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1. Introduction

Prange was considered to be first people to study cyclic codes in the end of $1950s$ , see [3]
and [8]. Since then, cyclic codes are the most studied of all codes, because they are easy
to encode, and include an important family of BCH codes. A code $C$ is cyclic if it is linear
and if any cyclic shift of a codeword is also a codeword, i.e., whenever $(c_{0}, c_{1}, \ldots, C_{n}-1)$ is
in $C$ then so is $(c_{n-1}, c0, \ldots, cn-2)$ . In fact, one could define a cyclic code to be an ideal
in the ring of polynomial modulo $x^{n}-1$ . Equivalently, a cyclic code of length $n$ over $F_{q}$

consists of all multiples of a generator polynomial $g(x)$ , which is the monic polynomial of
least degree in the code, and is a divisor of $x^{n}-1$ . That means each cyclic code of length $n$

will correspond to a factor of $x^{n}-1$ over $F_{q}$ . Therefore, the number of cyclic codes, usually
is restricted quite a lot, especially we always assume that $n$ and $q$ are relatively prime.

Instead of $x^{n}-1$ , by considering any polynomial $f(x)$ of degree $n$ over $F_{q}$ , we could
construct a class of linear codes, one special case of which is cyclic code. $W.e$ may as well
call them to be the generalized cyclic codes, denoted by GCC.

2. GCC Construction

Suppose $F_{q}$ to be a finite field, and by $F_{q}[x]$ we denote the set of polynomial in $x$ with
coefficients from $F_{q}$ . It is well known that $R_{n}=F_{q}[x]/(x^{n}-1)$ is a principle ideal ring,
which consists of the residue classes of $F_{q}[x]$ modulo $x^{n}-1$ . We associate with the vector
$c=(c_{0}, c_{1}, \ldots, C_{n}-1)$ in $F_{q}^{n}$ the polynomial $c(x)=c_{0}+c_{1}x+\ldots+C_{n-1}Xn-1$ in $R_{n}$ . The map

$\phi:c_{01}+cx+\ldots+C_{n}-1Xn-1arrow(_{C_{0},C_{1}}, \ldots, C_{n}-1)$ (1)

defines a 1-1 corresponding between $R_{n}$ and $F_{q}^{n}$ . Now, we want to consider more general
polynomial $f(x)$ of degree $n$ over $F_{q}[x]$ rather than $x^{n}-1$ . Let

$f(x)=f_{0}+f_{1^{X}}+\ldots+fnx^{n}$ .
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We always assume $f_{n}\neq 0$ in this paper. Define $R_{n}(f)=F_{q}[x]/f$ as the set of the residue
classes of $F_{q}[x]$ modulo $f$ . Similar with the discussion to $R_{n}(cf[8])$ , we can show $R_{n}(f)$

forms a principle ideal ring. Clearly $R_{n}(f)$ is a ring with the operations $of+and^{*}$ under
the modulo $f(x)$ . Given a.ny ideal $I$ of $R_{n}(f)$ , we select the monic polynomial $g(x)$ of the
least degree in $I$ . Then for any $c(x)\in I$ , we calculate the remainder

$c(x)=u(x)*g(x)+r(x)$ ,

where degree$(g(x))>degree(r(x))$ . According to the selecti.o.$n$ of $g(x)$ , it must be $r(x)=0$ ,
namely

$c(x)=u(_{X})*g(X)$ . (2)

So, $I$ is a principle ideal. That implies $R_{n}(f)$ is a principle ideal ring. It is easy to know
$g(x)$ is a divisor of $f(x)$ , since $f(x)\in R_{n}(f)$ satisfies (2). On the other hand, for any
factor $g(x)$ of $f(x)$ , we define $I$ to be a subset of $R_{n}(f)$ consisting of all multiples of $g(x)$ ,
denoted by $I=<g(x)>.$ . It is not hard to see $I$ is an ideal of $R_{n}(f)$ . Of course, we can
also establish a 1-1 corresponding between $R_{n}(f)$ and $F_{q}^{n}$ , just like (1), still denoted by $\phi$ .

Definition 2..1 A linear code of length $n$ over $F_{q}$ with the generating matrix

$G_{n-r,n}=$ (3)

is called a generalized cyclic code(GCC), provided $g_{r}=1$ .

In fact, for any given polynomial $g(x)\in F_{q}[x]$ of degree $r(\leq n)$ with $g_{r}=1$ , there always
exists a polynomial $f(x)\in F_{q}[x]$ of degree $n$ , such that $g(x)$ is a divisor of $f(x)$ , and $f_{n}\neq 0$ .
We have

Lemma 2..1 Suppose $I=<g(x)>\subset R_{n}(f)$ , in which $g(x)$ is a monic polynomial of
degree $r$ . Then $\phi(I)$ is an $n-r$ dimensional subspace of $F_{q}^{n}$ .

Proof. Let $k=n-r$ . For any $c(x)\in I$ , according to (2), we have

$c_{0}+c_{1}x+\ldots+C_{n}-1xn-1$ $=$ $(u_{0}+u1X+\ldots+uk-1^{X^{k}}-1)(g_{0++\ldots+x^{r}}g1Xg_{r})$

$=$ $(u_{0},‘ u_{1}, \ldots, uk-1)$

Combining with (3), this implies

$(c_{0,1,1}c\ldots, C_{n-})=(u0, u_{1,\ldots,k}u-1)$
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Because of $g_{r}=1$ , we have proved $\phi(I)$ is a $k$ dimensional subspace of $F_{q}^{n}$ . $\square$

Since Lemma 2..1, we usually associate $<g(x)>$ a linear code of $[n, n-r]_{q}$ , provided
$g(x)\in F_{q}[x]$ with degree $r$ and $g_{r}=1$ . This corresponding GCC, according to Defini-
tion 2..1, is also said to be generated by $g(x)$ . Furthermore, according to (2), $g(x)$ is called
a generator polynomial, $u(x)$ a message polynomial, $c(x)$ a codeword polynomial. Obvi-
ously, any cyclic code of length $n$ must be a GCC. Meanwhile, GCC can signifiC.antly give
more linear codes.

Theorem 2..2 For any $n\geq k$ , there exist $q^{r}$ GCC with parameters of $[n, n-r]_{q}$ .

Proof. Clearly, in $F_{q}[x]..’$. there are exact $q^{r}$ different polynomials in the following form

. $g(x),=g_{0}+g_{1}x+\ldots+g_{r}-1X^{r-}+x^{r}1$ . (4)

Now, suppose $b(x)$ is another monic polynomial of degree $r$ . Below, we only need to
prove $<g(x)>\neq<b(x)>$ , if $g(x)$ $\neq b(x)$ . However, this is clearly true. Otherwise,
$<g(x)>=<b(x)>impliesb(x)\in<g(x)>$ . By (2), it must be $b(x)=g(x)$ . $\square$

3. Some Applications of GCC

Double-Byte Error-Correcting codes are great important since their significant appli-
cation to computer industry. By a theorem(theorem 3.1 in [1]), we know there exists a
linear code of $[9, 2, \geq 5]_{3}$ . Here, GCC can give more support to [1]. In fact, according to
Theorem 2..2, there exist $3^{5}=243$ GCCs of $[9, 4]_{3}$ . By a searching algorithm described in
Section 4, one can find four of them have the minimum distance of 5. They are generated
by

$x^{5}+2x^{3}+x^{2}+2x+2$ ,
$x^{5}+2x^{3}+2x^{2}+2x+1$ ,
$x^{5}+x^{4}+2X^{3}+X+22$ ,
$x^{5}+2x^{4}+2x^{3}+2x^{2}+1$

respectively. The corresponding generating matrix are

$(0001$ $0011$ $2011$ $2111$ $0211$ $0221$ $0021$ $0002$ $0002\backslash$

,

On the other hand, since 9 and 3 are not relatively prime, there does not exist cyclic codes
with $n=9$ over $F_{3}$ at all. If we remove the limitation that $q$ and $n$ are relatively prime,
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we can only get a cyclic code $[9, 4, 3]_{3}$ generated by $(x+2)^{5}$ , which is clearly a factor of
$x^{9}-1=(x+2)^{9}$ mod 3. For the following discussion, we need to define

$D_{q}(n, k)= \max$ { $d|$ there is a GCC of $[n,$ $k,$ $d]_{q}$ }.

Proposition 3..1 $D_{q}(n, k)\geq D_{q}(n+1, k+1)$ .

Proof. Suppose $g(x)$ is the generator of a GCC of $[n+1, k+1, D_{q}(n+1, k+1)]_{q}$ . Its
generator matrix will have the form,

$G_{k+1,n+1}=$
Clearly, the minimum distance decided by $G_{k,n}$ is at least $D_{q}(n+1, k+1)$ . So, $D_{q}(n, k)\geq$

$D_{q}(n+1, k+1)$ . $\square$

Proposition 3..2 For any $2^{m}>n>2m$ , there exists a GCC of $[n, n-2m, \geq 5]_{2}$ .

Proof. We recall a well known results about double-error-correcting BCH code$(for$

example, see page 193 in [8] $)$ :

$g(x)=M^{(1})(X)M^{(3)}(X)$

generates a cyclic code of

$[2^{m}-1,2^{m}-1-2m, \geq 5]_{2},$ $m\geq 3$ ,

where degree$(g(x))=2m$ . In addition, for $\alpha$ , a primitive element of $F_{2^{m}}$ ,
$M^{(1)}(\alpha)M^{(}3)(\alpha)=0$ .

By Proposition 3..1, we have

$D(n, n-2m)\geq D(2^{m}-1,2^{m}-1-2m)\geq 5$ ,

for all $2^{m}-1\geq n>2m$ . Thus we have proved our proposition. $\square$

Now, let us consider a $MacWilliams$ problem(page 184 in [8]): How close can one get: is
there a $[90, 77, 5]_{2}$ code?

Since $2^{7}>90>14$ , by Proposition 3..2, we can find a GCC with parameters of [90, $76,$ $\geq$

$5]_{2}$ . However, we will see there are only cyclic codes of $[90, 76, \leq 4]_{2}$ when we don not insist
the condition that $n$ and $q$ have to be relatively prime. Since over $F_{2}$ , we have irreducible
factorization

$x^{90}-1$ $=$ $(_{X^{12}+X^{9}}+1)2(x+X^{3}+112)2(x+x63+1)2(x^{4}+X^{3}+1)2(x^{4}+x+1)^{2}$

$(_{X^{4}+X^{3}+}x^{2}+X+1)2(_{X^{2}+X+}1)2(x+1)^{2}$
$x^{45}-1$ $=$ $(x^{12}+X^{9}+1)(X12+x+13)(X^{6}+X^{3}+1)(X^{4}+x+31)(X+X+14)$

$(_{X^{4}+X^{3}++X}x^{2}+1)(X+X+21)(X+1)$
$x^{15}-1$ $=$ $(X^{4}+X^{3}+1)(_{X^{4}+X+}1)(X^{4}+X+x^{2}+X+13)(X+X+21)(X+1)$
$x^{9}-1$ $=$ $(x^{6}+X^{3}+1)(X^{2}+X+1)(X+1)$
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It is not hard to know all factors of $x^{90}-1$ with degree 14 will be a factor either of

$(x^{45}-1)(x-151)=x^{6}+X^{1}+10_{+x}455$

or
$(x^{45}-1)(X^{9}-1)=x^{54}+x^{4}+x+159$

So, any cyclic codes of $[90, 76]_{2}$ must contain $x^{60}+x^{45}+x^{15}+1$ or $x^{54}+x^{45}+x^{9}+1$ as a
codeword polynomial. This shows its minimum distance is at most 4.

4. Comparison of GCC and Cyclic Codes for $n=27$

In previous sections, we have seen GCC can give better parameters, say $d$ , relatived to
cyclic codes. The idea to get GCC is simple, the method to construct GCC is straightfor-
ward. Below is the outline description of a searching algorithm for GCC.

Algorithm 4..1 $D(n, k,p, g(X))$ : Algorithm to decide the minimum distance.

Input : $n,$ $k,p$ (a prime), $g(x)$ ( $a$ generator polynomial);

Output : $d$ , the minimum distance for a given GCC generated by $g(x)$ .

Step 1) Construct a generating matrix $G_{k,n}$ from $g(x)$ .

Step 2) By seeing all possible codewords to decide $d$ .

Stop. $\square$

Algorithm 4..2 Searching Algorithm for GCC.

Input : $n,$ $k,p$ ;

Output : $D_{p}(n, k)$ and the number of corresponding GCCs.

Step $O$ ) $[initiall]$ Set dl $=1,$ $N=0$ .

Step $1$ ) $[initial2]$ Set $PS=al1$ polynomial in $F_{p}[x]$ with degree $n-k$ .

Step $2$ ) $[selecting]$ Select a $g(x)$ from $PS$ , then set $PS=PS-\{g\}$ .

Step $3$ ) $[decidingd]d=D(n, k,p, g(x))$ .

Step $4$ ) $[counting]$ If $d>d1$ then {dl $=d,$ $N=1$ } else if $d=dl$ then $N=N+1$ .

Step $5$ ) $[continue?]$ If $PS$ not enipty then goto Step 2 else {output $N$ and $d$}.

Stop. $\square$

We would like to give thorough computations for $n=27$ to colnpare the behavior between
cyclic codes and GCC for binary case.
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Fig. 1. Comparison between binary cyclic codes and GCC with $n=27$ .

In Fig.1, $D_{CC}(k)$ means the best minimum distance of $k$ dimensional binary cyclic code.
$N(k, D_{C}c(k))$ is the number of $k$ dimensional binary cyclic codes with minimum distance
$D_{CC}(k)$ . Notice, since there is no cyclic codes at all for some $k$ , the corresponding $D_{cc}(k)$

has no definition and $N(k, D_{C}c(k))=0$ . Similarly, we define $D_{gcc}(k)$ as the best minimum
distance of $k$ dimensional binary $GCC\backslash ’ N(k, D_{9^{CC}}(k))$ as the number of the possible $k$

dimensional GCC with minimum distance of $D_{gcc}(k)$ .

The experiments show GCC can work much better than cyclic codes.

5. Conclusion and Acknowledgement

With the observation of selecting more general polynomial of degree $n$ instead of $x^{n}-1$ ,
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we presented a method to construct a class of generalized cyclic codes.

The research at this stage shows GCC is much better than cyclic codes. Meanwhile there
are still many questions to be worth of answering for GCC. For example, is GCC a class
of good linear codes? Can we find an efficient decoding algorithm for GCC?

The author wishes to acknowledge the discussion with Hong DU and Changyan DI while
preparing the manuscript. Thanks also to Gui Liang FENG for his suggestion to write this
paper and to Fujio Kako to arrange my visiting Japan under the supporting from JSPS.
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