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1. Introduction.

As an generalization for the Kullback-Leibler information, Umegaki [17] defined

the relative entropy in operator algebras, which is now called the Umegaki entropy.

Also, Nakamura and Umegaki defined the operator entropy in [11]. So Kamei and

the author [7] defined the relative operator entropy by generalizing operator means

by Kubo and Ando [9] (see also [5,6]). A two variable function, $(A, B)$ ト\Rightarrow AsB,

from positive invertible operators to selfadjoint operators is called a solidarity if $\mathrm{s}$

satisfies the following axioms:

(S1) $B\leq C$ implies $A\mathrm{s}B\leq A\mathrm{s}C$,

$(\mathrm{S}2_{r})$ $B_{n}\downarrow B$ implies $A\mathrm{s}B_{n}\downarrow A\mathrm{s}B$ .
$(\mathrm{S}2_{t})$

$\mathrm{s}-\lim_{narrow\infty}A_{n}=A$ implies $\mathrm{s}-\lim_{\infty narrow}A1n^{\mathrm{S}}=A\mathrm{s}1$ .

(S3) $T^{*}(A\mathrm{s}B)T\leq T^{*}AT_{\mathrm{S}}\tau^{*\tau}B$ for all operators $T$.

Then, for a positive number $x$ , we may consider $f_{s}(x)=1\mathrm{s}x$ as a scalar by the

transformer inequality (S3) and the function $f_{s}$ is operator monotone by (S1). More-

over a map $\mathrm{s}\vdash+f_{s}$ is a bijection from the solidarities onto the operator monotone

functions on $(0, \infty)$ where the inverse map is constructed by

$A\mathrm{s}B=A1/2f_{s}(A^{-}1/2BA-1/2)A^{1/2}$ .

Here $f_{s}$ is called the representing function for $\mathrm{s}$ . For example, the solidarity for the

logarithm is the relative $o\mathrm{p}$erator entropy [7]:

$S(A|B)=A^{1/2}\log(A-1/2BA-1/2)A^{1/2}$ .

If $f_{s}$ is nonnegative, then $\mathrm{s}$ is called connection and besides if $f_{s}(1)=1$ (or equiv-

alently $A\mathrm{s}A=A$), then $\mathrm{s}$ is called an operator mean in the Kubo-Ando theory.
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Recently Petz [12] showed that the monotone metrics on the Hilbert space of
the matrices correspond exactly to the operator means or connections of the left

multiplication operator and the right one. Motivated by this, we consider the

operator means or solidarities of multiplication operators and give the integral

representations, which is obtained through the Lyapunov equation of operators.

2. Solidarities for multiplication operators.

For a fixed positive linear form $\varphi$ on a $\mathrm{C}^{*}$-algebra $A$ on a Hilbert space $H$ , we

define multiplication operators in the usual way: Let $N=\{X|\varphi(x*x)=0\}$ , the

left kemel of $\varphi$ . For the Hilbert space $\mathcal{H}$ obtained as the completion of the quotient

space $A/N$, the quotient map from $Aarrow \mathcal{H}$ is denoted by $X\vdash+[X]$ . Then $L(A)$

and $R(A)$ for $A\in A$ are defined as

$\langle L(A)[X], [\mathrm{Y}]\rangle_{\varphi}=\varphi(\mathrm{Y}^{*}Ax)$ and $\langle R(A)[X], [\mathrm{Y}]\rangle_{\varphi}=\varphi(\mathrm{Y}^{*}XA)$ .

The left multiplication $L(A)$ is a bounded operator on $\mathcal{H}$ by

$||L(A)[x]||2=\varphi(X^{**}AAx)\leq||A||_{A}^{2_{\circ}}\varphi(x*x)$ .

Moreover the map $Aarrow B(\mathcal{H}),$ $A\vdash+L(A)$ is algebraically homomorphic and pre-

serves the positivity as operators, so we have

$L(A)\mathrm{S}L(B)=L(A\mathrm{S}B)$ .

Thus there is no problems in solidarities of left multiplication operators.

But the right multiplication $R(B)$ is not always bounded even if $B$ is a matrix.

In fact, consider

$\varphi=a$ , $A=$ and $X=$ .

Then we $\mathrm{h}\mathrm{a}.\mathrm{v}\mathrm{e}$

$||[X]||^{2}=\varphi(X*X)=\varphi=0$ ,

while
$||R(A)[x]||2=\varphi(A^{*}X*XA)=\varphi(A)=1$ .

So, from now on, we must assume that $\varphi$ is tracial, i.e., $\varphi$ satisfies

$\varphi(AB)=_{\Psi(A}B)$
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for ffi operators $A,$ $B\in A$ . In this case, the map $Aarrow B(\mathcal{H}),$ $Aarrow R(A)$ is anti-
homomorphic and preserves positivity, so we may \’identify $R(A)_{\mathrm{S}R}(B)$ with $A\mathrm{s}B$ .
However, the structure of $L(A)\mathrm{S}R(B)$ (or $R(A)_{\mathrm{S}L}(B)$ ) is not clear although $L(A)$

and $R(B)$ always commute. Petz discussed these types of means in [12].

Our main problem in this note is to consider the structure of the above solidarity.
So we examine $(L(A)\mathrm{s}R(B))[X]$ for operators $X\in A$ . There are several elementary
examples:

the arithmetic mean $(L(A) \mathrm{a}R(B))[x]=[\frac{AX+xB}{2}]$

the geometric mean $(L(A)\mathrm{g}R(B))[X]=[A^{1/2}xB^{1/}2]$

the relative $S(L(A)|R(B))[X]=[-A\log AX+AX\log B]$ .operator entropy

Since $L(A)$ and $R(B)$ commute, the relative operator entropy is

$S(L(A)|R(B))=-L(A)\log L(A)+L(A)\log R(B)$ ,

which assures the above last formula.

Now we see the difference for relative entropies: If $A$ is a semifinite von Neumann
algebra and $\varphi$ is its trace, then the Umegaki entropy is

$S_{U}(A|B)=-\langle S(L(A)|R(B))[1], [1]\rangle_{\varphi}$ .

On the other hand, the $Belavkin_{-}stasZew\mathit{8}ki$ entropy in [3], which is $-\varphi(S(A|B))$

in this case, is

$S_{BS}(A|B)=-\langle S(L(A)|L(_{\backslash }B))_{\mathrm{L}}\lceil 1^{\underline{1_{\mathrm{I}}}}, [1]\rangle_{\varphi}$.

3. Lyapunov equation.

The operator $(L(A)+R(B))[X]=[AX+XB]$ reminds us of the Lyapunov
equation $AX+XB=C$. So we review it in this section.

First we see a solution which is known even for operators (e.g., [4]). The spectrum
$\sigma(A)$ never grows for the map $A\vdash+L(A)$ or $R(A)$ , that is, $\sigma(A)\supset\sigma(L(A)),$ $\sigma(R(A))$

which are the spectra in $B(\mathcal{H})$ . According to the system theory, an operator $A$ is

called stable (resp. anti-stable) if $\sigma(A)\subset \mathbb{C}^{-}$ (resp. $\mathbb{C}^{+}$ ), where $C^{\pm}$ is the open

half plane whose real part $\mathrm{i}\mathrm{s}\pm \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y}$. So the stability preserves under the

22



map $A\vdash+L(A)$ or $R(A)$ . Hereafter we deal with only anti-stable operators because
positive invertible operators belong to this class. Now we confirm for completeness
that the Lyapunov equation for two anti-stable operators is solvable by consulting
Ando’s lecture note [2], which was also shown by Rosenblum [13]:

Proposition. Let $A$ and $B$ be anti-sta$ble$ operators. Then

$||e^{tA}||arrow 0$ as $t\downarrow-\infty$

and the Lyapun$o\mathrm{v}$ equation $AX+XB=C$ has a solution

$(^{*})$ $X= \int_{-\infty}^{0}e^{tA}ce^{tB}dt$ .

Proof. For a closed Jordan curve $\Gamma$ in $\mathbb{C}^{+}$ containing $\sigma(A)$ in its interior, we can
use Cauchy integral representation (see also [16]):

$e^{tA}= \frac{1}{2\pi i}\int_{\Gamma}e^{tz}(z-A)^{-1}dz$.

Let $l$ be the length of $L$ and $\epsilon$ the distance between $L$ and the imaginary axis.
Then we have

$||e^{tA}|| \leq\frac{1}{2\pi}\int_{\Gamma}|e^{tz}|||(z-A)^{-}1|||dZ|$

$\leq e^{t\epsilon}\frac{\ell}{2\pi}\sup_{\in z\Gamma}||(z-A)^{-1}||$ .

Therefore $||e^{tA}||arrow 0$ as $t\downarrow-\infty$ . Substituting $(^{*})$ into the equation, we have

$AX+xB= \int_{-\infty}^{0}Ae^{tABAtB}ce^{t}+eCteBdt$

$= \int_{-\infty}^{0}\frac{de^{tA}Ce^{tB}}{dt}dt=[e^{\mathrm{r}A}Ce^{t}B]^{0}-\infty=C-0=C$.

Next we refer the equivalent condition that the Lyapunov equation has a solution.
Let $A$ be a $\mathrm{C}^{*}$-algebra with a faithful state $\varphi$ on a Hilbert space $H$ with a fixed
basis $\{e_{i}\}$ . Here we define the transpose operator $A^{T}$ with respect to $\{e_{j}\}$ by

$\langle A^{T}e_{i}, ej\rangle=\langle A^{*}e_{i}, e_{j}\rangle$ .
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So we have $\sigma(A^{T})=\sigma(A)$ immediately.
Then $A$ is a Hilbert space with the inner product $\langle A, B\rangle=\varphi(B^{*}A)$ and equal

to the quotient space $\mathcal{H}$ itself since $\varphi$ is faithful. Moreover we can identify $A$ with

the subspace $\tilde{A}$ of $H\otimes H$ as Hilbert spaces by the unitary operator $U$ defined by

$U:e_{i}\otimes\overline{e_{j}}\vdash ie_{i}\otimes e_{j}$ ,

where $x\otimes\overline{y}$ is a dyad (or von Neumann-Schatt\‘en operator) with $(x\otimes\overline{y})z=\langle z, y\rangle x$

for all $z\in H$ . Then $U$ induces the isomorphism from $B(A)$ onto $B(\tilde{A})$ by $Zrightarrow$

$UZU^{*}$ and hence we have

$UL(A)U^{*}=A\otimes 1$ and $UR(B)U^{*}=1\otimes B^{T}$

and the image of the Lyapunov equation$(L(A)+R(B))X=AX+XB=C$ is

$(A\otimes 1+1\otimes B^{T})UXU*=UCU^{*}$ .

Applying Schechter’s theorem [15];

$\sigma(p(x\otimes 1,1\otimes \mathrm{Y}))=p(\sigma(x), \sigma(\mathrm{Y}))$

for all polynomials $p$ of two variables, we have

$\sigma(A\otimes 1+1\otimes B^{T})=\sigma(A)+\sigma(B^{T})=\sigma(A)+\sigma(B)=\sigma(A\otimes 1+1\otimes B)$,

which shows the required condition:

Theorem 1. The Lyapunov equation $AX+XB=C$ in a $C^{*}$-algebra $A$ with a

faithful state $\varphi$ is solvable if and only ifzero never belongs to the sum of the spec$\mathrm{t}ra$

of $A$ and $B$ :

$\mathrm{O}\not\in\sigma(A\otimes 1+1\otimes B)=\sigma(A)+\sigma(B)$ .

Remark. The assumption that $A$ is a $\mathrm{C}^{*}$-algebra with a faithful state in Theorem

1 is not essential. In fact, Kleinecke’s theorem in [10] says that the condition
$\mathrm{O}\not\in\sigma(A)+\sigma(B)$ is equivalent to the solvable one for a Banach algebra of all bounded
linear operators on a Banach space. These facts are well-known for matrices as
in [8]. Lyapunov operator equations were studied in $50’ \mathrm{s}$ by $\mathrm{M}.\mathrm{A}$ .Rutman [14],

M.Rosenblum [13] et. al..
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4. Parallel sum and means.
Let $A$ and $B$ be invertible operators in $A$. Then $A+B$ is invertible if and only

if $A^{-1}+B^{-1}$ is. $\mathrm{I}\dot{\mathrm{n}}$ fact, if $A+B$ is invertible, then one can easily verify that
$A^{-1}+B^{-1}$ has the following inverse:

$A(A+B)^{-1}B=B(A+B)^{-1}A$ .

So, for invertible operators $A$ and $B$ such that $A+B$ is also invertible, one can

define the parallel sum $A:B$ by

$A:B=(A^{-1}+B^{-1})^{-1}=A(A+B)^{-1}B=B(A+B)^{-1}A$,

see [1] (Note that the positivity for $A$ and $B$ is not assumed here).

Now we see the relation between the parallel sum and the Lyapunov equation:

Theorem 2. Let $A$ and $B$ be anti-stable operators in a $C^{*}$-algebra $A$ with a ffied

state $\varphi.$ T.hen, in the above quotient Hilbert space $\mathcal{H}$ ,

$(L(A):R(B))[x]=[ \int_{-\infty}^{0}e^{t}AAXBeBtdt]$

for all operators $X\in A$ .

Proof. By the commutativity and invertibility, we have

$(L(A):R(B))[X]=(L(A)+R(B))-1L(A)R(B)[X]=(L(A)+R(B))^{-}1[AxB]$ .

Thereby, to find $\mathrm{Y}$ with $[\mathrm{Y}]=(L(A):R(B))[X],$ , we have only to solve the following

equation:.

$[AXB]=(L(A)+R(B))[Y]=[A\mathrm{Y}+\mathrm{Y}B]$ ,

that is, the Lyapunov equation for the unknown $\mathrm{Y}$

$A\mathrm{Y}+YB=AXB$ .

The requaired solution follows from Proposition.

Now we go back to means of positive invertible operators in $A$ . Since positive

invertible operators are anti-stable, we can use Theorem 2. In [9], Kubo and Ando
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showed that every connection $\mathrm{m}$ has the integral representation for the positive

Radon measure $\mu$ on $[0, \infty]$ :

A$\mathrm{m}B=aA+bB+\int_{(0,\infty)}(tA):B\frac{1+t}{t}d\mu(t)$

where $a=f_{m}(0)=\mu(\{0\})$ and $b= \inf tf_{m}(1/t)=\mu(\{\infty\})$ . So we can express

connections of multiplication operators:

Theorem 3. Let $\mathrm{m}$ be a connection in the sense ofKubo $\dot{\mathrm{a}}nd$ Ando. Then, in the

above quotient Hilbert space $\mathcal{H}$ ,

$(L(A) \mathrm{m}R(B))[X]=[aAX+bXB+\int_{(0,\infty)}\{\int_{-\infty}^{0}e^{t_{\theta}A}AxBe\frac{1+s}{s}tBdt\}d\mu(S)]$

for positive invertible $A$ and $B$ and arbitrary $X$ in $A$, where a, $b$ and $\mu$ is in the

above representation for connections $\mathrm{m}$ .

For a solidarity $\mathrm{s}$ , define an nonnegative operator monotone function $f_{m}(x)=$

$f_{s}(x+\epsilon)-f_{\theta}(\epsilon)$ for a fixed $\epsilon>0$ with the corresponding connection $\mathrm{m}$ . By the

integral representation of $\mathrm{m}$ , we have

$C\mathrm{s}D=f_{s}(\epsilon)C+C\mathrm{m}(D-\epsilon C)$

$=(a+f_{S}( \epsilon)-b\epsilon)CA+bD+\int_{(0,\infty)}(tD):(D-\epsilon c)\frac{1+t}{t}d\mu(t)$ .

Since

$(tD):(D-\epsilon C)=(tC)(tC+D-\epsilon C)^{-1}(D-\epsilon C)$

$= \frac{t}{t-\epsilon}(t-\epsilon)C(tC+D-\epsilon c)^{-1}D(1-\mathcal{E}D^{-1}c)$

$= \frac{t}{t-\epsilon}((t-\epsilon)C:D)(1-\epsilon D^{-1}C)$ ,

we have the following formula for solidarities:

Theorem 4. For a $solidari\mathrm{t}_{\mathrm{J}^{\Gamma}}S$ and $\epsilon>0$ , let $\mathrm{m}$ be the corresponding connection

for $1\mathrm{s}x=1\mathrm{s}\epsilon+1\mathrm{m}(x-\epsilon)$ with the in$\mathrm{t}$egral representation as in Theorem 3. Then

$(L(A)\mathrm{S}R(B))x=(a+fS(\epsilon)-b6)Ax+bXB$

$+ \int_{(0,\infty)}(\int_{-\infty}^{0}te^{(\epsilon}t-)\prime AAXBetB\frac{1+r}{r}dt)d\mu(r)$

$- \int_{(0,\infty)}(\int_{-\infty}^{0}t_{\mathit{6}e}(t-\epsilon)rAA2xe^{t}\frac{1+r}{r}dt)Bd\mu(r)$.
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