is a proper Zariski closed subset.

Claim. Suppose that $f$ satisfies the conditions in the theorems. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}_{\cup}^{-}-\cap \mathrm{G}\mathrm{L}(V)$ is of
codimension $\geq 2$ in GL (V).

These two claims show $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}_{\cup}^{-_{\mathrm{i}\mathrm{s}}}-$ of codimension $\geq 2$ in End (V). Thus Theorems (P)
and (G) are proved.

For more details, please refer to the preprint [S2].
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