0000000000
1036 0 1998 0 101-109 101

- Hypoellipticity for Operators of
Infinitely Degenerate Egorov Type

Nis DENCKER (University of Lund)
Yosumnort MORIMOTO (Kyoto University)
Tarsusut MORIOKA (Osaka University)

§1. Introduction and Result

We study the hypoellipticity for the operator
(1) P =D, +ia(t)b(t,z, D;) in R, xRZ,
where ¢ =v/—1 and a(t) is a C* function satisfying
(2) ag = /Ia(t)dt >0 for any interval I C R.

Here b(t,z,£) € C*(R;, S1,(R})) is a classical symbol for any fixed t. We assume the
principal symbol b; of b is real valued. We denote the coordinates of T*(R; x R7) by
(t,z;7,€) ,t,7 € Rand z,£ € R*. We assume the following conditions (H.1) and (H.2).

(H.1) (7, bi(t, z,€)) satisfies the so-called Hérmander’s bracket condition (C.H), that is ,
for any p € Char P there exist a positive integer m and (k(1), k(2), ..., k(m)) € {0,1}™
such that

(H"'k(l) T Hrk(m-x)rk(m))(P) 7£ 0,

where ro = 7, r; = b and H, is the Hamilton vector field of g.

(H.2) (0:b1)(t,z,&) >0 for (¢,z,6) € R x R* x R™.

Theorem 1.If P of the form (1) satisfies (H.1) and (H.2) then P is hypoelliptic in
Rt X RZ.

We can relax the assumption (H.1) by assuming the logarithmic regularity estimate
as follows:

(H.3) For any € > 0 and any compact K C R; x R? there exists a constant
C = C(e, K) such that
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(3)  ll(log(Dz))ull* < e(||Deull* + ||Ba(2, 2, Da)ull*) + Cllull*  for any u € C3°(K),

where (£) = (2 4 [£]|*)/? and || - || denotes the usual norm of L?(R; x R"). We remark
that (H.3) follows from (H.1).

Theorem 2.The operator P of the form (1) is hypoelliptic in R; x R? if (H.2) and
(H.83) are fulfilled. Furthermore, for any po = (to, Zo; 7o, &) € T*(R: X RY) \ 0 and any

real s

(4) v € &'(R: x R}), Pv € H3i(po) = v € H(po),

where v € H°(py) means that there exists a classical symbol a(t,z,T,£) € Sf,O(RZIl

such that a # 0 in a conic neighborhood of po and a(t,z, Dy, D;)v € Hs;(R: x RY).

We give some historical remarks concerning our result. First we recall the definition
of subelliptic operators. Namely, a classical pseudodifferential operator P of order m is
called subelliptic with loss of é derivatives if 0 < § < 1 and if

v € &'(R™1), Pve H(R™) = ve HS, (R

The characterization of subelliptic operators was laboriously studied by Egorov([3] and it
was completely proved by Hormander[4] (see also [5] Chapter27) that P is subelliptic if
and only if the principal symbol p of P satisfies the Nirenberg-Treves condition (¥) and
(C.H) condition with ro = Rep and r; = Im p. After multiplication with elliptic operator
and a canonical transformation, the principal symbol p has the form microlocally

p=1+1iq(t,z,§), q(t,z,&) real valued

and for this form the condition (V) is stated as
(5) q(t,:v,{) >0and s>t = ¢(s,z,£) >0.

It follows from (H.2) that P of the form (1) satisfies the condition (5) ( and hence (¥)).
We remark that (W) is necessary for P of the form (1) to be hypelliptic because the adjoint
operator P~ is then locally solvable ( see [5] Theorem 27.4.7). In the theory of subelliptic
operators, the operator

(6) D, + it*(D,, + t¥*2?™|D,|) in R®, (k,j,m non-negative integers)

is an important model because, roughly speaking, any subelliptic operators can be reduced
to this opeartor and the Mizohata one after several microlocalization arguments. So we
shall call the operator of (6), Egorov type, even in the case where 2 t2+122™ are replaced
by other (infinitely) degenerate functions. It should be noted that almost all contents of
subelliptic theory are required in order to prove the subelliptic estimate for the simple
model (6).
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Our Theorem 1 shows that the operator
(7 P, = D, + ia(t)(Dg, + t¥*23™|D,|) in R?

is hypoelliptic if a(t) > 0 for ¢ # 0. In [9],[10], the hypoellipticity for infinitely degenerate
Egorov type operators was studied by the second author, but it was not shown there
that the operator P, is hypoelliptic when «a(t) has a zero of infinite order at ¢ = 0. The
difficulty comes from the fact that L? a priori estimate seems to be not satisfied for this
Py, in general. Indeed, Lerner [6] showed that L? a priori estimate does not hold for some
version of infinitely degenerate Egorov type operators though it satisfies (¥), ( whose
adjoint operator is a counter example to L? local solvability of operators satisfying (¥)
condition). Recently, the first author [1] showed that Lerner’s counter example is locally
solvable with loss of at most two derivatives and developped the method in [2]. We shall
prove Theorem 2 by using the fundamental estimate given in [2], instead of L? a priori

estimate. The proof of Theorem 2 in the next section is based on a method similar to
that of [11] Theorem 8.

§2. Proof of Theorem 2

We note that P is hypoelliptic in = {(¢,z) € R; x R?; o(t) > 0}, more precisely, P
is microhypoelliptic at any p = (o, Zo; 70, &0) € T*(2) \ 0. In fact, it follows from (H.2)
and Fefferman-Phong inequality that for any compact K C {2 there exists a Cx > 0 such
that '

l|Pul|[> = ||D:ul|®+ ||ebull® + 2Re (a(8;b)u,u) + 2Re ((Oia/a)(ab)u,u)

1
> (1Dl + Sllabull — Cllull, u € C=(K),

where we used Schwartz’s inequality to estimate the fourth term in the middle, in view
of & > Jcx > 0 on K. Together with (H.3), the above estimate shows that for any € > 0
and any compact K C Q there exists another C(e, K) > 0 such that

1 (108 /DF + D2 +2) ull* < ellPull* + Cle, Kllull®, w € O(K).

By means of Theorem 1 of {7] and its proof, we see the micro-hypoellipticity of P at any
p = (to, Zo; To, €0) € T*(2) \ 0, namely,

(2.1) v € E'(RFY), Pv e H(po) = v € H,"(po)

It suffices to show (4) of Theorem 2 in the case where § = (o, zo; 0, o) With a(te) = 0,
because

(2.2) P is microlocally elliptic in { (¢, z;7,£); T # 0}.
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For the brevity we assume (o, zo) = (0,0) and || = 1. Take ®(7,¢{) € S7o(R: x R})
such that ® =1 in {|r| < 6|¢|} and ® = 0 in {|7]| > 26|¢|} for a small § > 0, which will
be chosen later on. In order to cut the space R? we choose an h(z) € C°(R?) function
such that 0 < h < 1, A(z) = 1 for I:vl < 1/5 and h(z) = 0 for |z| > T7/24, and set
hs(z) = h(z/6). For the conical cutting in R, we define the following:

Definition. For § > 0 and & € R" (|&| = 1) we say that a function ¥(¢) € C®(R")
belongs to W, if 0 < 9 < 1 satisfies

P(€) =1 for |¢/[¢] — €o| < 6/12 and [¢] > 2/3,
P(€) =0 for [¢/1€] — &l > 6/10 or [¢] <1/2,
H(€) = P(E/N) for 0<A<1 and |¢|>1.

Let v € &'(RiEY) and Pv € H24(po). If ¥(¢) € Vros¢, and § > 0 is sufficiently
small, then we can find x(¢) € C°°(R) such that y = 1 in a neighborhood of t = 0,
supp X' C {t; a(t) > 0} and

(2.3) (D) hros (2)x(1)8(Dy, D) Po € Hypy.
Note that
Yhios(z) Px®v = phios(2)x P Pv — Yhyos(z)[P, X]Pv — hyos(z)x [P, D],

and that the second and third terms in the right hand side belong to H,,; and H,,,,
respectively, by means of (2.1) and (2.2). If w = x®v then it follows from (2.3) that

(2.4) (Dz)"*'9(Dz)haos(z) Pw € L*(R; x RY).

Since v € H_p for a large N > 0,

(2.5) (Dz)~N®v € L*(R; x R?) and hence (D,)"Nw € L*(R, x R?).
To complete the proof of (4), we shall show for a suitable $(¢) € Us ¢

(2.6) (D,)*$(Dg)hs(z)w € L*(R, x R?).

To this end, we use the Weyl calculus of pseudodifferential operator and by changing
the lower order terms of b, if necessary, we can write

P = D, +ia(t)t*(t, z, D,),

where b“(t,z, D,) is a pseudo-differential operator with a Weyl symbol, that is,

b*(t,z, Dy)u = (27)™" / ey, %ﬂ,ﬁ)U(y)dydé, u € S(R™).
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Furthermore, we consider the microlocalized operator at py = (0,{,) with a parameter
0 < X <1 as follows:
PY = D, +1a(t)bY(t,z,Dy),

where b¥(t,z, D,) is a pseudo-differential operator with a Weyl symbol
b)\(taxaﬁ) = b(t7$a€)h1005()‘€ - EO)

We apply Theorem A.2 of Dencker [2] by setting A(t) = a(t) and B(t) = by (t, ;r, D,).
Since (A.3) of [2] follows from (H.2), we have
Lemma 1. There ezists constants Cy and Ty > 0 independent of 0 < A < 1 such that
(27) lul[* < Co {Im (Pyu,bu) + 1P'ull*}
for any u(t,z) € S(R; X R?) having support where |t| < Tp.

We may assume supp x C {|t| < To} by taking a small 6 > 0. Let Hs(x, Dy; \) denote

the usual pseudodifferential operators with symbol Hs = hs(z)hs(A¢ — &). By (H.3) we
have

Lemma 2. Let § > 0 be a number chosen in the above and let To be the same as in

Lemma 1. For any € > 0 there exists a constant C. > 0 independent of 0 < A < 1 such
that

(log M2 ||Vl [? < & {Im (Pyu, byu) + || Pyull*}
(2.8) ~
+C. {IIVaull® + A |1 = Haos(z, Da; \)ul*}

for any u(t,z) € S(R: x R?) having support where |t| < Tp.

Proof. Substitute y/a(t)Hyos(z, D; A)u into (3). Then we have
(log 1)?||haos(AD — &o)haos(z)v/eull* < e(||Dpul? + ||v/aby (2, 2, Da)ul|* + C|lull?)

+ CellVoull%,

because A~! is equivalent to |¢| on supp haes(AE — &) and (v/a)' is bounded. Note that
supp H20§ N supp (]. - H405) = w and

1Dl [? < 2 (1 PFul|* + [lobull?) -
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Since it follows from (H.2) that
(ab¥u, b¥u) = Im (PYu, bu) — %Re ((Biby)*u, ) < Im (P¥u, %) + C|lul]

we have the desired estimate (2.8) by using (2.7). Q.E.D.

Let ¢o(z,&; ) =1 — Hys(z, €, ). It is clear that
¢ = 0 on supp Hs(z,&; ),
(2.9)
¢ = 1 outside of supp Hys(z, ;)
For an integer £ > 2s + 2N + 4 we set
K(z,&)) = V(i) — lo(zéir)log A
If K3(z,&; A) denotes dg DFK (z,¢;A) and if 0 < A < 1 then
| Jog A 71PN ILKCE (2, € A haos (A — &o)

belongs to a bounded set of S(1, go), where go = (log(¢))?|dz|? + (log(£))?(€)~2|d¢|? and
(€)% = 2 + |¢|%. Tt follows from (2.9) that

/\—Za.w([Kw(m’ D, /\)7 thS(w)])hIOS(A§ - 60)7 )\—Zo_w([Kw(m, D) A)7 h106()‘D - 60)])

belong to a bounded set of S(1, go) uniformly for 0 < A < 1. By the same reason we have
the following formulae modulo L? bounded operator uniformly for 0 < A <1

AHHPYRKWH o = A H1H 0 PKY
(2.10) = A HYH,KYP + io(t) Hyos[b*, K]}
= A HY{KYhios(AD — &o)hios(2) P + ia(t)[6*, K*)Hyos}-

It follows from the expansion formula of the Weyl calculus ( see Theorem 18.5.4 of [5] )
that

A~1(log M) 2K 1 hyges(AE — €o) X
(2.11) { o¥([6*, K¥]) — il log A o ((H, b)*K"™) }

€ S(1, go) uniformly for 0 < A < 1.
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Here 0“(A) denotes the Weyl symbol of pseudodifferential operators of A. It follows from
(2.10) and (2.11) that for any u € S(R; x R})

Il’l’l (P;‘UKleos’u, bf\"K’”Hlogu) S Im(l_)f\”K‘”hmg(/\D - fo)hlog(x)Pu, K“’ngu)
— f(log \) Im ((H,b)“a(t) K™ Hyosu, bY K* Hyosu)
+ Ce{(log M)?||v/aK™ Higsul[* + A**1||A~Vul[*},

where A = (D,). Use the Schwartz inequality in the first term of the right hand side.
Then for any p > 0 there exists a C,, > 0 such that

Im(_B’l;Kwhlog(/\D bl €0)h105(.’1))PU, I{leos’U,) S /,L”Kleog'U,HZ
+C, { A" hags(AD — &) haos(2) Pul? + X*++1||A=Nu][2}

Since the principal symbol of b¢(H,b)¥ is real valued, we also obtain

|[(log A) Im ((Hwb)‘”aK’”ngu, b}‘\’K"’Hloguﬂ S

ull K Hyosul |* + C, { (log \)2|eC Hyosul * + A+ ||A~Vu| [} .
Hence we see that

Im (Py K" Hyosu, by K¥ Higsu) < 2p||K* Hyosul|[?

+ Cu{IIA"h10s(AD — &o)haos() Pull”

(2.12)
+ (log A\)? ||v/aK" Hypsul|?
+ MBHA-Ny| 2}
Similarly,
||PY K* Hosull? < 2||hios(AD ~ &o)haos(z) Pul|*
(2.13)  + C{(log V) |laK® Hygsul[?

+ AIK¥ Hiosul? + A+1]|A-Nul[?} .
Let u € S(R: x R}) satisfy

(2.14) supp u C {|t| £ To}.
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Substitute K* Hjpsu into (2.7) and (2.8). Choose p = 1/(4C)p) in (2.12). In view of (2.12)
and (2.13), there exists a small Ag > 0 such that

|K* Hiosul|* < C(I]A " h1os(ADs — &o)hr0s(z) Pul|?

+ ABHANy|?) i 0< A< )

Since it follows from (2.9) that the symbol of K¥H;os = 1 on supp Hs, we have for
0< A< Ao

lhs(ADz — &o)hs(z)ul|* <

C (11X haos(ADy — €o)haos() Pul[? + A2+ || A~Nul|?) .
Multiplying A=25(1 + kA~1)~2(NV+s+2) with a parameter £ > 0 by both sides, we have
15Dz — €)(1 + KA)~" N+ Ashs(z)ul[? <

C(Ilh105(ADz — &o)(1 + £A)=(VH*D A+ hyg5(2) Pul | + A[|A~Nu[?)

because A~ is equivalent to |¢| on supp hs(Aé—&). Integrate X from 0 to Ao after dividing
both sides by A. Then by means of Proposition 1.7 of [8] we have for suitable ¥5(¢) € Usg,

and 95(€) € Wrossg,,
I(1 + £A)~ N2+ A5 D, ) hs(z)ul]? <

C(II(1 + wA)~NH+DAHhg( Dy ) haos() Pull? + [|A~Nu| 7).

Since w = x®v satisfies (2.5), one can find a sequence {i;} in S(R; x R}) satisfying
A™N@; — A~N®v in L*(R, x R?), (7 — o0) and supp 4; C {|7| < [¢[}. If u; = x(2)i;
then u; satisfies (2.14) and

A™Nu; —» A™Nw and A=W Py; » A~ Py in L2(R, x R?), (j — o)

because ANV Dyu; = (Dyx) A~ N+, 4+ x(A- N+ D,it;). Letting j — oo in the above
estimate with u = u;, we get for any ﬁxed k>0

(1 + £A) "+ A5 D) hs(2)wl > < C(1|A+ P5(De)haos(x) Pl |* + [|ANw]?)

because of (2.4) and (2.5). Letting x — 0 we get (2.6), and so (4) of Theorem 2. For an
open conic w in T*(R"*!) we say u € H,(w) if u € H?*(p) for any p € w. It follows from
(4) and the usual covering arguments that for any open conic sets wp,w with T C w

Pue Hyp1(w) = u€ Hy(w) -

This shows the microhypoellipticity of P. Thus the proof of Theorem 2 is completed.
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