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1. Introduction
The spread process of infectious diseases to a population is often de-
scribed mathematically by using compartment models. Let us divide the
whole population into three components denoted by $S,$ $I$ and $R$. The
$S(t)$ denotes the number of the members of the population who are sus-
ceptible to the disease and $I(t)$ is the number of infective members of the
population at the present time $t$ . The third component $R(t)$ represents
the number of members who have been removed from the possibility of
infection through full immunity. The total number of the population is
denoted by $N(t)–s(t)+I(t)+R(t)$ .

-In this paper, we shall analyze the stability property of a delayed SIR
disease transmission model with density dependent birth rate. The model
is described as follows:
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$\frac{d}{dt}S(t)=$ $- \beta S(t)\int^{h}0-f(S)I(t-S)d_{S}\mu_{1}s(t)+bN(t)$

$\frac{d}{dt}I(t)=$ $\beta S(t)\int \mathrm{o}(fs)hI(t-s)ds-(\mu_{2}+\lambda)I(t)$ (1)

$\frac{d}{dt}R(t)=$ $\lambda I(t)-\mu_{3}R(t)$ ,

where $h,$ $\beta,$ $b,$ $\lambda,$
$\mu_{1},$ $\mu_{2}$ and $\mu_{3}$ are positive constants and $f(s)$ is a

nonnegative and continuous function on $[0, h]$ . In order not to change the
values of corresponding equilibrium points between (1) and the system
without delay effects, we assume that

$\int_{0}^{h}f(S)ds=1$ .

Model (1) describes infectious process of the disease transmitted by
vectors (see [3, 4, 5]). lt is natural from the biological point of view to
assume that when a susceptible vector is infected by an infected person,
there is a time during which the infectious agents develop in the vector and
it is only after that time that the infected vector itself becomes infectious.
Hence, the integral term in (1)

$\beta S(T)\int_{0}^{h}f(S)I(t-s)d_{S}$

involves the delay effect in the disease transmission process. The trans-
mission of infection is expressed by law of mass-action. The $f(s)$ is the
fraction of vector population in which the time taken to become infectious
is $s$ , which satisfies that $0\leq s\leq h$ . It may be realistic to assume that
the time has some upper bound $h$ , which is a finite number. The $\beta$ is the
average number of contacts per infective per day.

Further, the $\mu_{1},$ $\mu_{2}$ and $\mu_{3}$ express death rates of the susceptibles,
infectives and recovered, respectively. Since the epidemic will increase
the death rates of the infectives and recovered (or at least the rate of
infectives), it may be natural biologically to assume that

$\mu_{1}\leq\min\{\mu 2, \mu_{3}\}$ .
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The $\lambda$ represents the recovery rate of the infectives and $b$ is the birth rate
constant of the population. The model (1) assumes that the birth process
is density dependent and the growth of the number of newborns (who are
assumed to enter into the susceptible class, that is, we do not consider
the possibility of the vertical transmission of the disease) is proportional
to the total number of the population $N(t)$ .

If we ignore both the effect of time delays for the disease transmission
process and the density dependence in the birth process (that is, if we
replace in model (1) $\beta S(t)\int_{0}^{h}f(s)I(t-s)dS$ and $bN(t)$ with $\beta S(t)I(t)$

and $b$ , respectively) and further assume that the birth rate and all death
rates are identical $(\mu_{1}=\mu_{2}=\mu_{3}=b)$ , then we have a system of ordinary
differential equations, which was considered by Hethcote [7]. Clearly,
the system satisfies that $N(t)arrow 1$ as $tarrow\infty$ and can be reduced to the
plane system. Hethcote [7] showed that the disease free equilibrium point
(where only the susceptible class persists, and the infective and recovered
classes become extinct) is globally asymptotically stable if the endemic
equilibrium point (where all three classes persist) does not exist. Further,
the endemic point is proved to be globally asymp.totically stable whenever
it exists (see also [1]).

For the system with the delayed disease transmission process and with
different $b$ and $\mu_{i}(i=1,2, .3)$ , but without a density dependent birth
process ( $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ is, for system (1) with $b$ instead of $bN(t)$ ), Takeuchi, Ma
and Beretta [9] considered the effect of delay on the asymptotic stability
of the disease free or endemic equilibrium points and proved the following:

(i) the disease free equilibrium point is globally asymptotically $\dot{\mathrm{s}}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$

if the endemic equilibrium does not exist;
(ii) the endemic equilibrium is locally asymptotically stable if it exists;
(iii) if there is some $\tilde{S}$ satisfying $S^{*}<\tilde{S}<b/(\mu_{2}+\lambda)$ such that the

following two conditions hold true

$h< \min\{(2\beta\tilde{s})^{-}1, (\tilde{S}-S^{*})/(b-\mu_{1}s*)\}$ ;

$b<\tilde{S}\{\beta[b/(\mu 2+\lambda)-\tilde{S}]+\mu_{1}\}$ ,
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where $S^{*}$ is the number of the susceptibles at the endemic point, then
the endemic equilibrium is globally asymptotically stable.

These results show that delay is harmless on global asymptotic sta-
bility of the disease free equilibrium point and also on local stability of
the endemic equilibrium point.

$\ln$ this paper we consider system (1) with a density dependent birth
process, whose dynamical behavior is qualitatively different from that
of $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ system with a density independent birth process. For the system
with density independent process, the endemic equilibrium point is always
locally asymptotically stable if it exists and can be globally asymptotically
stable under the effect of small delay [9]. But for system (1), the endemic
equilibrium point can be unstable when $h=\infty$ (see Section 4).

The initial condition of (1) is given as

$S(t_{0}+s)=\varphi_{1},$ $I(t_{0}+s)=\varphi_{2},$ $R(t_{0}+s)=\varphi_{3}$ , $-h\leq s\leq 0$ , (2)

where $t_{0}\geq 0,$ $\varphi=(\varphi_{1}, \varphi_{2}, \varphi 3)\tau\in C$ such that $\varphi_{i}\geq 0$ and $\varphi_{i}(0)>0$ for
$i=1,2,3$. The $C$ denotes the Banach space $C([-h, 0], R^{3})$ of continuous
functions mapping the interval $[-h, 0]$ into $R^{3}$ .

It is easy to check that the solution $(S(t), I(t),$ $R(t))^{\tau}$ of (1) satisfying
the initial condition (2) exists and is unique for all $t\geq t_{0}$ (see [6] or [8]).
Also it is trivial that the solution is positive, that $\mathrm{i}\mathrm{s}^{l},$ $S(t)>0,$ $I(t)>0$
and $R(t)>0$ for all $t\geq t_{0}$ .

Let us consider the nonnegative equilibrium points of system (1).
System (1) always has a trivial equilibrium point

$E_{0}=(0, \cdot 0,0)$

which exhibits extinction of the population.
If $b=\mu_{1}$ , then for any $s>0$ ,

$E_{s}=(s, 0,0)$

is a boundary equilibrium point (the disease free equilibrium point) of
(1).
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If
$\mu_{1}<b<\mu 3(\mu 2+\lambda)/(\mu_{3}+\lambda)$ , (3)

then system (1) also has a positive equilibrium point (the endemic equi-
librium point)

$E_{+}=(S^{*}, I^{*}, R^{*})$ ,

where

$s* \equiv\frac{\mu_{2}+\lambda}{\beta}$ , $I^{*} \equiv\frac{\mu_{3}(b-\mu_{1})s^{*}}{\beta S^{*}\mu 3-b(\mu 3+\lambda)}$ , $R^{*} \equiv\frac{\lambda}{\mu_{3}}I^{*}$ .

Note that $\mu_{3}(\mu_{2}+\lambda)/(\mu_{3}+\lambda)>\mu_{1}$ because of the assumption that
$\mu_{1}\leq\min\{\mu_{2}, \mu_{3}\}$ .

2. Stability analysis on $E_{0}$ and $E_{s}$

This section considers the asymptotic behavior of the solution of (1) for
the case where the endemic equilibrium point $E_{+}$ does not exist, that is,
the case where $b\underline{<}\mu_{1}$ or $b\geq\mu_{3}(\mu_{2}+\lambda)/(\mu_{3}+\lambda)$ .

First we consider stability of $E_{0}$ .

Theorem 1. (a) If $\mu_{1}>b$ , then $E_{0}$ is globally asymptotically stable.
(b) If $b>\mu_{1}$ , then $E_{0}$ is unstable.
(c) Further, if $b>\mu_{3}(\mu_{2}+\lambda)/(\mu_{3}+\lambda)$ , then $N(t)=S(t)+I(t)+$

$R(t)arrow+\infty$ as $tarrow\infty$ .

Proof. Conclusion (a) is obvious by the following inequality

$\frac{d}{dt}(S(t)+I(t)+R(t))=\frac{d}{dt}N(t)\leq-(\mu_{1}-b)N(t)$

for all $t\geq t_{0}$ .
Note that the linearized system of (1) at $E_{0}$ is

$\frac{d}{dt}S(t)=$ $(b-\mu_{1})S(t)+bI(t)+bR(t)$

$\frac{d}{dt}I(t)=$ $-(\mu_{2}+\lambda)I(t)$

$\frac{d}{dt}R(t)=$ $\lambda I(t)-\mu \mathrm{s}R(t)$ .
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We see that $E_{0}$ is unstable if $b>\mu_{1}$ .
Now let us consider the case (c). It is possible to choose a positive

constant $\epsilon$ such that $(\mu_{2}+\lambda-b)/\lambda<\epsilon<b/\mu_{3}$ by the assumption. Then,
from (1) we have that for $t\geq t_{0}$ ,

$\frac{d}{dt}(S(t)+I(t)+\epsilon R(t))$ $=$ $(b-\mu_{1})S(t)+(b-\mu_{2}-\lambda+\epsilon\lambda)I(t)$

$+(b-\epsilon\mu 3)R(t)$

$\geq$ $\delta(S(t)+I(t)+\mathcal{E}R(t))$ ,

where
$\delta=\min\{b-\mu_{1}, b-\mu 2-\lambda+\epsilon\lambda, (b-\epsilon\mu_{3})/\epsilon\}>0$

by the definition of $\epsilon$ . Thus,

$S(t)+I(t)+\epsilon R(t)arrow+\infty$ as $tarrow\infty$ ,

from which we see that

$S(t)+I(t)+R(t)arrow+\infty$ as $tarrow\infty$ .

This proves Theorem 1.

Next, let us consider the remaining case where no endemic equilibrium
point exist.

Theorem 2. If $\mu_{1}=b$ , then for any solution $(S(t), I(t),$ $R(t))^{\tau}$ of
(1) , there is some constant $c\geq 0$ such that $c\leq S^{*}=(\mu_{2}+\lambda)/\beta$ and

$\lim_{tarrow+\infty}s(t)=c$ , $\lim_{tarrow+\infty}I(t)=\lim_{tarrow+\infty}R(t)=0$ .

Proof. Set

$G=\{_{\Psi}=(\varphi 1, \varphi 2, \varphi 3)\in C|\varphi_{1}\geq 0, \varphi_{2}\geq 0, \varphi_{3}\geq 0\}$ .

Clearly, $G$ is invariant for (1). Moreover, we can easily show that the
solutions of (1) are bounded when $\mu_{1}=b$ . For $\varphi\in G$ , let us define the
following Liapunov function

$V(\varphi)=\varphi_{1}(0)+\omega 1\varphi 2(0)+\omega 2\varphi 3(0)+\omega_{3}(\varphi_{1}(0)+\varphi 2(0))$,
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where $\omega_{1},$ $\omega_{2}$ and $\omega_{3}$ are some positive constants chosen later. Then, the
time derivative of $V(\varphi)$ along the solutions of (1) is

$\dot{V}(\varphi)|_{(1)}$ $=$ $-(1- \omega_{1})\beta\varphi_{1}(0)\int_{0}^{h}f(S)\varphi 2(-S)ds$

$-[\omega_{1}(\mu 2+\lambda)+\omega_{3}(\mu 2+\lambda-b)-\omega_{2}\lambda-\mu 1]\varphi 2(0)$

$-[\omega_{2}\mu_{3}-\omega 3\mu 1^{-}\mu_{1}]\varphi_{3(\mathrm{o}})$ .

Here we used the condition $\mu_{1}=b$ . It is possible to choose $\omega_{i}>0$

$(i=1,2,3)$ such that
$\omega_{1}<1$ ,

$\omega_{1}(\mu_{2}+\lambda)+\omega_{3}(\mu 2+\lambda-b)-\omega_{2}\lambda-\mu_{1}>0$

and
$\omega_{2}\mu_{\mathrm{s}}-\omega_{3}\mu 1-\mu_{1}>0$ ,

because of $\mu_{1}=b\leq\min\{\mu_{2}, \mu_{3}\}$ . Thus, $V(\varphi)$ is a Liapunov function on
the subset $G$ in $C$. Let

$Q=\{\varphi\in G|\dot{V}(\varphi)|_{(1})=0\}$ .

Then, $\dot{V}(\varphi)=0$ if and only if $\varphi_{1}(0)=\varphi_{2}(0)=\varphi_{3}(0)=0$ or $\varphi_{3}(0)=$

$\varphi_{2}=0$ . If $\varphi_{1}(0)=\varphi_{2}(0)=\varphi_{3}(0)=0$ , then $\varphi_{1}=\varphi_{2}=\varphi 3=0$ by (1). If
$\varphi_{3}(0)=\varphi_{2}=0$ , then, again by (1) and $\mu_{1}=b$ , we have that $\varphi_{3}=0$ and
$\dot{\varphi}_{1}(0)=0$ , which implies that $\varphi_{1}\equiv c\geq 0$ for some constant $c$ . Therefore,
by the Liapunov-LaSalle invariance principle for functional differential
equations (see, for example, [8]) we have that

$\lim_{tarrow+\infty}s(t)=c$ , $\lim_{tarrow+\infty}I(t)=\lim_{tarrow+\infty}R(t)=0$ .

Now let us further show that $c\leq S^{*}=(\mu_{2}+\lambda)/\beta$ , which actually
gives an eventual upper bound on $S(t)$ .

In fact, if $c>(\mu_{2}+\lambda)/\beta$ (hence, $c\neq 0$), then for sufficiently small
$\epsilon>0$ , there is a sufficiently large $\overline{t}>t_{0}$ such that $S(t)\geq c-\epsilon>0$ and
$\beta(c-\epsilon)-(\mu_{2}+\lambda)>0$ for $t\geq\overline{t}$. Thus, from (1) we have that for $t\geq\overline{t}$,

$\frac{d}{dt}I(t)\geq\beta(c-\epsilon)\int_{0}^{h}f(_{S})I(t-S)d_{S-}(\mu 2+\lambda)I(t)$ . (4)
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Define

$W(t)=I(t)+ \beta(c-\epsilon)\int_{0}^{h}f(s)\int_{t-s}^{t}I(u)duds$ .

Then, it is easy to see that for $t\geq t_{0},$ $W(t)>0$ and $\lim_{tarrow+\infty}W(t)=0$ ,

since $\lim_{tarrow+\infty}I(t)=0$ and $h$ is finite.
On the other hand, from (4) we have that the time derivative of $W(t)$

along. the solutions of (1) for $t\geq\overline{t}\mathrm{b}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{s}$

$\dot{W}(t)|_{(1})\geq(\beta(c-\epsilon)-(\mu_{2}+\lambda))I(t)>0$ ,

which clearly implies that $\lim_{tarrow+\infty}W(t)>0$ . This is a contradiction to
that $\lim_{tarrow+\infty}W(t)=0$ . This proves that $c\leq S^{*}=(\mu_{2}+\lambda)/\beta$. The proof
of Theorem 2 is completed.

3. Convergence on $E_{+}$

$\ln$ the following, we assume (3), that is, that there exists $E_{+}$ and consider
its stability property.

By changing the variables as follows:

$S(t)-s^{*}=x(t)$ , $I(t)-I^{*}=y(t)$ , $R(t)-R^{*}=z(t)$ ,

system (1) becomes

$\frac{d}{dt}x(t)=$ $-(\beta I^{*}+\mu_{1}-b)x(t)+by(t)+bz(t)$

$- \beta S^{*}\int_{0}f(s)y(t-S)ds-\beta X(t)h\int_{0}f(s)y(t-s)d_{S}h$

$\frac{d}{dt}y(t)=$ $\beta I^{*}X(t)-(\mu 2+\lambda)y(t)$ (5)

$+ \beta S^{*}\int^{h}0(f(s)y(t-s)ds+\beta xt)\int_{0}htf(s)y(-s)d_{S}$

$\frac{d}{dt}z(t)=$ $\lambda y(t)-\mu_{3}Z(t)$ .

D.efin.e
$X(t)=$ ,
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$A=$,

$GX_{t}=(- \beta\int_{0^{h}}f\beta S^{*}\int_{S^{*}}0fh(s_{S}()\int t-sy(t))\int_{0}t-sty(u)duduudSd_{S})$ ,

$F(X_{t})=(- \beta X(t)\int_{f\beta x(t)\int 0h}\mathrm{o}^{h}f(S)y(t-(S)\mathrm{o}y(t-S)s)d_{S}dS)$ .

We have the following neutral functional differential equation by (5)

$\frac{d}{dt}(X(t)-GX_{t})=AX(t)+F(X_{t})$ . (6)

Let us first show that $A$ is a stable matrix. In fact, it is easy to find
that the characteristic equation of $A$ is

$\Lambda^{3}+a_{1}\Lambda^{2}+a_{2}\Lambda+a_{\mathrm{s}0}=$ ,

where
$a_{1}=\beta I^{*}+\mu_{1}-b+\mu_{3}>0$ ,

$a_{2}--\mu_{3}(\beta I*+\mu 1-b)+\beta I*(\mu_{2}+\lambda-b)>0$

and
$a_{\mathrm{s}=}\beta I^{*}(\mu 3(\mu_{2}+\lambda)-b(\mu_{3}+\lambda))>0$

by (3). Furthermore, after a lengthy computation, we can show that

$a_{1}.a_{2}-a_{3}$
$=$ $\frac{\mu_{3}(b-\mu_{1})}{(\mu_{3}(\mu_{2}+\lambda)-b(\mu 3+\lambda))^{2}}\{b(b-\mu_{1})(\mu 3+\lambda)$

$\cross[b(\mu_{3}\dashv-\lambda)+(\mu 2+\lambda)(\mu_{2}+\lambda-b)]$

$+b(\mu_{3(+}\mu_{2}\lambda)-b(\mu \mathrm{s}+\lambda))$

$\cross[(\mu_{2}+\lambda)(\mu 3+\lambda)+\mu \mathrm{s}(\mu_{3}-\mu 2)]\}$

$>$ $0$ .

This shows that $A$ is a stable matrix.
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From the stability of matrix $A$ , we can find a positive definite sym-
metric matrix $W$ such that

$A^{T}W+WA=-2E$ ,

where $E$ is a unit matrix.
The following inequalities will be used.

Lemma 3. For any vectors $X,$ $Y\in R^{2}$ and real matrix $Q=(q_{ij})_{2\mathrm{x}2}$ ,

$x^{\tau_{Q\leq}}x||X||||Q||||Y||$ ,

where where $||.||$ denotes $a$ Euclidean matrix or vector norm.

Lemma 4 [10].
‘

For any constants $a>0,$ $b\geq 0an\dot{d}c\geq 0$ ,

$-ac^{22}+bC \leq-\frac{1}{2}aC+\frac{b^{2}}{2a}.\cdot$

The following theorem shows that $E_{+}$ is locally asymptotically stable
for a sufficiently small delay $h$ .

Theorem 5. (a) If delay $h$ is small enough such that

$h< \min\{\frac{1}{\beta S^{*}},$ $\frac{1}{\sqrt{2}\beta S^{*}||ATW||}\}$ ,

then the trivial solution of (6) is locally asymptotically stable.
(b) For sufficiently small positive $co’\gamma\prime Star\iota t\delta$ and delay $h$ such that

$h\beta S^{*}<1$ and

$\sqrt{2}\beta\delta||W||+h\beta S*(\sqrt{2}||A^{\tau_{W}}||+2\beta\delta||W||)<1$ , (7)

there exists an attractive region $D=D(\delta)\subset C$ for the solutions of (6),
that is, for any $\varphi\in D$ , solution $X(t)=(x(t), y(t),$ $Z(t))^{\tau}$ of (6) with the
initial function $\varphi$ satisfies that

$\lim_{tarrow+\infty}x(t)=\lim_{\infty tarrow+}y(t)=\lim_{tarrow+\infty}z(t)=0$ .
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Here the region $D$ is given $e\varphi li_{C}i\mathrm{t}ly$ by the parameter values.

Proof. Let us flrst prove (b).

Define the Liapunov functional

$V(X_{t})$ $=$ $(X(t)-Gx_{t})^{T}W(X(t)-Gxt)$

$+k \int_{0}^{h}f(S)\int_{t-\mathit{8}}^{t}\int_{r}^{t}y^{2}(u)dudrd_{S}$ ,

where $k$ is some positive constant chosen later. For any $X\in R^{3}$ , let us
use the notation $||X||$ as a Euclidean norm of $X$ . Thus, it follows from
Lemma 3 that the time derivative of $V(X_{t})$ along the solutions of (6)
becomes for $t\geq t_{0}$ ,

$\dot{V}(X_{t})|_{(6)}$ $=$ $-2||X(t)||^{2}-2x^{T}(t)A^{\tau}W(cX_{t})$

$+2F^{T}(X_{t})WX(t)-2F^{T}(X_{t})W(Gx_{t})$

$+kJ_{0}^{h}sf(s)d_{S} \prime y(2t)-k\int_{0}^{h}f(s)\int_{t-s}^{t}y^{2}(u)dudS$

$\leq$ $-2||X(t)||2+2||A^{T}W||||X(t)||||GX_{t}||$

$+2||W||||X(t)||||F(Xt)||+2||W||||GXt||||F(Xt)||$

$+k \int_{0}^{h}sf(S)dsy(2)t-k\int_{0}^{h}.f(S)\int_{t_{-S}}^{t}y^{2}(u)duds$ .

Clearly, we have for $t\geq t_{0}$

$||GX_{t}||= \sqrt{2}\beta S*\int_{0}^{h}f(s)\int_{t-s}^{t}|y(u)|duds$ .

lf

$||y_{t}||=_{0\leq} \max|s\leq hy(t-s)|\leq\delta$

for $t\geq t_{0}$ and for some positive constant $\delta$ , then

$||F(x_{t})||=\sqrt{2}\beta|X(t)|J\mathrm{o}|f(s)|y(t-S)dSh\leq\sqrt{2}\beta\delta||x(t)||$.

Hence, by condition (7), whenever $||y_{t}||\leq\delta$ for $t\geq t_{0},\mathrm{w}\mathrm{e}$ have

$\dot{V}(X_{\dot{t}})|_{(6)}$
$\leq$ $\int_{0}^{h}f(s)\{-2(1-\sqrt{\underline{9}}\beta\delta||W||)||x(t)||2$

$+2 \beta S^{*}(\sqrt{2}||A^{T}W||+2\beta\delta||W||)||X(t)||\int_{t-s}^{t}|y(u)|du\}ds$

$+k \int_{0}^{h}sf(s)dsy(t)2-k\int_{0}^{h}f(s)\int_{t-s}^{t}y^{2}(u)duds$ . (8)
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By using Lemma 4, we see that whenever $||y_{t}||\leq\delta$ for $t\geq t_{0}$ ,

$\dot{V}(X_{t})|(6)$ $\leq$ $\frac{1}{1-\sqrt{2}\beta\delta||W||}\int_{0}^{h}f(S)\{-(1-\sqrt{2}\beta\delta||W||)||x(t)||22$

.

$+( \beta S^{*})2(\sqrt{2}||ATW||+2\beta\delta||W|-|)^{2}(\int_{t-s}^{t}|y(u)|du)^{2}\}dS$

$+k \int_{0}^{h}sf(s)dSy^{2}(t)-k\mathit{1}_{0}^{h}f(S)\int_{t-s}^{t}y(2u)dudS$

$\leq$ $\frac{1}{1-\sqrt{2}\beta\delta||W||}\{-(1-\sqrt{2}\beta\delta||W||)2(||Xt)||2$

$+h( \beta S^{*})^{2}(\sqrt{2}||A^{\tau_{W}}||+2\beta\delta||W||)2\int_{0}^{h}f(s)\int_{t-s}ty2(u)dudS\mathrm{I}$

$+khy^{2}(t)-k \int_{0}^{h}f(s)\int_{t-s}^{t}y^{2}(u)duds$ . (9)

We have used Schwartz’s inequality in the last inequality of (9). Now let

us choose a positive number $k$ as

$k= \frac{h(\beta S^{*})2(\sqrt{2}||A\tau W||+2\beta\delta||W||)2}{1-\sqrt{2}\beta\delta||W||}$ ,

which is positive by assumption (7). From (9) and $k$ defined by the above,

we have that whenever $||y_{t}||\leq\delta$ for $t\geq t_{0}$ ,

$\dot{V}(X_{t})|_{(6})$ $\leq$ $\{-[(1-\sqrt{2}\beta\delta||W||)^{2}-(h\beta S^{*})^{2}(\sqrt{2}||A^{\tau_{W}}||+2\beta\delta||W||)2]y2(t)$

$-(1-\sqrt{2}\beta\delta||W||)^{2}(x^{2}(t)+z^{2}(t))\}/(1-\sqrt{2}\beta\delta||W||)$ . (10)

Thus, it follows from (7) and (10) that whenever $||y_{t}||\leq\delta$ for $t\geq t_{0}$ ,

$\dot{V}(X_{t})|_{(6)}\leq-\eta(x^{2}(t)+y^{2}(t)+z^{2}(t))$ (11)

for some positive constant $\eta$ .
Let us now show that there is a subset $D=D(\delta)$ of $C$ such that

for any $\varphi=(\varphi_{1}, \varphi_{2}, \varphi_{\mathrm{s}})^{T}\in D$ , solution $X(t)=(x(t), y(t),$ $Z(t))^{\tau}$ of (6)
through $(t_{0}, \varphi)$ must satisfy $||\prime y_{t}||\leq\delta$ for $t\geq t_{0}$ .

In fact, we can choose $D$ as follows:

$D=\{\varphi\in C$ $|$ $||\varphi(0)-G\varphi||<\mathit{6}(1-\beta S^{*}h)$ ,

$V(\varphi)<L$ , $||\varphi||\leq\delta(1-\beta S*h)\}$ , (12)
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where $L$ is defined as

$L$ $=$
$|| \varphi(0)-G\varphi||=\inf_{\delta(1\beta h)}-S^{*}V(\varphi)$

$\geq$ $|| \varphi(0)-c_{\varphi}||\inf_{h=\delta(1}-\beta S^{*})\{(\varphi(0)-^{c)^{\tau}}\varphi W(\varphi(\mathrm{o})-G\varphi)\}>0$ ,

since $1>\beta S^{*}h$ and $W$ is positive definite.
Let us first show that $\varphi=(\varphi_{1}, \varphi_{2}, \varphi_{3})T\in D$ implies that for $t\geq t_{0}$ ,

$||X(t)-cXt||\leq\delta(1-\beta S^{*}h)$ . (13)

If not, there is some $\overline{t}>t_{0}$ such that (13) holds for $t_{0}\leq t\leq\overline{t}$, and
$||X(\overline{t})-c\prime X_{\overline{t}}||=\delta(1-\beta s^{*}h)$ . Thus, $V(X_{\overline{t}})\geq L$ .

On the other hand, it follows from (13) that for $t_{0}\leq t\leq\overline{t}$,

$|y(t)|$ $\leq$ $\delta(1-\beta S^{*}h)+\beta S^{*}\mathit{1}_{0}^{h}f(S)\int_{t-s}^{t}|y(u)|duds$

$\leq$
$\delta(1-\beta S^{*}h)+\beta S^{*}h\mathrm{m}\mathrm{a}\mathrm{x}0\leq s\leq h|y(t-s)|$

$\leq$
$\delta(1-\beta s\star h,)+\beta S^{*}h\max_{t0-h\leq s\leq t}|y(S)|$ .

Thus, for $t_{0}\leq t\leq\overline{t}$,

$\max_{t\mathrm{o}-h\leq s\leq t}|y(s)|\leq\delta(1-\beta S^{*}h)+\beta S^{*}h\max_{t\mathrm{o}-h\leq s\leq t}|y(s)|$,

from which we have that for $t_{0}\underline{<}t\leq\overline{t}$ ,

$||y_{t}|| \leq_{t_{0}}\max_{-hs\leq t}|\leq y(S)|\leq\delta$ . (14)

Therefore, it follows from (8) that

$V(X_{\overline{t}})<V(\varphi)<L$ ,

which contradicts to $V(X_{\overline{t}})\geq L$ . This proves that (13) holds for $t\geq t_{0}$ .
By the same argument as used in (14) we can show that $||y_{t}||\leq\delta$ for

$t\geq t_{0}$ . From (11) we have that

$\int_{t_{0}}^{+\infty}(x^{2}(t)+y^{2}(t)+z^{2}(t))dt<+\infty$.
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Let us further show that for any $\varphi\in D$ , the solution $(x(t), y(t),$ $Z(t))^{\tau}$

of (6) through $(t_{0}, \varphi)$ is bounded.
$\ln$ fact, it is easy to see that there are two positive constants $M_{1}$ and

$M_{2}(M_{1}\geq M_{2})$ which are independent of $\varphi$ such that for $t\geq t_{0}$ ,

$M_{2}^{2}||X(t)-GX_{t}||2\leq V(X_{t})<V(\varphi)\leq M_{1}^{2}||\varphi||^{2}$ .

Thus, we have that for $t\geq t_{0}$ ,

$|X(t)|$ $\leq$ $h \beta S^{*}\max_{h}0\leq s\leq|y(t-s)|+\frac{M_{1}}{M_{2}}||\varphi||$

$\leq$ $h \beta S^{*}\max_{t\mathrm{o}-h\leq s\leq t}|y(_{S})|+\frac{M_{1}}{M_{2}}||\varphi||$ , (15)

$|y(t)|$ $\leq$ $h \beta S^{*}\max_{h}0\leq S\leq|y(t-s)|+\frac{M_{1}}{M_{2}}||\varphi||$

$\leq$ $h \beta S^{*}\max_{t0-h\leq s\leq t}|y(_{S})|+\frac{M_{1}}{M_{2}}||\varphi||$ , (16)

and
$|z(t)| \leq\frac{l\mathcal{V}l_{1}}{l\backslash l_{2}}||\varphi||$ . (17)

Clearly, (15) and (16) imply that for $t\geq t_{0}$ ,

$|y(t)| \leq\max_{t\mathrm{o}-h\leq s\leq t}|y(_{S})|\leq\frac{M_{1}}{M_{2}(1-\beta S^{*}h)}||\varphi||$ ,

$|x(t)| \leq\frac{M_{1}}{M_{2}(1-\beta S^{*}h)}||\varphi||$ ,

which together with (17) shows boundedness of $(x(t), y(t),$ $Z(t))^{\tau}$ .
Note that from (6) , we see that $\frac{d}{dt}(x^{2}(t)+y^{2}(t)+z^{2}(t))$ is also bounded

for $t\geq t_{0}$ . By the well-known $\mathrm{B}\mathrm{a}\mathrm{r}\mathrm{b}\check{\mathrm{a}}1\mathrm{a}\mathrm{t}_{\mathrm{S}}$
’ lemma [2], we have that

$\lim_{tarrow+\infty}(X^{2}(t)+y^{2}(t)+z^{2}(t))=0$ . This proves (b).
Conclusion (a) immediately follows from (7) , (15) , (16) and (17)

as long as we choose $\delta$ sufficiently small. The proof of Theorem 5 is
completed.
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