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Radial symmetry of positive solutions for semilinear elliptic equations in R"

P KE T Wik A ( Yuki Naito)

1. Introduction and statement of the results. In this note we consider the sym-
metry properties of positive solutions for the equation of the form

Au+ ¢(|z]) f(u) =0 | (1.1)

in R*, where n > 3, A is the n-dimentional Laplacian, and |z| denotes the Euclidean
length of z € R". In equation (1.1), we assume that ¢ # 0 is a locally Holder continuous
function on [0, 00) which satisfies

¢(r) >0forr >0 and ¢(r)is nonincreasihg inr >0,

and that f € C1(]0,00)) with f(u) > 0 for u > 0. 4
The problem of existence of positive solutions of equation (1.1) has been studied exten-
sively. It has been shown in [4, 5, 12] that if

/Ooo ré(r)dr < oo ; (1.2)

then, under some additional conditions on f, (1.1) has infinitely many bounded positive
solutions in R".
Our main result is the following, which is a slight extension of [10, Theorem 5.16).

Theorem. Assume that (1.2) holds. Then all bounded positive solutions of (1.1) in R"
are radially symmetric about the origin.

We give some corollaries of the theorem. First assume that (1.1) has a bounded positive
solution u in R" satisfying
lim inf u(z) > 0. (1.3)

|z|—o0
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Then, by Lemma B.1 in Appendix B, we get (1.2). Thus we obtain the following

Corollary 1. Assume that (1.1) has a bounded positive solution u in R™ satisfying (1.3).
Then all bounded positive solutions are radially symmetric about the origin. :

Next, we consider the case where f(0) > 0. Assume that (1.1) has a bounded positive
solution v in R™. Then, by Lemma B.2 in Appendix B, we get (1.2). Thus we obtain the
following

Corollary 2. Assume that f(0) > 0. Then all bounded positive solutions of (1.1) in R"
are radially symmetric about the origin.

Remark. For the case f(u) = e?¥, precise existence and nonexistence criteria for positive
solutions of (1.1) are obtained in [8, Theorems 1.4 and 1.5].

Symmetry properties of solutions of semilinear elliptic equations in 2" have been studied
by several authors [1-3, 6-11, 16-18]. Their arguments are based on the moving plane
method first developed by Serrin [16] in PDE theory, and later extended and generalized
by Gidas, Ni, and Nirenberg [2, 3]. In this note, we present an approach based on the
maximum principle on unbounded domains together with the method of moving plane.
This approach helps us to improve the previous results and simplify the proofs.

In Section 2, we investigate the asymptotic behavior of positive solutions of (1.1). In
Section 3, we prove the main Theorem by using the method of moving planes. We give the
maximum principle on unbounded domains in Appendix A, and show the conditions which
are equivalent to (1.2) in Appendix B.

2. Asymptotic behavior of positive solutions. We show the following proposition.

Proposition. Assume that (1.2) holds. Let u be a bounded positive solution of (1.1) in
R". Then limgj—o u(z) = ¢ and u(z) > ¢ in R™ for some constant ¢ > 0.

In order to prove this, we first prove the following lemma.

Lemma 1. Let g be a continuous function in R", and let w be the Newtonian potential of

g, te.,
9ly)
w(:v) C’IL/R y|n_2 Y,

n |z —
where ¢, = [n(n — 2)w,]™! and w, is the volume of the unit ball in R™. Assume that there
is a nonnegative nonincreasing function G on [0, 00) satisfying

9(z) < G(lz|), =€ R" /0 " rG(r)dr < oo. (2.1)
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Then w is well defined and satisfies

lim w(z) = 0. (2.2)

|2|—00

Proof. By (2.1); for any € > 0 there exists R > 0 satisfying

cn/ rG(r)dr < 35 and 3" 2cn T'G( Ydr < %5. : - (2.3)
From (2.1);, we have
_G(wl)
<
Oy =

We decompose the integral as follows:

G(lyD) '
< + =
lw(z)| < ca (/ /92 /g‘z) |z — y|»— T W =L+ L+,

where , {2, and )3 are defined as

r n n 1
G ={yeR": |yl <3R}, L={yeR":lyl23R |z—yl=zhl}

1
Q={yeR": |y 23R, |[r—y| < glyl}-

We estimate I, I 2>, and I3 as follows. Since limy|— [1 = 0, there exists Ry > 3R so that

1
I, < 58 for IIL“ >Ry (24)
From (2.3) we obtain
L <3, [ GUyl) 4 < gn-2c, [ retwar < L (2.5)
Q. |y|n? 3R 3

For y € Qs, since |y| — |z] < |y — z| < |y, we see that
2
2yl <lal. (2.6)
Then, for y € Q3 and r € [0, 3|y|], we have
2 1 1 1 1
ol —=r > Zlyl =gyl =gl 27 end |zl -2lyl2 w2 R (27)
Since G is nonincreasing and |y| > |z| — |z — y|, it follows that

— |z - Lyl '
I3 < cn Glal = |2 _2y|)dy = Cn/3 " rG(le| - r)dr
Q3 |z —y|™ 0
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From (2.7) and (2.3); we obtain

s)ds < ¢y, /Roo sG(s)ds < ls. (2.8)

< e [ (ol = 1)Gsl =y = [ 3

I—-Iyl

Then by (2.4), (2.5), and (2.8), we have |w(z)| < € for |z| > R;. Since € > 0 is arbitrary,
we conclude that (2.2) holds. o .

Proof of Proposition. Let v be the Newtonian potential of ¢f(u), i.e.,

$(f @) )

U(.’E) = Cp o lx — yln~2

Define fs = max{f(s) : 0 < s < ||ullzem}. Then ¢(|z|)f(u(z)) < é(|z])fe in R". Since
¢ is nonincreasing and (1.2) holds, we obtain

lim v(z) =0 (2.9)

|z|—o00

by Lemma 1. It is easily seen that v satisfies Av+¢f(u) = 0in R". We have A(u—v) =0
in R™ while u — v is bounded in R" by (2.9). Then by Liouville’s theorem we obtain

u(z) —v(z) =c in R", (2.10)

where ¢ is a constant. From (2.9) we conclude that u(z) — ¢ as |z| — oco. Observe that v
satisfies Av = —¢f(u) <0 and v > 0 in R". By the maximum principle, we have v > 0 in
R". From (2.10) we conclude that u(z) > cin R". '

3. Proof of the theorem. First, we introduce some notation. For A € R, we define
Ty and Xy as

Th={z=(z1,...,2,) ER":2; =2} and I, ={z.€ R":z; <A},

For z = (%1,...,%,) € R" and X € R, let 2* be the reflection of z with respect to the
hyperplane T}, i.e., z* = (2 — 21, Z2,...,Zy). It is easy to see that, if A > 0,

|z*| — || > 0 for z € . . (3.1)

Let u be a bounded positive solution of (1.1) in R". By the propsition in Section 2, we
have
lim u(z) =c>0 and wu(z)>c in R" (3.2)

|| —00

for some constant ¢. We define

ua(z) = u(z) —u(z)) for x € Ty.
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Lemma 2. Let A > 0. Then vy, satisfies
Avy + CA(ZI))’U)‘ <0 in 2y, (3.3)

where

ex(@) = 9(lzl) [ F (u(a?) + t(u(e) - u(z) dt. (34

We note that cy(z) is well defined in R™.

Proof. Since ¢ in nonincreasing and (3.1) holds, it follows that
0 = Au(z)+¢(|z]) f(u(z)) — Au(*) — ¢(|2*]) f (u(2?))
> A (ue) - u(z) + (lal) (f(u(z) - f(u(z"))
= Av(z) +ea(z)(z), €Sy,

where ¢, (z) is the function in (3.4).

Lemma 3. Assume that (1.2) holds.- Then there ezsits a positive function w(z) on{z €
R : |z| > ro} satisfying for some 19 > 0 and for any A > 0 '

Aw+c(z)w <0 inl|z| > and llil?infw(a:) > 0. (3.5)
Proof. Define go, = max{|f'(s)|: 0 < s < ||u||g~(z)}. Then from (3.4) we have
lea(z)] € goo(|z]) in R* for any A > 0. (3.6)

Now consider the equation
Aw+ god(lzfw =0. (3.7)

By applying Lemma B.1 in Appendix B to (3.7), we find that (3.7) has a positive solution
w on {|z| > 7o} for some ry > 0, satisfying liminf|, . w(z) > 0. By (3.6), w satisfies
(3.5).

Define By = {z € R" : |z| < ro}, where 7 is the constant appearing in Lemma 3.
Lemma 4. Let A > 0. Assume that vy(z) > 0 on By N Xy. Then vy(z) > 0 in Ty \ Bo.

Proof. By Lemma 2 we obtain

Avy +cx(z)vy <0 in Iy \ By, vy >0 on dByNI,.
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By Lemma 3, there is a positive function w satisfying
Aw+cy(z)w <0 in Xy \ B,.
From (3.2) and (3.5) we see that

ua(z)  u(z)—c

w(@) = " w@) —0 as|z|] - 0.

By applying Lemma A in Appendix A with Q = %, \ By, we get vy > 0 in X, \ By.

Define
A={A€(0,00) : up(z) >01in X,}.

Lemma 5. If A € A, then there exists zg € Xy N By such that vy(zg) < 0

Proof. Assume to the contrary that vy(z) > 0 on ¥, N By. Then by Lemma 4 we have
va(z) > 0in X \ By. Therefore, vy(z) > 0 in X5, which contradicts the assumption A & A.

Lemma 6. Let A € A. Then Ou/0z1 <0 on T).

Proof. By Lemma 1, we have (3.3) and vy > 0in X,. Since vy = 0 on T}, we obtain
Ov/0z1 < 0 on T) by the Hopf boundary lemma ([2, Lemma H]). Therefore

Ou 10w,

%_1—_56_{1}1_<0 on Tj.

Proof of the theorem. Since (3.2) holds, there exists r; > 7o such that
max{u(z) : |z| > 7} < min{u(z) : |z| < ro}, (3.8)

where 7 is the constant appearing in Lemma 3. We now divide the proof into several steps.

Step 1. [r;,00) C A.

Let A > r;. We note that By C ). From (3.8), we have v > 0 in By. Then by Lemma
4 we have vy > 0 in %, \ By. Therefore v > 0 in %y, i.e., A € A. This implies that
[r1,00) C A. :

Step 2. Let A\g € A. Then there exists € > 0 such that (A — €, Ag] C A.
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Assume to the contrary that there exists an increasing sequence {\;}, 1 =1,2,..., such
that A; € A and A\; — )¢ as ¢ — 0co. By Lemma 5 there exists a sequence {3:,} i = 1 2, -
such that z; € X5, N By and vy, (x;) < 0. Then there is a subsequence, which we again call
{z;} which converges to some point zg € Xy, N By. We have vy,(zo) < 0. Since vy, > 0 in
Yxo, We must have zy € T),.

By the mean value theorem, there exists a point y; satisfying (Ou/0z1)(y;) > 0 on the
straight segment joining z; to z; X for each i = = 1,2,.... Since y; — xg as i — 00, we
have (0u/0z1)(zo) > 0. On the other hand, since zy € T,\o we have (0u/0z;)u(zo) < 0 by
Lemma 6. This is a contradiction, and Step 2 is established.

Step 3. We have
u(z) > u(z) in . (39

Let \; = inf{\A > 0: (\,00) C A}. We show that A; = 0. Assume to the contrary that
A1 > 0. From the continuity of u, we have vy, (z) = u(z) — u(z*) > 0 in %,,. By Lemma
2, we obtain (3.3) with A = A;. Hence, by the maximum principle ([2]), we have either

vy, =0 in %y, ie., u(z)=u(z™) inX,, or | (3.10)

vy, >0 in Xy, ie., u(z)>u(zM) in ),. (3.11)

If (3.10) occurs, by (1.1) we have ¢(|z|) f(u(z)) = @(|z*|) f(u(z)) for z € T),. Because

f(u(z)) > 0, we have ¢(|z|) = #(Jz*1|) in ),. Since ¢ is nonincreasing, we see that

¢(r) = ¢(0) for r > 0. By (1.2), ¢(r) = 0 for r > 0. This contradicts the assumption
¢ # 0. Therefore (3.10) cannot happen.

On the other hand, if (3.11) occurs. Then, A\; € A. From Step 2, there exists € > 0 such
that (A; — &, A\1] C A. This contradicts the definition of A;.

Therefore, we conclude that A\; = 0. Thus, u(z) > u(z*) in ¥y for A > 0. By the
continuity of u, we obtain (3.9).

We can repeat the previous Steps 1-3 for the negative z-direction to conclude that
u(z) < u(z?) for z € Xy. Hence, from (3.9), u must be symmetric about the plane z; = 0.
Since the equation in (1.1) is invariant under rotation, we may take any direction as the
x1-direction and conclude that u is symmetric in every direction. Therefore, u must be
radially symmetric about the origin.

Appendix A. Let 2 be an unbounded domain in R", and let Lu = Au + c(z)u, where
c € L®(Q).

Lemma A. Suppose that u satisfies Lu < 0 in Q and u > 0 on 02. Suppose, furthermore,
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that there ezists a function w such that w >0 on QUOQ and Lw <0 in Q. If

:—)—((%—m as|m|—‘+‘oo,:c€7(2, | | (A1)

then u > 0 in Q.

Rémark. If Q is bounded, we do not require the condition (A.1). See [15, Chap. 2,
Theorem 10).

Proof. First we show that u > 0 in Q. Assume to the contrary that u(z,) < 0 for some
g € . Choose 6§ > 0 so that
' u(zg) + dw(zo) = 0. (A.2)

From (A.1), there exists R > |zo| satisfying u(z) + dw(z) > 0 on {|z| = R} N Q. Define
Br = {z € R": |z| < R}. Then u+ 6w satisfies L(u + éw) < 0 on QN Bg and v+ dw > 0
on 8(Q N Bg). By [15, Chap.2, Theorem 10], (u + dw)/w cannot attain a nonpositive
minimum at an interior point of Q N B unless it is a constant. This contradicts (A.2).
Therefore, u > 0 in Q. By the maximum principle ([2]), we conclude that © > 0 in €.

Appendix B. Conditions which are equivalent to (1.2).

Lemma B.1. Equation (1.1) has a bounded positive solution u on {x € R" : || > 1o} for

some 19 > 0 satisfying
liminf u(z) >0 (B.1)

z]—00

if and only if (1.2) holds.

Proof. Assume that u is a bounded solution of (1.1) on {|z| > 7o} satisfying (B.1). Let @
be the spherical mean of u, i.e.,
: 1
u(r) = /II u(z)dS for r > 1y,

Nwpr™t

where w,, is the volume of the unit ball in R". Then, % satisfies
(r" @) + r"lp(r)h(r) =0, r> g, (B.2)

where
1

h(r) = /Izl=r f(u(z))dS for r > r.

w1

(See, e.g., [13, 14].) Since u is bounded, by integrating (B.2) we obtain

o0

/T:O rl=n /TT s" 1 @(s)h(s)dsdr = 1 s¢(s)h(s)ds < oo. (B.3)

0 n—2 T0
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From (B.1), there exists a constant ug > 0-satisfying u(z) > ug for |z| > ro. Define uq,
and fy as Ue = max{u(z) : |z| > 1o} and fo = min{f(s) : 0 < ug < s < U }. We see that
fo > 0 and h(r) > fo for 7 > ro. By (B.3) we have (1.2).
Conversely, assume that (1.2) holds. Let ¢ > 0. Define f, = max{f(s) : ¢ < s < 2c}.
Choose 79 > 0 so large that ’
(n—2)c

/m s¢(s)ds < T

Let C([ro, 00)) denote the Fréchet space of continuous functions on [rg, co) with the topol-
ogy of uniform convergence on any compact subinterval of [rg, 00). Consider the set

U= {u€ C([rg,)) : c<u(r) <2, r>r},
which is a closed convex subset of C([rg,00)). We define the operator F' on U by
= c—l—/ 1= “/ t"1(t) f(u(t))dtds, T > ro.

If u € U, then Fu(r) > c and

Fu(r) <c+ Je oosqb( )ds < 2¢, T>T0.

- n—2 T0

Thus the operator F' maps U into itself. It is easy to see that F' is continuous on U and
FU is relatively compact in the topology of C([ro,0)). By the Schauder-Tychonoff fixed
point theorem, F' has an element u € U such that u = Fu, ie., u(r) = Fu(r) for r > ro.
Then u = u(|z|) is a positive solution of (1.1) on {|z| > ro} and satisfies lim;_o u(z) = c.
This completes the proof of Lemma B.1.

Lemma B.2. Assume that f(0) > 0. Then, (1.1) has a bounded positive solution u on
{x € R": |z| > ro} for some ro > 0 if and only if (1.2) holds.

Proof. Assume that u is a bounded positive solution of (1.1) on {|z| > ro}. Let @ be the
spherical mean of u. Then by the argument in the proof of Lemma B.1 we have (B.3).
Define uo, and fy as e = max{u(z) : |z| > ro} and fo = min{f(s) : 0 < s < us}. We -
see that fo > 0 since f(s) > 0 for s > 0, and that h(r) > fo for r > ro. By (B.3) we have
(1.2).

Conversely, assume that (1.2) holds. Then by the argument in the proof of Lemma B.1,
we obtain a bounded positive solution of (1.1) on {|z| > 7o}.
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