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A PRIORI ESTIMATES AND EXISTENCE
THEOREMS FOR THE LINDBLAD EQUATION WITH
UNBOUNDED TIME-DEPENDENT COEFFICIENTS

ALEXANDER M. CHEBOTAREV!, JuLiOo C. GARCIA2, AND ROBERTO QUEZADA®

ABSTRACT. We prove new @ priori estimates for the resolvent of a class of minimal
Quantum Dynamical Semigroup (QDS). These estimates simplify the proof of the
unital property of QDS and suggest a continuity condition for time-dependent in-
finitesimal generators to ensure existence and conservativity of the Markov master
evolution equation.

§1. INTRODUCTION.

The theory of the Markov master equation has been intensively studied dur-
ing the recent years [1-10]. Important applications of this theory were contributed
to quantum chemistry [3] and quantum optics [4-6]. Numerical Monte-Carlo and
Runge-Kutta algorithms for these equations are discussed in [7-8]. One of efficient
analytical tools in the theory of master equation is the interaction representation
technique [6—-7] where the Markov master equations with time-dependent coeffi-
cients arise in a natural way. .

To study Markov master equations with unbounded t1me-dependent coefficients
describing evolution of observables from the algebra B(H) of bounded operators
or states from the algebra 7(H) of operators w1th finite trace, we introduce the
continuity conditions for the generator.

We recall that one parameter contraction semigroup P;i(-) acting in B(H) is
called a Quantum Dynamical Semigroup (QDS) if it is completely positive, normal,
conservative, and ultraweak continuous [2, 11]. Normal and ultraweak continuity
properties mean respectively that l.u.b. P;(X,) = P;(lu.b. X,,) and Tr{p(P.(B) -
B)} - 0ast — 0 for any p € T(H) and B € B(H). In the Heisenberg rep-
resentation, the conservative (or unital) property means the conservation of the
unit operator I in the algebra B(H) of observables: P;(I) = I Vt > 0; in the
Schrédinger representation, it means the conservation of the trace of an initial state
p € T(H) during the evolution: TrTi(p) = Trp t > 0, where T3: T(H) — T(H)
and P;: B(H) — B(H) are dual semigroups: Tr{Ti(p)B} = Tr{pP:(B)}. The
semigroup T; = P'r is called the predual of the semigroup P,. The dagger “I” is
used to denote predua.l operators and maps. The map P(-) with the predual PT( -)
is referred to as a completely positive (CP) if

ZTr{P(B"'B Jojoi} 20 or equivalently ZTr{B B;Pl(c;08)} >0 (L.1)

i,j 4]

Key words and phrases. Master equation, minimal resolverit, quantum dynamical sémigroup.

Typeset by AAS-TEX



45

for any finite sequences {B;} € B(H), {¢j} € To(H), where T3(H) is the Banach
algebra of Hilbert-Schmidt operators. For a bounded CP-map P(-), this definition
is clearly equivalent to the standard definition of the cone CP(H) [11]. Indeed,
the substitution a; = |[¢;){¢|, ¥j, ¢ € H, ||¢|| = 1 reduces (1.1) to the standard
definition of CP-map: Y (¥i, P(B!B;)¥;) 2 0. On the other hand, the standard
definition of CP-property and the definition of a trace implies the identity

Y Tr{Pi(B;Bj)ojoi} = Z(%’H.k, P,(B;Bj)¥jx) 20, ¥ =0jh

4Jj ki

for any complete orthonormal system {h;} in a separable Hilbert space H.

Under natural assumptions on the operator-valued coefficients of the formal
generator £(-), it was shown in [2, 12-15, 18] that there exists a minimal QDS
Pmin(.) = exp{tL(-)} defined by the Dyson series; the conservativity of this QD-
S is necessary and sufficient for the nonexistence of any other conservative QDS
with the same formal generator [12, 13, 16, 18]. Therefore, the generator of the
semigroup is called regular if the minimal QDS is conservative (unital).

In the present paper we show that it is possible, by an appropriate choice of
continuity conditions, to guarantee the existence and conservativity of the minimal
solution of the Cauchy problem for the Markov evolution equation (also known as
- the Lindblad equation) with time-dependent coefficients

8;P.(B) = L(Pi(B)),  Pi(B)|,o =B,
corresponding to the formal infinitesimal operator L:(-) :
Ly(B) = ®:(B) — ®:(I) o B +i[Hy, B], te Ry

where H; is a family of symmetric operators, and ®;(-) is a time-dependent-family
of completely positive maps. ' :

Consider the scale of Hilbert spaces -+ C Hn € Hn—1 C ... with the inner
product (%,9)n = (A™24,A™2p) and the Banach scale of trace-class operator
algebras - -+ C Tpn(H) C Tpn-1(H) C ... generated by a positive invertible self-
adjoint “reference” operator A : Tyn(H) — Tyn-2(H):

Tan(H) ={p: p=A""20A""2, ¢ € T(H), ||pllzan (1) = llollz2)}-

By Ba~(H) we denote the completion of B(H) with respect to weak” topology
generated by duality between B(H) and Ty~ (H). Thus, if p € Ty~(H) then p :
H-_n — H, is a bounded operator and A € Bp(H).

The article consists of six sections. In §2, we describe a class CPn(BA) of un-
bounded completely positive normal maps &(-) with the predual ®f(-) : Ta(H) —

T (H) which enters the generator of the Lindblad equation. We discuss in §2 prop-
erties of the trace-form Tr,{®(B)p} which are similar to properties of a quadra.tlc
form, and prove the chara.ctenstlc property for these maps:

llmTr{@“’(B)p} Te{F(B)o} = T {3(B)},
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where ®(¢)(B) is the sequence of bounded normal completely positive operators
which converges with respect to a special locally convex topology to the operator

&(B) on domA, &(B) = A~'/2®(B)A~Y/2, &(B) € Ba(H), and p € Ta(H),
p=A"12cA" 1/ 2 o € T(H). This notion plays an important role in the present
paper because the set of pure states, which enter as arguments of sesquilinear forms,
is not invariant under irreversible quantum evolution of these forms.

The main analytical assumptions on coefficients of £4(-) are introduced in §3.
We describe there an algebraic background of the theory based on properties of
minimal solutions of the resolvent equation [17, 19, 20]. In §3 and §4, we discuss
a priori estimates for the minimal solutions of the homogeneous and nonhomoge-
neous Lindblad equations.

The important observation is that the spaces Tp(H) and Ba(H) are invariant
under QDS provided there exist a constant ¢ € IR and a self-adjoint “reference”

operator A > ®(I) such that the following relative bound for quadratic forms holds
true: £(A). < cA.. More precise, we assume that

T (ALN(p)} S eTr{Ap} VpeTH(H). (12)

This bound implies the uniqueness of a solution of the Cauchy problem in the class
of dynamical semigroups under additional assumptions on the domain of A and on
the coefficients of the infinitesimal operator £(-). This solution can be constructed
as the minimal QSD, and for the corresponding representations we have

1T (p)llza < e*llellm, 1P (X)llsy < €11 X]l5a-

The continuity conditions for the family of CCP-maps £(-) with the predual
L} : Ta2(H) — T(H) are the following:

LI(-) = £I(-) can be extended as a bounded map from T4 (H) to 7 (), (1.3)

Jim ) sup [1Cen(¥) = Li(¥lle, =0 Ve 20, YeB (1.4)
—=0||y||g

are introduced in §5 to describe a class of infinitesimal operators with time-de-
pendent coefficients as a completion of the set of infinitesimal maps L:(-) with
piecewise constant coefficients ®;(-) and H, satisfying the sufficient conservativity
condition at every point ¢ € IR,. The typical temporal dependence of coefficients
of the generator in the interaction representation. The main result of this article
is the derivation of global sufficient conservativity conditions from local sufficient
conservativity conditions for equation with time-dependent coefficients. In §6 we
consider examples illustrating the main result.

The first author wishes to thank professors L. Accardi, T. Matsui and N. Obata
~ for hospitality during his visit to RIMS Kyoto in October 1997, where the main
results of this paper were presented at the Symposium ”Recent Trends in Infinite
Dimensional Non-Commutative Analysis”.
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§2. BASIC DEFINITIONS AND CONSTRUCTION OF UNBOUNDED CP-MAPS.

. In what follows, the subscript “*” is used to denote quadratic, bilinear or trace
forms; the arguments of these forms are specified in square brackets or braces.
For example, A.[p, %] = (A/%p, A1/29)) is the bilinear form generated by a pos-
itive self-adjoint operator A, dom A, = dom A!/? (see [21, 22]), and A.[p] is the
corresponding quadratic form. We write ®(I) < A if domA C dom ®(I) and
(v, (1Y) < (¥, Ay) Vi € dom A. This inequality can be extended by continuity
to all ¥ € dom A2 C dom &(I)'/2: ||®/2(I)y|| < ||AY/?9|. 1t is also convenient
to associate the bilinear form ®(B). with the CP-map ®(B) = ) A;BAx :

8(B).lo. 0] = Y dew, BAw) = Te(Be), o= 3 | Aso)(Asdl.

Let A be a positive self-adjoint operator in H such that I < ®(I) < A and let
Ha = Hi be the Hilbert space with the norm ||A||3,, = A.[h]. Consider the cone
CPn(H,) of completely positive normal maps defined in [12] as a completion of
the set CPn(H) of completely positive normal bounded maps with respect to the
locally convex topology generated by the system of seminorms

o4,8(®) = sup |2.(B)[¢]|, (2.1)
XEeB,YeA .

where A and B are absolutely convex compact subsets of the Hilbert space Ha =
H: and the Banach algebra B(H) respectively endowed with the strong operator
topology. In what follows we assume that the coefficient ®(-) of the infinitesimal
map L(-) is an element of CPn(H, ). This definition implies the normal property of
®(-).[¢] for any ¢ € dom &([)., that is

SIip ®(B,).[¢] = @(l.uﬁb. B,).[Y] V¢ € Hyp (2.2)

~ for any uniformly bounded increasing sequence of operators B, € B(H).
Let us start from “internal” the definition of the algebra 74 (H) which does not
involve the scale of Hilbert spaces.

Definition 2.1. By 73(H) C 7(H) we denote a completion with respect to the
norm || - ||z, of the linear span of the cone 7,7 (M) of positive operators p such
that o = Al/2p/2 is a Hilbert-Schmidt operator, i.e. rangep'/? C domA'/2 and
o € T,(H). We denote by ||pllr, = Tra{pA} = Tr{o*c} for p € T+

llollr, = inf Tr.{(2¢ — p)A} for a Hermitian operator p
¢eTt, T *

lollza = % (lo + p*|lza + llp = p°l|7) for arbitrary operator p € Span 7, (H). For
p € T (H) we set

Tr.{pA} = inf Tr.{(£ + £ - p)A} > 1nf 'n {gA} Tr.{pA}
' EETT, E—peT £-p€
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and p + p* = 2p, p — p* = 0. Hence, the norm is well defined because all three
equations take the same value on the cone T,F(H) of positive operators, and the
last two clearly coincide on subspace of the Hermitian operators.

Note that Tr{|p|A} is a well defined candidate to be the norm in subalgebra
TA(H) C T(H), but the triangle inequality is violated for entangled states p.

As an example in the case H = Cs, B(H) = M, one can take the entangled state
P = Pa — P, Pa = |a){a], p» = |b){(b] and any positive 2 x 2-matrix A such that
(a,b) # 0, (A}/2a, A1/2b) = 0. Straightforward computations give

loa = o5l = V1= 1{a,0)[*(pa + pc), ¢ = (b~ (a,b)a)/||b— {a,b)al];
Tr{lpa — polA} = (IIAWGH2 + I|/\1/2’>'||2)/\/1 - |{a, b)[?

provided (A!/2a, A1/2b) = 0. Therefore, Tr{|p, — ps|A} > ||A}/2a]|? + ||AY/2b]|? =
|lpallzy + [losll7y - ' |

On the other hand, here is the proof of the triangle inequality for || - ||z, for
Hermitian operators p:

inf Tr.{(2€ = p1 + p2)A}
€, E—p1+mETY

< inf Tr.{(261 + & — p1 + p2)A}
1,62, E1+E2—p1+p2 €T :

= inf Tr.{(26 — p1)A} + inf Tr.{(2&2 + p2)A}
€1, E1—pr €T €2, E2+p2€T,F

due to the identity lnszX,yGY(fl(z) + f2(y)) = infoex fi(z) + infyey f2(y). The
triangle inequality for arbitrary states from 7, clearly follows from here.

Remark 2.1. For p € Ty, p= A~Y26A~1/2, 5 € T the norm ||p||7, is equivalent to
the norm ||o||7. More precise, 27'/2||pli7, < |lollr < llpllzy, and [lollz, = llollr
for Hermitian operators p. Thus, both norms describe the same topology. If p is a
pure state p = |p){¢], ¢ € dom A'/2, then clearly, Tr,{pA} = ||[A}/?¢]||? = A.[g)]-

Definition 2.1 will be used to extend the construction of a quadratic form, defined
originally on the set of pure states, to the algebra of trace class operators. This
generalization is important when the argument of the quadratic form evolves in
time and the evolution does not preserve the set of pure states.

If both operators pA and o*o are well defined, then the trace Tr{pA} and the
trace-form coincide: Tr.{pA} = Tr{o*c}. But in the general case dompA C
dom o*c, and the operator pA may be ill-defined. For example, set H = £z, (AY)n =
i, p = r)(rl, T = (r1,72,...), and ro = 01 |fr]l, [Ir]) = (T, k7197, 6>
0. Then p is a projection and p'/? = p. Hence, {pA¥}n, = 01743, k 5¢1k/||r||
and {AY2p1/29}, = n=1/2=8(r,4)/||r]|. That is dom A1/2p!/2 = H. On the other
hand

) dompA = {¢: Z [%n|? < o0, Z In~%4n| < 00} C H.
In particular, ¥ = {¢n} € H, ¥n = n~'+% does not belong to dom pA that is
||pAY|| = o0o. Thus, the aim of Definition 2.1 is to extend Tr{pA} to a larger set of

p such that pl/?Al/2 € B(H).
The next Lemma gives several alternative characterizations of Ty (H).
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Lemma 2.1. The following are equivalent:

(@) peTFH)={p: p'/?:H — dom A2, g = A/2p!/% € T,(H)};

(b) sup,so Tr{pAc} < 00, A, = A(I +eA)7E, p>0;

(c) The densely defined operator s = p'/2A'/? admits an extension to entire H
as a Hilbert-Schmidt operator;

(d) T (M) is a completion with respect to || - |7, -norm of the envelope of the
cone ET = {py = [Y)(Y|, ¥ € dom A.} of extreme points of the unit ball
T(H), that is '

Ty (H) = {p= p = Telte)(Wil, D riAufibi] < o0, T 2 0};

(&) peTH(H) ={p: p=A"P20N%, 0 € THH)}.

Proof.
Let p € TF (H). Then Tr{pA.} = Tr{o*(I + eA)"'o} < Tr{o"0} < oo. Hence,

Tr{pAc} = > _||(T +eA) oy <> llovil® = Tr{o"s}  (2.3)

converges uniformly in ¢ for any orthonormal system {1, }. Therefore, it is possible
to pass to the limit as € — 0 in each summand:

sup Tr{o*(I +eA) "o} = Z sup ||(I +eA) Lo = Tr{o*o} < oo
e—0 e—0

Thus we prove that (a) implies (b). More precise, we proved the equation describing
the regularization of trace-form by traces:

Tr.{pA} = supTr{pAc}  pE Ty (2.4)

Let (b) holds, that is sup,_,, Tr{pA.} = ¢ < co. Let us prove that range p'/? C
dom A/2 and Tr{o*c} = ¢ for ¢ = A1/2p'/2. For any ¥ € H, ||¢|| = 1 we have:

IAY2p' 2] 1> < Tru{pA} = c < o0 (2:5)
for any € > 0. Since A is a positive self-adjoint operator, é/ 2(,0 — AY2p as a
resolvent for all ¢ € dom A/2, and ||A}2¢|| — ||A}/2y]||, we conclude that ||AY/%p||
is bounded if and only if ¢ € dom A!/2. Hence (2.5) implies p'/21) € dom A}/2 ¥y €
H. The inequality Tr{p'/2(I + A)~1p1/2} > ||(I + A)~!|| Trp with A > 0 implies
Tr{pA.} = Tr{o*(I +eA)"to} > ||(I + €A)~ || Tr{o*c}. Hence,

~c=supTr{pAc} > sup ||l + eA||"! Tr{o*0} = Tr{o*0},
>0 ’ e>0

that is o € T2(H). Hence, we proved that (b) — (a).

Let us prove that (a) implies (c) and (c) implies (b). Since o is a bounded
operator, o* is also bounded and o*¢p = p!/2A1/2p, Yy € dom A'/2. Hence s =
p'/2A1/2 is densely defined and uniformly bounded. Therefore, the operator s has
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a unique bounded extension to H : pl/2A1/2 =¢*; o* € To(H) because T(H) is a
*.algebra and o € To(H). Thus, (a) — (c).

Assume (c) holds. Note that s(I + eA)~!/2 = pl/zAl/2 (I +eA)~V2s* =
AM?p1/2 | Since s is a Hilbert-Schmidt operator, '

00 > Tr{ss*} > Tr{s(I +eA)~'s*} = Tr{pA.}

uniformly in € > 0. Hence, p € 7,7 (H) by (b).

Let {4x} be an orthonormal system in H. Then I = 3 [¢x ) (x|, p = pt/2Ip! 2 =
S |he)(he| with kg = p/%¢, € dom A, and Y ||[AY/2Ri||? = Tr.{Ap} < co. Thus
(a) — (d) with 7, = 1. On the other hand, if p = Y, 7¢|¥)(¥x| by (d) then
Te{pAc} < 3 e [AM235¢]J? < co. Hence, (d) - (b).

Set pa = A~Y2pA~1/2 p e T+(H). Then

sup Tr{pA.} =sup Tr{p(1 +eA)"'} = Tr p < o0.

Thus, (e) — (b). On the other hand from (a) we have A~/2¢ = p'/? € T,;*(H)
and from (c), sA~Y/2 = p'/2 € T,;¥(H). Therefore, p = A~}/20sA~/2 with o5 €
T+(H). That is{(a),(c)} — (e), where (a) — (c) was proved above. This finishes
the proof of Lemma 2.1.

The assertion (b) of Lemma 2.1 holds true for any sequence A(e) < caA of
bounded positive operators such that the sequence of quadratic forms A.(e) gen-
erated by A(e) converges to A, on domA~'/2 and A < c4A on dom A. Indeed, for
p €T, p=A"Y2gA"1/2, o € T we have Tr{A(e)p} = Tr{cAa(c)} — Tr.{Ap},
where Aa(e) = A"1/2A(e)A=1/2 < c4 I converges strongly and ultra weakly to the
bounded positive operator A—1/2AL/2AY/2A-1/2,

Definition 2.2. For any T such that T = Y"3_,i*T%, 0 < T < ckA, domA C
dom T* and for any p € T, we set

3 3
Tr{pT}= > T {Tep} = Y i Trf{oTiou},
k=0 k,£=0

where Tj, = A-12T}2Tl?A-1/2 ¢ B(H), and o, = Al/2p}/? € T,F(H), pe =
A~Y2g,A=Y/2, Tr,{pT} is referred to as a trace-form and the set of operators T
as above is denoted by Ba(H):

T|ls, = f
IT|ls = 0T <o 1¥_23_0 o1, 2 Z |kl
Clearly, all operators ®(B), B € B(H) are elements of B (H) provided ®(I) < A.

" Remark 2.2. Operators from By (H) can be uniquely extended as bounded operators
from H, into H,-1. Indeed, for Vo € dom A we have (¥, T%) =, 1,’°||T1/2¢|12,
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and the right-hand side of this equation is a bounded quadratic form on dom Al/2,
Hence, for. the extension T, we have ||T||r,—n_, < 2 lek|-

Remark 2.3. The values of Tr,{pT:} depend only on restrictions of components
T, to dom A. That is Tr.{pTx} does not depend on any choice of a self—adjomt
extension of the positive densely defined operator Tk|gom A -

The independence of Tr,{pT} on a choice of positive components p, and T}
follows from the representation of each summand:

Tr, pT =sup Tr Z T (T py} = Tr, {Z F T oy}
€20 k=0 k,£=0
with T(e) (I +eA)"'T(I +€A)™! (see Lemma 2.1).
Corollary 2.2. If ,.(-) € CPn.(H,) and ®(I) < A, then

S 18(B)[o 2]l < IBllllollza, Vo€ T (H), BeB(H)  (26)
k

for any orthonormal system {Y:}.

To prove the normality of the map B — Tr.{®(B)p}, consider a sequence B,
converging weakly* to 0. We have sup,, ||Ba|| = b < co and

IQ(Bn)*[plll‘pk” < ”Bn”@(I)*[pl/Zwk] < bCA*[Pl/z"/Jk]-

Since Zk-A*[pl/zzbk] < oo and ®(Bn).[p*/?9] — 0 as n — oo, by the Lebesgue
theorem we have

S 8B = Yl 8(Ba). [ ] = 0
ko PR

Since the bilinear form (B, p) = Tr{Bp} separates points of algebras B(H) and
T (H), the estimate (2.6) justifies the definition of the predual CP-map ®1(-) as a
contraction ranging T (H) to T(H) :

Tr.{®(B)p} = Tc{B®'(p)} VB € B(H). (2.7)

Now we are in a position to give a simple equivalent definition of CPn(H,).

' Definition 2.3. For each contractive CP-map &f(-) : 7Ta(H) — T(H) we denote
by &(:) : B(H) — Bx(H) the dual CP-map defined by (2.7).

The key advantage of this definition is that the normal property (2.2) of ®(-) €
CPn(H, ) becomes obvious, because ®1(p) in (2.7) is a bounded trace class operator.
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Theorem 2.3. There ezists one-to-one correspondence defined by (2.7) between the
subset {®(-) € CPn(Ha), ®(I) < A} and the subset of contractive CP-maps () :
TA(H) = T(H).

Proof. Corollary 2.1 shows that if ®(-) € CPn(H,) and ®(J) < A, then &(-) is a
contractive CP-map ranging T4 (H) into 7(H). To prove the converse, consider the
sequence of bounded CPn-maps ®(¢)(-): |

Tr{®®)(B)p} = Tr{B®'(pc)}, pe =T +eA)p(I+eA)™t € T (H), (2.8)

where Tr,{®!(p.)} = Tr{A:p(I + eA)7'} < [Ae|]| Trp € €' Trp. Therefore,
|8 < et

The map &()(-) is normal because Tr.{®'(p.)} is finite [16, Theorem 2.4.21].
Since T4 (H) is dense in 7 () with respect to the trace norm, equation (2.8) defines
$(€)(-) uniquely as an element of CPn(H). To complete the proof we need to verify
convergence () (-) — &(-) with respect to topology (2.1). Consider the seminorm

UA,B(@(E) —®)= sup () (X),[¢] — (X))
XeB, yeA

< 2 sup [|A72@(X)AT2|| sup ||p = pellma,
XeB PEA

where p = |[¥)(#], pe = |(I +€A)"19)((I +eA)~1¢| where ¢ € dom A'/%. Let us
evaluate §(¢) = ||p — pel|7, - For Hermitian operators, by Definition 2.1 we have:

§(e)= inf  Tr{(2-p+p)A}=__ inf  Tr{(26-75+7)}

-~

€, E—pt+pc €T £, E—p+p.€T+

With = (E/2A2)(e1/2A1/%) € T(H), [pa)(wa| € T(H), Yo = A% € H,
= [YE ) (Wil € T, ¥ = (I +eA)"1pn € M, 5= [P}, Pe = |9°){¥°.

Set Ce = ||1/JA||2H¢A||‘2 > 1 and " = c|¥5)(¥5| = P.. Since the positive

operators pr°”, p have the same traces the straightforward computations implies

8(e) = inf  Tr{(26 -5+ PP
(&)= . S, {26 -p+p7")}

< T2~ Bl = o+ 72} = 2 Te{[5 = 721} = 4l ally/lnl? - (on v0F

Therefore, §(¢) — 0 as € — 0 because ¥§ — ¥ in H for any ¥ € ‘Ha. This finishes
the proof of the theorem. _

Hence, we may set Tr,{®(B)p} = lim._o Tr{®()(B)p}, where &()(.) is any
sequence from CPn(H) converging to ®(-) with respect to topology (2.1), or equiv-
alently, ®!(-) is a contraction ranging 7 to 7.
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§3. A PRIORI ESTIMATES OF QDS AND
CONDITIONS SUFFICIENT FOR CONSERVATIVITY.

Let us describe assumptions on coefficients of the formal infinitesimal map (1.2)
for fixed t € IRy. From now on we assume that there exist the generator —G
of the strongly continuous one parameter semigroup of contractions exp{—Gt} =

s — limN_,oo( - ﬁG)—N =W, : H — H, a vector subspace D = domGN C H
such that D C dom H N dom ®(I) for some N > 2, and

Gy = iHy + -;@(I)zﬁ, Hy=H"% VyedomA (3.1)

By Tp(H) we denote the linear span of the set of pure states |¢)(¢|, ¥ € D. Clearly,
Tp(H) € Tp2(H). Let A > ®(I) > I be a reference self-adjoint “reference” operator
such that A > ®(I) > I. In sequel we assume that D is a core for A/2 and

G € BA(H), domG" C domA C domG CdomA'Y? C H, (3.2)

&!(-): Tyu(H) = Thu-a(H), k=1,2 (3.3)
is a CP-contraction for k = 1 and CP-continuous mapping for k = 2;
LYC) : Tae(H) = Tpx-1(H), k=1,2 (3.4)
is a CCP-continuous mapping such that
Tr.{AL'(p)} < cTr.{pA}. (3.5)
In §2 we noted that the predual CP-map &(-) is well defined on 7, (H). The
more so it is well defined on 7Tp(H) C T4(H) or on T2(H). Similarly, Gp € T(H)

for p € Ty2(H), and pG* € T(H) because the vector space Bj(H) is *-invariant.
Hence, the predual infinitesimal map £'(-) is well defined on 7p(H) : '

L) =81 (0) =G ~Gp e Ta(H)  Vp € Taa(H) (3.6)

and therefore, | Tr.{AL!(p)}| < co. Note that the main property of 7p(H) is that
the image of this set under the Schrédinger evolution belongs to dom A.
The algebraic assumption (3.5) arises as a result of series of improvements (see
[12-19]) of one-sided relative bounds for commutators introduced originally in [11].
For equations with time-dependent generator £.(-), we assume that the coeffi-
cients of LI(-) are continuous in the trace-form sense:

LI(-) = £1(-) can be ext‘ended as a bounded map from TR (H) to T(H), (3.7)

lim sup ||Le4n(Y) - Le(Y)|B, =0 VE>0,Y €8 (3.8)
h—==0y|<r1

Let us start with preliminary review of algebraic ideas of the proof that in the
Heisenberg picture, the quantum dynamical semigroup P;/**"(:), is conservative
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under assumption (3.6) implies, and in the Schrédinger picture, the subalgebra of
trace class operators 74 (H) is invariant under action of QDS.

In [13-14] we introduced a convenient form of the resolvent equation for the
quantum dynamical semigroup P;(-) = exp{¢tL}(-) on the von Neumann algebra
B(H) with time-independent generator £(B) = ®(B) — ®(I) o B +i[H, B]. This
resolvent equation reads '

X = Ay(B)+ @a(X), BeB(H), X=Ry(B)= / dte=MP,(B) (3.9)
0
where A)(-) and Qx( ) are completely positive contraction maps,
Ay(B) = / dte=MW*BW,  Qx(B)= / dte-MWIB(B)W,,  (3.10)
0 0

and W; = exp{ Gt} is a strongly continuous one—parameter contraction semigroup
in H with the formal generator -G, Gy = iHy + 1 ®(I)y V4 € dom Hndom &(I).
It was proved in [14] that the series Y Q% (Ax(- )) converges strongly to the resol-
vent

RE(B) =Y Q%(4x(B)) VB e B(H) (3.11)

of the minimal dynamical semigroup [14, 15]. The minimal property means that,

for the resolvent Ry(-) of any other dynamical semigroup with the same formal

generator £(-), the difference Ry(-) — RY®(-) is a completely positive map.
Integration by parts of in (3.10) yields the identities '

AT +2A7IQx(I) = 271, f_j Qx(AD) +ATr ey (D =71 (312)

forany n > 1. If (I) > I, then Ay(I) < (A+1)~! and QA(I) < I. Since CP-maps
Ax(-) and Qx(-) are contractions, the definition (3.10) and commutation property
(2.2) prove that Ax(-) and Qx(-) are normal. Thus, Ax(-), @Qa(-) € CPn(H).
(From (3.12) follows three important assertions:
(a) The sequence Q%(I) is monotone decreasing;
(b) There exists uniform a priori estimate 3~ Q% (Ax(I)) < AT for any partial sum
of the series;
(c) The resolvent Ry (I) can be represented by the series:

Rall) =sup 31 QA (4(1) + X inf Q3(0) = BIn(1) + X inf Q3(1). (319

The last identity shows that RP®(I) = A~!I and P™"(I) = I (that is QDS

~ P,(-) is unital or conservative) if and only if inf, Q3(I) = 0 for any A > 0 (see [10-
13]). Otherwise, there exist a stationary point X = inf, Q}(I) > 0 which is the
mazimal eigenoperator of @x(-) in the class of positive operators with unit norm.



If RPin(I) < A7!I, then any QDS P,(-) with the same formal generator £(-) is
conservative if and only if Ry(I) — RPin(]) = X,.

Suppose that the generator £(B) satisfies the condition £(A). < cA., c €
R,, A > &(I) for some positive self-adjoint “reference” operator A € C(H).
Then the following a priori estimates hold for the semigroup and for its resolvent:

S 2 2 ,
Pt(A)=A+_-t.C(A)+£2—‘£2(A)+---SA+ctA+%A+~-SAe“,

Ra(A) = /0 T dteMBA) < (A—0"'A  VA>c (3.14)

Note that A, (®(I)) = Qa(I). Since &(I) < A, the estimate for sum of the series

iQ’;(I) =R\(®(I)) SR\A) < (A=0)7'A  VA>c
1

follows from (3.14) and from the decomposition (3.11) of the resolvent. As we
shall see later, these estimates remain true for the resolvent of minimal QDS with
unbounded coefficients:

55

i Q) =RF™(&(I)) <(A-c)'A  VA>ec  (3.15)

The weak convergence of the series (3.15) implies that Q%(I) = .0 as n — oo on
the dense subset dom A, € H. Since the sequence of positive operators Q%(I)
is uniformly bounded, it converges strongly on H. Hence, the condition (3.5) is
sufficient for the conservativity of the minimal QDS (see [14-15]).

A priori bound (3.14) for the minimal resolvent and condition (3.6) were consid-
ered in [17] for the simplest and the most natural choice A = &(I). An important
. observation that it is possible to use operators majoring ®(I) was made in [18] and
independently in [20], where a condition similar to (3.6) was used as a sufficient
conservativity condition together with assumption ||Hy|| < ||A¢|| on a dense set es-
sdom A. In [14] and the present paper we show how to avoid excessive assumptions
like explicit relative bounds for the Hamiltonian H. '

The estimate (3.14) and trace-form regularization (see Lemma 2.1, (b)) mean
that the subalgebra 7 (H) is T;-invariant. Indeed,

T {Ti(p)A} = sup Te{Ti(p)Ac} = sup Te{pP(A)}, Vo€ T (H)
Tr{T(p)Ac } = Tr{pPe(Ac)} < e Tr{pA.} < e Tr.{pA} < oco. (3.16)

Simple bounds (3.15)—(3.16) give an algebraic hint to analytical estimates consid-
ered in the next Section. The estimate (3.16) can be extended to semigroups with
piecewise constant generators satisfying condition (3.6) at pointwise and remains
true even for time-dependent generators. We divide the rigorous proof of these
statements into a series of auxiliary lemmas.
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§4. A PRIORI ESTIMATES AND SUFFICIENT CONSERVATIVITY
CONDITIONS. ANALYTICAL PART OF THE THEORY

We start from a simple observation on monotone property of the regularization
map A —» A, = A(l +eA)™L.

Lemma 4.1. Let A, A be positive self-adjoint operators. Then A, < A..

Proof. For bounded positive operators A and A, the proof follows from the
inequality (I +eA)™! < (I +¢€A)™?! (see [21]). For bounded A and self-adjoint A
it was proved in [14, Lemma 2]. Let now A > 0 be a self-adjoint operator. Since
(Ae)y = Acyp <A Ve, p >0 (see [14]) and A, is a bounded operator,

O S Ae+u S As (4-1)

for any positive self-adjoint operator A < A. The family of bounded operators
A4, is strongly continuous in g, u — +0, as a resolvent. Hence, (3.7) holds for

1 = 0. Therefore,
0< A, <A.. (4.2)

Thus, we extend the assertion [14, Lemma 2] for positive self-adjoint operators.

Lemma 4.2. Let the conditions (3.1-3.4) are satisfied; then for p, = Wi pW}, p €
Tx we have

leellzy < ellellz, 1AL (P)Iza < (A=) lpll7a- (4.3)

Proof. By the assertion (d) of Lemma 2.1, it suffices to prove estimates (4.3) for
a total set of pure states p = |[¢)(¢)| € Tp2, ¥ € domGY. In this case ¥y =
(I +A71G)y € dom A2 and py = [2)(4¥x| € T4. By assumption (3.4) we have

cllpllza = eTru{Ap} 2 Tr.{AL(p)} 2 —2Re Tr. {A|GY)(¥|} = —2Re A.[G, Y.

Therefore, 2A~1 Re A.[G¥, 9] > cA~1c||p||7, and

”pA.”TA = A, ["/)A] = A, ["p] + /\-2A* [G¢] +2X"1Re A.._. [G¢1 "»b]
>(1-AA AR =1 - Yol

Hence, Tr.{Apx} < (1 = eA7Y)||p|l7, and from the strong convergence W; = s —
limy (I — £G)™" we have

. t - t - -
lodiry = Jim Te{A(I = 56) ™" (1= 6) ™"} < elloll.

The second estimate obviously follows froxﬁ here. This finishes the proof.

Covrollary 4.1. For dual mappings, the following estimates hold true: ‘

WIAW: < Ae®t, Ay(A) < (A—¢)"'A ondomA (4.4)
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Lemma 4.3. Assume the conditions (3.2-3.6) are satisfied; then
HED) @lin < -0 elln, BPMA) (A -o™A (45)

Proof. The assertion of this lemma is fulfilled for n = 0 (Lemma 4.2 and Corollary
4.1). Assume that (4.5) is fulfilled for n = 1,...,k and prove it for n = k + 1. Set
= |[¢)(¥| € Trz, ¥ € dom GV. Then '

Tr. {AR{ (o)} = Tr {A AL (0)} + / T e May Te (BP (1) (00}
. < Tr.{AA{ ()} + (A = 0)? / " e Mde e, (A (o))
0

= Tr,{AAf\(p)} + (/\ - C)__l Loo e"'\tdt Tr,{AﬁT(pt) + Gpt =+ ptG"}, (46)

~ where p; = W pW € Tp2(H). Using assumption (3.5) for the first summand in
integral (4.6) and integrating by parts in the second summand, we obtain

c A t 1
e T %o c) Tr. {AAL(0)} + s llellza-

The assertions of the lemma follow from here.
We recall that

(BE) (0) = L. (7)) = 4(0) + S (@) (Ala) = [ e ¥aeTrne)
1

Tr. {A RV (0)} < (1 +

is the resolvent of the minimal quantum dynamical semigroup in the Schrédinger
picture (see [2], [12-15]), and on the other hand

Trn(p) = w' - Jim ARF™)' - AEF™)' (0)

N

Definition 4.1. For X € Bj(H), we define P,(X) : H; — H_; as an image
A3B,A% of the bounded operator B, such that Tr{Bta} = Tr{Bp:}, for all o €
T(H), where p; = AT, (p)AT € T(’H), p=A"tgA~%,

Now as a simple corollary of Lemma 4.2, we obtain

A=tN—1?

Theorem 4.4. Under assumptions (3.2-3.5) we have a priori estimates for the
quantum dynamical semigroup

1T )llza < e*lellzas 1B (X)llsa < €11 Xl5a- (4.8)
Proof. The first inequality (4.8) follows from the uniform estimate (4.7):
IRS™lz = lim IR ||z, = (A =)™,
min 1: minyt . - - N c
TP )lizy < Jim [IAET™) - = Jim (NN =) = e,

Since for B € B(H), o € T(H), X = A¥BA}, p= A~30A~% we have Tr{Bo} =
Tr.{Xp}, the second estimate (4.8) follows from here and from Definition 4.1.
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Corollary 4.2. Conditions (3.2-3.6) are sufficient for the minimal dynamical semij}
- group to be conservative. '

This statement follows from the uniform upper bound for the decreasing sequence
of bounded operators QE\")(I ) and from the weak convergence of the series

S Q4(I) < RF™(A) < (A—o)~*A
on the dense set dom A € H.
Theorem 4.5. Let p € T, (H) and conditions (3.2-3.6) are fulfilled, then
1) Ry = Tr.{pP:(A)} = Tr{o}0:} where o; = AY2{Ty(p)}!/? is a scalar function

continuous in t > 0.
2) If A is a positive self-adjoint operator such that A < ¢ 4 then the scalar function

A = Tr.{pPi(A)} < cae Tr.{pA}
is bounded and continuous.
Proof. 1) Let {4} be an orthonormal system in H. The series

Sor =Ry — R = 3 (IAY20} 29el? = 1A 201> )
= 3 (12 AL 29|12 = 1} > AL/ 24 |1?)

converges uniformly in s,t: |§,,¢| < (e°* +e°t) Tro*o, for any o = AY/2pt/2 because
of the estimate (4.1). Hence,

i 3 1/2 1/2
im 16,0 <D0 lim (102 AY2g® — llop A2y ?).

Now let {(1(6)} be a family of elements from dom A/2 such that ||[vr — wr(0)]] £
§k=2. Then, by the inequality A.[h] — Aufv] < {AL[R]M? + AL[v]/2} As[h— v]1/? we
have '

160e] < 8(e +¢) Te{o"0} Y k72 + Y (o 2AM 2l = 1ot > A2 i)

Since the strong continuity of the bounded family of positive operators p;’ fol-
lows from its weak or trace norm continuity and AV € H, ||os/>AY/2p||? -
lpt/2AY/ 2|2 — 0 as t — s — 0. Hence, |6,,| — 0 as t — s — 0 because § can be
chosen arbitrary small. This proves assertion 1) of the theorem.

2) The estimate of the last statement of the theorem follows from (4.3) and from

the inequality
Tr. {pP"(4)} = sup Tr{py* Acp} '} <
casup Tr{p}* Aep}/”} = ca Tru{p P (M)} < cae” Tra{ph}.
£—

Note that the inequality 4 < c,A implies ||A§/%9|| < c/?||AY/?|| for any
self-adjoint extension A¢ of A. Hence, the operators o = A(l,/ 2A-12 and o* =
A{l,/ ZA-Y 2A3/ 2 are bounded: ||a*a|| < c4. Now the proof of the continuity of Ay
" is a revision f the previous proof in the Hilbert space Ho with the inner product
(¥, h)1, = (atp, @h)s,. This completes the proof.




§5 COMPLETION OF THE SET OF REGULAR INFINITESIMAL MAPS
WITH PIECEWISE CONSTANT COEFFICIENTS

Consider the Markov evolution equation

GtP,,t(B) = ﬁt(P,,g(B)), PIt:,(B) ='B, 0 S S S t, (51)
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with infinitesimal map L£;(-) that is a simple function of timé, i.e., takes constant

values on time intervals; the total number of these intervals is assumed finite in any
bounded subset of IR, :

Li()=Li(), B()=8:(:), He=H; Vte(ti-,t), to=0, i>0.

The solution P; ,(-) of Eq. (5.1) are constructed as the composition of the so-
lutions of equations with constant coefficients on each interval. It has the char-
acteristic property of a left cocycle: P, Prs = P;s, s < 7 < t; in what follows,

P, () is referred to as a Markov cocycle: Pi(-) = Pt("gn (- P (. )), where

tk( y—$
Pt(k)( -) = et*(-) is the minimal dynamical semigroup with constant generator
Li(-), on the half-interval (tx—_1,tx], k(s) = {ming tx > s}, tn = {maxt; : t; < t}.

If there exists a sequence of completely positive conservative Markov cocycles
converging at every t € IRy in the ultraweak or weak sense, then, clearly, the
limit is a completely positive and conservative Markov cocycle. First, we consider
a priori estimates for the solution of the time-dependent Lindblad equation with
simple coefficients.

Let the generator G; be a simple strongly measurable function of R* and let G;
have a joint invariant core D C dom GY C domA for some N > 2. In sequel we
suppose that the assumptions (3.2)-(3.5) be fulfilled at each moment ¢ € IR and
D; : Hy — H_; is a strongly measurable family of bounded operators such that

[(A) /20, Du(A) 2] < eo(®)llel?  (52)

where cp(t), ca(t) € L¥*(Ry).

Lemma 5.1. If conditions (5.2-5.3), are satisfied at each point in every time-
interval (tx—1,tx), then the minimal solution of the Lindblad equation

0P = Li(F) + Dy, Pli=o =0,
satisfies the estimate
ot o rt
[(PPin),[e]| < A..[cp]/ ds exp{/ ca(r) dr}cD(s) Vo € dom A,
0 s
where cp(s) = Y |ek(8)]-

Proof. In this case, the Duhamel equation reads as follows: (P™i®),[¢] =

tk( y—3$ tr(s)—3s

/ Pt(ng,,' (k(s)) (Ds)u] ds—/ Tr{ (k(s)) . 'Tt(fz,,(p‘p)Ds}ds

LoA)le] < ca®lel, CE)
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Hence,
min _ [ (k(2)) (n)
I(Pt )*[(p]I S ‘/0‘ ds Tr"‘{Tth(_,)—s "'Tt—tn(p‘P)A}cD(s)’

where the semigroup T,(k)(-) in T(H) is predual of Pt(k)(-) and p, = |p)(p] €
TA(H). Hence, Theorem 4.4 implies the estimate: :

t
|(Ptmin)—[‘P” < Tr*(p'PA)/O ds e(t—tn)cA(in)+---+(tk(s)—s)CA(tk—l)CD(S)

= A.[¢] /ot ds exp{‘/st ca(r) dr}cD(s) Vy € dom A.

’I‘his completes the proof.

Now let £;(-) be a function of the parameter ¢ continuous in the sense (1.3)-
(1.4). Consider the sequence of partitions {¢;(N)} of the semi axis Ry such that
0 < ty)(N) — s < 2-N for every s € IR.. We assign the sequence of simple
infinitesimal operators E(TN)( -) = L4,,,(+) to the infinitesimal operator L¢(-). Let
Pt(f,v) be the composition of the minimal solutions of the equations with piecewise
constant generators EgN)( -). Consider the difference 6§M'N = Pt(‘g)(B) - Pt(,g“(B),
which is uniformly bounded and satisfies the following nonhomogeneous equation
with trivial initial condition:

B.8(MN) = M) (M) L DM S| g

) t=0 )

where D) = M (PGD(B)) - LM (P (B)), that is | Tr.{pD{*"M}| <
2K, Tr.(pA). Since the difference 6§M'N) is bounded in norm, it suffices to prove
the ultraweak convergence 6§M’N) — 0 as M, N — oo on subset of 75 (H). We use
the linear span of the set of pure states p, = |¢){¢|, ¢ € dom A,, as such a subset.
et us set (MN) _ k) ) ) o
Pis =~ = t,,(,:-a .. 'tht,. (Pw) € TaA(H).

Then Lemma 5.1 ensures the following estimate for Tr{p¢6§M’-N )}:

. _
lTr{ptpét(M’N)}l < / ds Tr.{pgf’N)Df,M'N )}
0

t t :
<iigil [ as exp{ / cA<s>dr} sup (LMY = LD (Y)Is,
. 0 \Js [IY}|<1

(M,N) _
$,tk(s)

Sup||y|i<1 IIC,(,N)(Y) - /.',(,,M)(Y)II 8, is a uniformly continuous function in s, M, N.
Hence, there exists a uniform upper bound in £°°(IR,) for the integrand, and we
can use the dominated convergence theorem, which gives

uniformly in M and N. By assumptions (1.3)-(1.4), the supremum §

. (M,N)y| _ 1s (M,N)
M}]{,ﬂ_{mh‘r{pdt },l - }}?VHB“./() d.s exp{[ ea(r) dr}é"‘kw =0

since h = 8 — ty(5) — 0. }
Finally, we obtain the following result.
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Theorem 5.2. Assumptions (3.1-3.5), (5.2-5.4) are sufficient for the sequence -
{ (N)(B)} to be ultraweak fundamental and converging to the conservative com-
pletely positive cocycle P, ,(B).

Consider the class Sy of simple infinitesimal maps £,( - ), satisfying the assump-
tions of Theorem 5.1. v

‘Definition 5.1. The sequence {zﬁ”)( -)} from S is said to be Tra -fundamental
if it converges in the locally convex topology generated by the system of seminorms

' T t
a'T(ﬁgN)) =/ dt sup ”[JgN)(B)“BA exp{/ dTCA(T)},
0 1BlI<1 s

for all T > 0. The infinitesimal map with variable coefficients }Ct( -) is said to be
Sa-measurable if the sequence

[‘gN)() =£tk('), t e (tk,,tk+1], tk —tk-l =2—N’

converges to L:(-) with respect to the seminorms o, 7.

Theorem 5.2 shows that SA-measura,ble infinitesimal maps form a natural class
of generators of conservative Markov cocycles.

§6. EXAMPLES
1. Let H = L,(IR), and let the coefficients of the map £;(-) be

Hy = Q(z,t)z%,  &.(B) = —8,a(z,t)Ba(z, )0,
where a and ) are smooth bounded functions such that

supa(z,t) < 0o, sup|Qz,t)| <oo, infa(z,t)>0 Vte[0,T].
F z z

We set A(z,t) = a?(z,t). The operator L, = —$&:(I) = $A(-,t)02 + aal,0, is the
generator of a diffusion process &, satisfying the stochastic differential equation

dé- = a(ér,T) (dw‘r +a(é;,7) az(ér,7) dT)a £ =z,

where w, is the standard Wiener process (see [24]). The two-parameter family
W,,: of contraction operators with the generator —G;, G; = %(Pt(I ) + iH;, can be
represented as the conditional expectation :

’ t
W, eh(a) = Mz,tzp(s,)exp{—z' / drn(sf,f)sz}.

Let us check the conservativity conditions (1.2) and the continuity criteria (1.3)
and (1.4) with respect to the operator :

A=X-8+22+1), r= sup {|Qzt)|+A(z,¢)}
: ‘ IGB’ tE(O,T)
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First, we have the following identity for the commutator: i[H;, A] = i[Qaz?,82] =
~i{b0; + 0,b}, where b = &, (Qz, t)z?). For every ¢ € Ry, the well known
inequality »
+(A*B+ B*A) < A*cA+ B*<~'B , (6.1)
holds, and in the case A = i8;, B = b = 8,(Qz?), ¢ = 1, we have i[H;,A] <
(b® - 82) < A if |

sup (1+ |z)) "!16:027| < . v - (6.2)
te(0,T) .

Straightforward coinputa.tions imply the identities
$,(z?) — 8,(I) 0 % = —2a(z, t)al(z,t)z — a*(z,t),
9,(02) - B(1) 0 02 = —(al(s,1))" &%
Therefore, condition (1.2) is satisfied if |
sup(1 + |z|) (|9 (2, t)| + [ (z,8)]) < oo,  suplay(z,t)| < oo. (6.3)
z,t . z,t

Let us check the continuity assumptions.

Consider p € Tp2(H), that is p = A"ToA™%, o € T(H), o1 = zpz € T(H),
09 = 8, pd, € T(H), by definition of the reference operator A. For any sequence of
operators A, such that sup, [|As]| < oo and A, — 0 in the strong sense, we have
| Tr Apo| — 0 Vo € T(H). Therefore,

Tr,{B[H. — H,,p|} = Tr{B(zAQ, zA~tsA~¥ — A~4sA"32AQ,,2)} — 0
where AQ, +(z) = Q(x) — Q,(z), because the functlon zQ(z, t) is uniformly bound-

ed by the assumption (6.2), the operator zA~ % is bounded in H, and |Q(z,t) —
Q(z, 3)| — 0 everywhere in IR as t — s — 0. Furthermore, from inequality (6.1) we
have the following estimate for the difference of completely positive maps:

e _ ,
2}(p) - 81(p) < 5 (31(p) + 81(0)) +¢7 (ala, ) - a(z, 8)) 02 (a(, 1) ~ a(z; 5))-

Therefore, by the same arguments and inequality (6.1), we obtain

| Tr. (B(2}(0) — 81(0)))| < Aell Bl Tra(pA) + e Tru{(a( 1) — a( -, 8)) 02} = 0,

because |a(z,t)| is a bounded function of z and ¢, and |a(z,t) — a(z,s)| — 0 as’

t—s—0forall ze R
The following inequality can be proved in a similar way:

Tr, { B(®!(I) — ®}(I)) 0 p} < | Bl Tr{oe(s, 1)},

* where @(s,t) = A=¥ (81(I) — @} (I))A~%, p = A~1oA~! € Tx2(H).

The operator family ¢(s, t) is uniformly bounded. Note that ad2 = 82a—(9:a, +

a’8;), and consequently (6.1) gives the following inequality:
le(s, )l < || (la®(-,t)—a? (-, 8)|+e az (-, t)—ay (-, 8)|*) ZA~ || +ellOzA ¢
for arbitrary small €. Thus, ||¢(s,t)¥]|| — O since the differences |a(z,t) — a(z, 5)|
and |a’(z,t) — al(z,3)| are uniformly bounded in z by (6.2), and
|a(:z:,t) - a(a:, S)I — 0, Ia'.{z(z’t) - a‘:c(z’ 8)' -0

ast—s — 0 for all z € R. Hence, the limit Markov cocycle P, () = w* —

lim P,(f)( -) exists and is conservative if the continuity assumptions (6.2), (6.3) are
satisfied for the uniformly bounded coefficients a(z,t) and §(z,t).
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2. Consider the infinitesimal operator £;(-) of the master equation with time-
dependent coefficients ' -

$,(B) = (L+FOW)* B(L+ f(OW), f(t) € Loo(IR) N Lo(IR),
H, = Hy+ (f()W*L = F(t)L*"W)/2i, (6.5)

where L is a closed operator, W is a unitary operator, Hy is a symmetric operator
in the Hilbert space H.

If the unital property of the minimal solution of the master equation with the
generator £;(-) holds for all f(:) € T(IR) N L2(R), ||f]] < ¢ for some ¢ > 0 then
the solution of the corresponding quantum stochastic differential equation is unique
and isometric [25]. This remark explains our interest in unital property of time-
dependent master equations.

Assume that the operator L*L = A > I is essentially self-adjoint and W : H; —
H;. is a bounded operator for £ = 1,2. Then the densely defined operators A—zL*,
LA~? are contractions in M. Note that the difference 0st(+) = LI() = £i() does
not contain the operator Hy and the terms which are bilinear in L*, L:

8s,t(p) = (IF O =17 )W, W1+ (F(2) = F(s))[L, AW +(F(8) = f())W*[p, L.
For p € Tp(H), the operator Lp is bounded both in 7(H) and in B(H,). Indeed,

lLplls < ILA™% |5 ||olls A~ 2|5 < llolls < llolir = llpllna,
IILo||T = sup  Tr{ULp} = supTr.{ULA" oA %}
U.U*U=U0U*=I
< |[ATRULA™E||5 Tx |o| < |lollz = ||pll7a-

Therefore, §, +(-) is a bounded mapping from T (H,) to 7(H). Thus,

[T B(LY(0)-L1(0)})| < [Te{BS, ()} < 6(17(8) = £(5)]) (1+11flloo) el (1Bl

and the assumptions (1.3)-(1.4) are clearly satisfied.

The family of operators G; = %L{Lt + 1H; can be considered as a perturbation
of the generator G = %L*L + 1Hy by the operator g; = -%I f(®)|? + F(t)L*W which
is relatively bounded with respect to A:

2
llgell < '1'“f||2||¢H +IIAIIZAT A% < %—llzbll + cf|AY]|

with the upper bound ¢ = sup||f(t)||]. Hence, by the semigroup perturbation
theory [22], the operator G with the domain dom G; = dom G is a generator of
the strongly continuous bounded semigroup W, = exp{—sG;} with ¢ fixed.

We assume that the operators H; are symmetric on dom G. Then for any ¢ €
dom G we have

d
ZIWetl? = —(|(Ww, Li L W,9)|| < =Wl
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Therefore, W, is a contractive semigroup.
In sequel we assume for simplicity that ||Hot|| < ||A%]|, V¥ € dom A. Then
dom G; = dom A is an invariant joint domain of the generators G;. Consider the

trace-form Tr,{AL](p)} for p € Ty2(H). Using the algebraic identity

Li(A) = L*[L*, L)L + i[Ho, A] + | f (1) W™ [A, W]
1 - ' 1
+£(t) (W™, AL + -2-W*[L*,L]L) + F(t) (L*[A, W] + §L‘[L*, LIW) (6.5)
and aésuming that the densely defined operators [L*, L] can be extended to H as

a bounded operator, [|[A, W]¥||2 < coAu[¢] and ||[Ho, AJ¥||* < cA.[¥] on dom A,
we obtain from (6.1) and (6.5) the desired inequality (1.2)

L:(A)s < ciA, on dom A and hence Tr,{ALI(p)} < cillpllz,

for some uniformly bounded function c,. Thus, the conditions

[L*, L] € B(H); |[Ho#ll < [|A%]], ¥4 € dom A;

1A WIBI? < cohaw],  [I[Ho, AlYII® < cAL[g] Vo € dom A2,
W : 'Hr — Hi, is a bounded operator for £k = 1,2

imply the existence of the unital cocycle which has the formal generator of the
master equation with time-dependent coefficients (6.5).

The research was partially supported by INTAS grant No. 96-0698 (in the case
of the first author) and by CONACYT Mexico under grant No. 0233P-E9506 (in
the case of the second and the third author).
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