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Abstract
In [2] we gave a characterization of theoremhood in terms of the Connection Method
for the multiplicative fragments of Affine (Contraction-Free) and Linear Logic. Such
matrix characterisations constitute a basis for the adaption of the classical path
checking procedures to the just mentioned logics.
In this paper we establish computationally advantageous variants of the previously
developed matrix characterisations. Instead of the complementarity of paths they
hinge on the total connectedness of a sufficient number of virtual col\‘umns in a ma-
trix (non-purity). From these refined matrix characterisations we derive a pruning
technique for proof search in acyclic (and linear) matrix graphs, which can be used for
multiplicative Affine Logic. Extending proof search to multiplicative Linear Logic,
we show that the additionally required minimality of spanning sets is assured by
depth-first search, and that the necessary connectedness of $\mathrm{a}\mathrm{U}$ literals can be. tested
incrementaUy.
This paper is a shortened version of [3] which can be obtained from the author.

1 Introduction
Classical logic, when defined with Sequent Calculus, is determined by the availability of the
structural rules of contraction, weakening and exchange. Dropping (or weakening) some of
these structural rules yields so-called substructural logics. In the absence of contraction or
weakening, different equivalent ways of introducing into sequents the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}\mathrm{s}\wedge,$ ${ }$ and
$arrow \mathrm{a}\mathrm{r}\mathrm{e}$ no longer equivalent, and we must distinguish the multiplicative $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}\mathrm{s}\otimes,$ $\#$

and $arrow$ from their additive counterparts &, $\oplus \mathrm{a}\mathrm{n}\mathrm{d}arrow$ . The multiplicative fragment, given
by the multiplicative connectives and negation, is conceptually simpler than the additive
one, and efficient proof search seems to be more feasible.
One of the approaches to proof search for classical logic is the Connection Method (see [1]
and Section 2 below). With this approach formulae are transformed into so-called matrices,
connections are added, and there is the fundamental theorem that a formula is a theorem
of classical propositional logic iff all paths through the respective matrix contain a connec-
tion. (A set of connections which makes all paths complementary is called spanning.) In
order to characterize also theoremhood in substructural logics by means of matrices and
connections further conditions must be demanded. In [2] we showed that for characterizing
theoremhood in the multiplicative fragment of Affine Logic, in addition to complementarity
the two further conditions linearity and acyclicity must be fulfilled (see Theorem 1 below).
This leads in a straightforward manner to a rather trivial proof procedure for multiplica-
tive Affine Logic: We take a proof procedure based on the classical Connection Method,
which enumerates all spanning sets of connections, and check incrementally linearity and
$\mathrm{a}\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{i}\mathrm{t}\dot{\mathrm{y}}$ of the spanning sets under construction.
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However, we discovered that our acyclicity condition is very strong and allows to replace
complementarity by the weaker condition of non-purity which is also easier to check (Def. 1
below): Instead of caring about complementarity of paths we only have to look for a set of
connections which connect each literal in a sufficient (saturated) amount of virtual columns
of the matrix. This leads to an improved proof search procedure, because it allows to refrain
from checking for complementarity all continuations of a partial path through a literal $L$ ,
if this literal $L$ is already connected.
The proof procedure obtained so far can be applied in a naive way to the multiplicative
fragment of Linear Logic by checking in addition whether the generated sets of connections
are also minimal spanning and connect all literals (total connectedness). Fortunately, with
depth-first search, the developed proof procedure generates only minimal spanning sets of
connections. Consequently, an additional, and in general quite costly, minimality check
becomes superfluous. Moreover, it turns out that the test of total connectedness can be
done incrementally during proof search, which permits an earlier detection of eventually
failing proof attempts. Thus we achieve exponential gains over related methods.
This paper is a very shortened verison of [3] to which we refer for more details and for
proofs of the lemmata presented in the sequel.

2 The Connection Method

We briefly present the substructural logics which will be dealt with in the following and
shortly review the main concepts of the Connection Method. We assume some familiarity
with the Connection Method for classical logic [1] and mainly point out what is different for
its application to the multiplicative fragments of substructural logics like Affine or Linear.
For more details we refer the reader to [2].
By the multiplicative fragment we understand all well-formed formulae built from
propositional variables and the connectives $arrow$ (implication), $\otimes(\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}),$ $\#$ (disjunc-
tion) and $\neg$ , for which we assume the multiplicative sequent rules. Moreover, we consider
the structural rules of weakening, exchange and contraction. Dropping the rules of con-
traction we get multiplicative Affine Logic. If we drop the rules of weakening as well,
then we get multiplicative Linear Logic.
For characterizing Affine Logic by $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}_{\tau}\mathrm{s}$ of the Connection Method a combined general-
isation of its concepts into the following three directions had to be developed for reasons
which will become clear in the sequel:

1. Non-normal form matrices,
2. multi-occurrences of literals and
3. relativisation to arbitrary sets of connections.

A (clause) normal form matrix is a set (row) of sets (columns) of literals. Literals
are propositional variables or their negations. In matrices we denote negation by overlining.
Without contraction the transformation of a formula into a normal form matrix is no more
possible because we lack the necessary distributive laws $\mathrm{b}\mathrm{e}\mathrm{t}\mathrm{W}\mathrm{e}\mathrm{e}\mathrm{n}\otimes \mathrm{a}\mathrm{n}\mathrm{d}\#$ . We just achieve
negation normal form, i.e. a formula built from negated or unnegated propositional
variables with the connectives $\otimes \mathrm{a}\mathrm{n}\mathrm{d}\#$ . This corresponds to non-normal form ma-
trices (point (1) above). In contrast to normal form matrices, they have arbitrarily deep
nestings, i.e. they are a set of sets of sets. .., respectively a row of columns of rows
. .. The symbol $\in$ denotes set membership and @ denotes its reflexive transitive closure.
Rows or columns $\Lambda^{r}$ with $N\in N’$ are called $toprightarrow level$ elements of $N’$ .
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Without contraction we also loose the idempotence of conjunction $(\otimes)$ and disjunction $(\#)$ .
This requires to distinguish different occurrences $L^{1}$ and $L^{2}$ of a (logical) literal
within the same row or column $N$ of a matrix $\mathcal{M}(L^{1}, L^{2}\in N\Subset M)$ . In addition,
we have to assure during the translation of a formula into a matrix, that different atomic
subformulae will yield different occurrences of literals in the matrix (point (2) above).
A path $\mathfrak{p}$ in a row $N=\{C_{1}, \ldots,C_{n}\}$ is the union of paths $\mathfrak{p}_{1}$ in $\mathcal{M}_{1},$

$\ldots,$
$\mathfrak{p}_{n}$ in $\mathcal{M}_{n}$

with $\mathcal{M}_{i}\in C_{i}$ or $\mathcal{M}_{i}=C_{i}$ in the case of $C_{i}$ being a literal. If $C_{i}$ or $\mathcal{M}_{i}$ is an occurrence
$L^{1}$ of a literal, then the path $\mathfrak{p}_{i}$ is $\{L^{1}\}$ .
Two (logical) literals $I\mathrm{t}’$ and $L$ are called complementary, if there is a propositional
variable $P$ and $K=P$ and $L=\overline{P}$ or vice versa. Since for an arbitrary formula $F$ holds
that $\neg\neg F$ is equivalent to $F$ , we make the convention that $\overline{IC}$ denotes the literal being
complementary to the literal If, where $K$ may be a propositional variabIe or its nega-
tion. A connection in a matrix $\mathcal{M}$ is an unordered pair of occurrences of complementary
literals $L\Subset \mathcal{M}$ and $I\mathrm{f}\Subset \mathcal{M}$ , denoted by $(L, K)$ or $(K, L)$ .
A path $\mathfrak{p}$ in a matrix $\mathcal{M}$ is a complementary $p..a$th with respect to a set of connections
$\mathfrak{S}$ , if $\mathfrak{p}$ contains a connection of $\mathfrak{S}$ , i.e. there are occurrences of literals $L\Subset \mathcal{M}$ and
$IC\Subset \mathrm{A}t$ with $(K, L)\in \mathfrak{S}$ and $K,$ $L\in \mathfrak{p}$ . A set of connections $\mathfrak{S}$ is called spanning for
a matrix $\mathcal{M}$ iff every path in $\mathcal{M}$ contains at least one connection from S.
For classical logic holds that if there is a spanning set of connections for a matrix,
then also the set of all connections is spanning. In the following we have to state more
explicitly for a given matrix which set of connections we are dealing with (point (3) above).
This leads to the concept of a matrix graph $(\mathcal{M}, \mathfrak{S})$ , i.e. a pair consisting of a matrix
$\mathcal{M}$ and a particular subset $\mathfrak{S}$ of the set of all connections. A complementary matrix
graph is a matrix graph $(\mathcal{M}, \mathfrak{S})$ such that $\mathfrak{S}$ is a spanning set of connections for $\mathcal{M}$ ,

For a matrix graph $(\mathcal{M}, \mathfrak{S})$ with $\mathcal{M}\equiv\{C_{1}, \ldots, C_{n}\}$ , given subsets $D_{i}\subset C_{i}$ , and $N$ $:=$

$\{D_{1}, \ldots, D_{n}\}$ , we define the strong restriction of $\mathfrak{S}$ to $N$ as
$\mathfrak{S}|N:=$ { $(K,$ $L)\in \mathfrak{S}|K\Subset N$ and $L\Subset N$ }

A matrix graph $(\mathcal{M}, \mathfrak{S})$ is called path minimal iff for every connection in $\mathfrak{S}$ exits a
path which contains no further connection from G. A matrix graph $(\mathcal{M}, \mathfrak{S})$ is minimal
complementary iff it is complementary and path minimal.
A literal in a matrix graph (At, G) is connected iff it is part of a connection in S.
Otherwise it is unconnected. A part of a matrix graph–e.g. a row, column, path, etc.–
is connected iff it contains a connected literal, it is totally connected iff all its literals
are connected, and it is isolated iff none of its literals is connected.
Virtual columns are defined as the vertical analogues of (the horizontal) paths.
A part $N$ of a matrix is $p_{oSiti}ve/negative$ iff each literal $L\Subset N$

$\mathrm{i}_{\underline{\mathrm{S}}\mathrm{a}}$proposit–ional
variable resp. the negation of a propositional variable. A virtual column $C\in$ At is called
relevant in At if there is a minimal spanning set $\mathfrak{S}$ for $\mathcal{M}$ such that $\overline{C}$ is totally
connected by S.
Theorem 1 ([2, Theorem 35]) Given a multiplicative formula $F$ and $\mathcal{M}$ its translation
into a non-normal form matrix as discussed above:
$F$ is a theorem of Affine Logic iff there is a $linear_{y}$ acyclic and complementary matrix
graph $(\mathcal{M}, \mathfrak{S})$ ,

$F$ is a theorem of Linear Logic iff there is a linear, totally connected, acyclic and minimal
complementary matrix graph $(\mathcal{M}, \mathfrak{S})$ ,

Linearity of a matrix graph $(\mathcal{M}, \mathfrak{S})$ means that each literal in $\mathcal{M}$ may be involved in
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at most one connection of $\mathfrak{S}$ , while total connectedness means that each literal in At
must be involved in at least one connection of S. More difficult to explain is acyclicity.
Since in the following it will not be more than a black box, we skip its definition for reasons
of space and refer to [3] or [2].

3 Non-Pure Matrix Graphs
If we add conditions like linearity and acyclicity to complementarity, it is interesting to
analyse to which degree these conditions are independent, because replacing some of them
by weaker, but equivalent ones, might facilitate proof search due to simpler checks. Indeed,
it turns out that under rather elementary assumptions on a set of connections, complemen-
tarity is entailed by acyclicity. It suffices to require a suitable generalization to non-normal
form matrices of the concept of pure literals, and this in addition with respect to a consid-
ered set of connections (Lemma 2 below). First some definitions.
Definition 1 A column $C\Subset \mathcal{M}$ of a matrix graph $(\mathcal{M}, \mathfrak{S})$ is pure iff there is an isolated
path in C. A matrix graph (At, S) with $\mathfrak{S}\neq\emptyset$ is non-pure iff equivalently: Either there
is no connected pure column in (At, $\mathfrak{S}\underline{)}$ or for every literal $L\Subset \mathcal{M}$ which is connected
in 6 exists a virtual top-level column $C\overline{\in}M$ which is totally connected in S. A matrix
graph $(\mathcal{M}, \mathfrak{S})$ with $\mathfrak{S}\neq\emptyset$ is called minimal non-pure iff there is no nonempty subset
$\mathfrak{S}’\subset \mathfrak{S},$ $\mathfrak{S}’\neq \mathfrak{S}$ , with $(\mathcal{M}, \mathfrak{S}’)$ non-pure.
Lemma 2 If a matrix graph (At, S) with $\mathfrak{S}\neq\emptyset$ is acyclic and non-purey then it is
complementary.
If a matrix graph $(\mathcal{M}, \mathfrak{S})$ with $\mathfrak{S}\neq\emptyset$ is minimal non-pure and acyclic, then it is minimal
complementary.
On the basis of the investigations of this section, Theorem 1 can be rephrased as follows:
Theorem 3 Given a multiplicative formula $F$ and $\mathcal{M}$ its translation into a matrix, then
we get the following refinement of Theorem 1:
$F$ is a theorem of Affine Logic iff there is a linear, acyclic, non-pure matrix graph $(\mathcal{M}, \mathfrak{S})$

with $\mathfrak{S}\neq\emptyset$ .
$F$ is a theorem of Linear Logic iff there is a linear, $acy_{C}licf$ totally connected, minimally
non-pure matrix graph $(\mathcal{M}, \mathfrak{S})$ .

4 Generating Spanning Sets
In Theorem 1 we characterized theorems of multiplicative Affine Logic by complementary
matrix graphs which fulfil in addition the conditions linearity and acyclicity. On this basis
a proof procedure for multiplicative Affine Logic can be obtained in an extremely straight-
forward way as follows: (1) We take a path checking procedure for classical propositional
logic which guarantees to generate at least all minimal spanning sets of connections for a
given matrix. (2) For every spanning set returned by this procedure, we test the prop-
erties linearity and acyclicity. (3) Since linearity and acyclicity of sets of connections are
inherited by subsets, we finally improve this procedure by performing the linearity and
acyclicity check incrementally (whenever a new connection is made), instead of waiting till
an entire spanning set has been constructed.
For the enumeration at least of all minimal spanning spanning sets of connections the path
checking procedure given in [1] for first-order logic is a good starting point Adapting it to
non-normal form matrices yields the proof procedure SSC (Spanning Set $C$onstruction)
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for classical propositional logic (Definition 2).
Definition 2 (proof procedure SSC) This proofprocedure is given in Figure 1. $\mathcal{M}$ refers
to the given matrix whose spanning sets shall be determined. $\mathrm{S}$ is the set of connections
under construction. There is a task pool with the operations put and get and the test
pool-empty?. A task is a tuple $(\mathrm{R}, \mathrm{N}, \mathrm{P}, \mathrm{S}\mathrm{G})$ which consists of:

$\bullet$
$\mathrm{P}$ refers to a partial path in $\mathcal{M}$ –the so-called active path– whose continuations
shall be checked for complementarity. For purposes of later proofs about our algo-
rithms we define the active path as list of (occurrences of) literals instead of a set.
(List concatenation is denoted by $0$ . We write $L\in \mathrm{P}$ as in case of sets.)

$\bullet$ $\mathrm{S}\mathrm{G}$ refers to an occurrence of a literal in $\mathcal{M}$ –the current subgoal. It may temporar-
ily have no value, which we denote by NIL.

$\bullet$ $\mathrm{R}$ and $\mathrm{N}$ refer to parts of the matrix–called extension row and matrix remainder
respeCtivel.y$-throu.gh$ which we will extend t.he active path P.

We have several subroutines which may be called during the execution of a task $(\mathrm{R}, \mathrm{N}, \mathrm{P}, \mathrm{s}\mathrm{G})$ :

$\bullet$ $\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{S}\mathrm{e}S\mathrm{G}_{-}\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}(\mathrm{R}, \mathrm{s}\mathrm{G})$ non-deterministically selects a column $C^{*}\in \mathrm{R}$ which con-
tains an occurrence $\overline{L}^{1}\Subset C^{*}$ .
(It is called with $\mathrm{S}\mathrm{G}\neq \mathrm{N}\mathrm{I}\mathrm{L}_{f}i.e$. SG refers to an occurrence $L^{1}$ of a literal.)

$\bullet$ $\mathrm{C}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{S}\mathrm{e}-\mathrm{a}\mathrm{n}\mathrm{y}_{-\mathrm{c}\mathrm{o}}1\mathrm{u}\mathrm{m}\mathrm{n}(\mathrm{R}, \mathrm{P})$ selects a column $C^{*}\in \mathrm{R}$ which contains a virtual column
$\overline{C}\overline{\in}C^{*}$ which is relevant in $\mathrm{R}\cup \mathrm{N}\cup$ P.
(It is called when SG has no current $value_{f}i.e$ . $\mathrm{S}\mathrm{G}=\mathrm{N}\mathrm{I}\mathrm{L}.$ )

$\bullet$ $\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{O}\mathrm{s}\mathrm{e}s\mathrm{G}-\mathrm{r}\mathrm{o}\mathrm{w}(\mathrm{C}, \mathrm{s}\mathrm{G})$ non-deterministically selects a row $R^{*}\in \mathrm{C}$ which contains an
occurrence $\overline{L}^{1}\Subset \mathcal{R}^{*}$ . .

(It is called with $\mathrm{S}\mathrm{G}\neq \mathrm{N}\mathrm{I}\mathrm{L},$ $i.e$ . SG refers to an occurrence $L^{1}$ of a literal.)

Let us finally mention; that apart from the non-deterministic selection of columns and rows
in the subroutines $\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{e}s\mathrm{G}$ -column, $\mathrm{c}\mathrm{h}_{\mathrm{o}\mathrm{O}\mathrm{S}\mathrm{e}}-\mathrm{a}\mathrm{n}\mathrm{y}_{-\mathrm{c}}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}$ and $\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{O}\mathrm{S}\mathrm{e}_{-\mathrm{s}}\mathrm{G}$-row $f$ further
non-deterministic choices of the proof procedure SSC are

$\bullet$ the either-or choice in lines 19 and 21 and
$\bullet$ the choice of the literal occurrence $\mathrm{L}\in \mathrm{P}$ in line 20

Definition 3 We define a configuration $\omega$ as a pair $(\pi, \mathrm{S})$ which represents the status
of the procedure SSC in line 4 before ${}^{t}getting$

’ a new task. $\pi$ is the current task pool and
$\mathrm{S}$ is the set of connections constructed so far.
Lemma 4 The proof procedure SSC is correct for classical propositional logic. Given a
minimal complementary matrix graph $(\mathcal{M}, \mathfrak{S})$ with $\mathcal{M}\neq\emptyset_{f}$ then the proof procedure SSC
if applied to $\mathcal{M}$ will generate $\mathfrak{S}$ when making the right non-deterministic choices.

5 The Virtual Column Checking Procedure

When searching for proofs in Affine Logic, we have to check acyclicity (and linearity)
anyhow, and consequently, we don’t need to care about complementarity of paths as long
as we assure that the eventually constructed set of connections will be non-pure. In this
section we will show first that the proof procedure SSC generates only non-pure sets of
connections (Lemma 5). Concentrating now our attention on non-purity and forgetting
about complementarity allows a refinement of the procedure SSC by dropping all tasks,
which extend an active path through an already connected extension row (Lemma 6). This
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1. proc SSC
2. $\mathrm{R}:=$ ’given non-empty matrix $\mathcal{M}$

’ ; $\mathrm{S}:=\emptyset$ ;
3. put ( $\mathrm{R},$

$\emptyset$ , [], NIL) ;
4. next: if pool-empty? then return $(\mathrm{s})$ ;
5. else $(\mathrm{R}, \mathrm{N},\mathrm{P}, \mathrm{S}\mathrm{G}):=get$ ;
6. if $\mathrm{S}\mathrm{G}\neq \mathrm{N}\mathrm{I}\mathrm{L}\wedge \mathrm{R}$ is a literal then $\mathrm{s}:=\mathrm{S}\cup\{(\mathrm{R}, \mathrm{S}\mathrm{G})\}$ ;
7. if $\mathrm{S}\mathrm{G}\neq \mathrm{N}\mathrm{I}\mathrm{L}$ A $\mathrm{R}$ is not a literal then
8. $\mathrm{c}:=$ choosesG-column(R, $\mathrm{S}\mathrm{G}$) ;
9. $\mathrm{N}:=(\mathrm{N}\cup \mathrm{R})\backslash \{\mathrm{C}\}$ ;

10. if $\mathrm{C}$ is a literal
11. then put $(\mathrm{c}, \mathrm{N},\mathrm{P}, \mathrm{S}\mathrm{G})$ ;
12. else
13. $\mathrm{R}:=\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{e}S\mathrm{G}- \mathrm{r}\mathrm{o}\mathrm{w}(\mathrm{c}, \mathrm{s}\mathrm{G})$ ;
14. for each row $\mathrm{R}’\in \mathrm{C}\backslash \{\mathrm{R}\}$ put ( $\mathrm{R}’,$ $\mathrm{N},\mathrm{P},$ NIL) ;
15. put $(\mathrm{R}, \mathrm{N}, \mathrm{P}, \mathrm{S}\mathrm{G})$ ;
16. fi:
17. fi ;
18. if $\mathrm{S}\mathrm{G}=\mathrm{N}\mathrm{I}\mathrm{L}$ A $\mathrm{R}$ is a literal then
19. either $/*reducti_{\mathit{0}}nstep*/$

20. choose $\mathrm{L}\in \mathrm{P}$ with $\overline{\mathrm{L}}=\mathrm{R}$ ; $\mathrm{s}:=\mathrm{S}\cup\{(\mathrm{R}, \mathrm{L})\}$ ;
21. $or$

22. put $(\mathrm{N}, \emptyset,\mathrm{P}\circ[\mathrm{R}],\mathrm{R})$ ;
23. fi ;
24. if $\mathrm{S}\mathrm{G}=\mathrm{N}\mathrm{I}\mathrm{L}$ A $\mathrm{R}$ is not a literal then
25. $\mathrm{C}:=\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{e}_{-\mathrm{a}}\mathrm{n}\mathrm{y}-\mathrm{C}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}(\mathrm{R}, \mathrm{P})$ ;
26. $\mathrm{N}:=(\mathrm{N}\mathrm{U}\mathrm{R})\backslash \{\mathrm{C}\}$ ;
27. if $\mathrm{C}$ is a literal
28. then put ( $\mathrm{c},\mathrm{N},\mathrm{p},$ NIL) ;
29. else for each row $\mathrm{R}\in \mathrm{C}put$ ( $\mathrm{R},$ $\mathrm{N},$ $\mathrm{p},$ NIL) ;
30. fi;
31. goto next;
32. endproc

Figure 1: $\mathrm{T}\mathrm{h}\mathrm{e}\backslash$ proof procedure SSC

results in a smaller search space–without loosing non-purity, but perhaps complementarity
–and will turn out later as an essential step for the generation of minimal spanning sets
(Lemma 8). Adding then checks of acyclicity and linearity to this refined version of SSC
leads to the proof procedure $\mathrm{N}\mathrm{P}_{mult}^{L}A$ which generates only linear, acyclic, non-pure sets of
connections, which according to Theorem 3 is sufficient for characterising contraction free
derivability of multiplicative formulae.
Lemma 5 If the proof procedure SSC applied to a non-empty matrix $\mathcal{M}$ returns a set $\mathfrak{S}$

of connections, then the matrix graph $(\mathcal{M}, \mathfrak{S})$ is non-pure.
Lemma 6 The procedure SSC can be refined by inserting the statement
‘ if not isolated $\mathrm{R}$ then goto next ;’
after line 18 and afler line 24 without loosing the non-purity of the returned set of connec-
tions.
Remark 1 There may be many top-level columns in the extension row $\mathrm{R}$ in case 18 and
24 in the proof of Lemma 6 and only one of them might have a virtual column which
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eventually can be totally connected. With the ‘test of isolatedness’ to be inserted after
lines 18 and 24 the repeated (and recursively stepping-down) search can be avoided, which
results in exponential pruning of the search space.
Note that exponential pruning effects are achieved with depth-first strategy (see [3] for
a detailed example). $\blacksquare$

Definition 4 (proof procedure $\mathrm{N}\mathrm{P}_{muli}^{LA}$ ) In order to obtain from SSC the proofprocedure
$\mathrm{N}\mathrm{P}_{mult}^{L}A$ for multiplicative Affine Logic, we have to take measures to assure linearity and
acyclicity. In addition, we want to profit from checking just virtual columns instead of
paths. Unfortunately these issues interfere:

1. Linearity excludes reduction steps and we loose the non-deterministic choice point
$\mathrm{L}\in \mathrm{P}$ in line 20 of SSC. (Lines 19-21 of the procedure SSC are dropped.)

2. Linearity and acyclicity require that connections are only made with still unconnected
literals and that a new connection causes no cycle. For this reason in line 6 of SSC
(then-part) the additional test

‘test: $\mathrm{R}$ unconnected A $(\mathcal{M}, \mathrm{S}\cup\{(\mathrm{R}, \mathrm{S}\mathrm{G})\})$ acyclic ;’

will be $inserted_{f}$ which the non-deterministic algorithm has to pass successfully. (Note
that the subgoal $\mathrm{S}\mathrm{G}$ is necessarily still unconnected–due to point 3 below–because SG

gets its value in line 22 afler possible iterations through cases 18 and 24 of $\mathrm{S}\mathrm{S}\mathrm{C}_{f}$ and
in case of $\mathrm{S}\mathrm{G}=\mathrm{N}\mathrm{I}\mathrm{L}$ we never enter rows or columns which contain already connected
literals.)

3. Finally, benefiting from Lemma 2 the task generation in the case $\mathrm{S}\mathrm{G}=\mathrm{N}\mathrm{I}\mathrm{L}$ of SSC
is subject to the condition that the extension row $\mathrm{R}$ is isolated. For this reason we
insert after lines 18 and 24 of SSC the statement:
‘if not isolated $\mathrm{R}$ then goto next;’

Theorem 7 (correctness and completeness of $\mathrm{N}\mathrm{P}_{mult}^{L}A$ ) The proof search procedure
$\mathrm{N}\mathrm{P}_{muli}^{L}A$ is correct and complete for multiplicative Affine Logic.

6 Minimality and Total Connectedness

When we are interested in proving theorems of multiplicative Linear Logic, we could use
the proof search procedure $\mathrm{N}\mathrm{P}_{mult}^{L}A$ , where we have to check in addition–according to

Theorem 3–whether the matrix graphs generated by $\mathrm{N}\mathrm{P}_{mull}^{LA}$ are also minimally non-pure
and totally connected. In principle, such a minimality check could be carried out after

a successful run of $\mathrm{N}\mathrm{P}_{mult}^{L}A$ , i.e. by inserting respective tests in line 4 before return (S),

which must be passed successfully.
Fortunately, Lemma 8 below shows that such a final minimality checking can be avoided
if we run $\mathrm{N}\mathrm{P}_{mult}^{L}A$ with depth-first strategy, which is also preferable due to Remark 1. We
get the proof search procedure $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{m}^{LA}ult$

’ which is the depth-first variant of $\mathrm{N}\mathrm{P}_{mult}^{L}A$ , by
the following modifications: The $\pi$ of a configurations $\omega=(\pi, \mathrm{S})$ is now a task stack,
and we have operations push and pop instead of put and get. We denote by TOP $(T)$

the topmost task of a task stack $\pi$ , i.e. the element which would be returned by a pop
operation.
Lemma 8 A matrix graph (A4, $\mathfrak{S}$ ) with $\mathfrak{S}$ generated by $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{m}^{LA}ult$ is minimal.
Having got rid of the need to check minimality of the sets of connections generated by
$\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{m}^{LA}ult$

’ we will next try to improve the total connectedness check. To this end we prove

93



the following lemma which states an important fact about the ‘reachability’ of rows in a
matrix by the procedure $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{m}^{LA}ult$ .
Lemma 9 Given a run of $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{m}^{LA}ult$ which generates a set of connections $\mathfrak{S}$ for a matrix
$\mathcal{M}$ . Then for every $row/\mathcal{R}\Subset \mathcal{M}$ holds:
If for the first configuration $\omega_{a}=(\pi_{a}, \mathrm{S}_{a})$ with $\mathcal{R}$ as extension row of its topmost task,
$i.e$ . $\mathrm{T}\mathrm{O}\mathrm{P}(\pi_{a})=(\mathcal{R}, \mathrm{N}_{a}, \mathrm{P}_{a}, \mathrm{s}\mathrm{G}_{a})$ holds $\mathrm{S}\mathrm{G}_{a}=\mathrm{N}\mathrm{I}\mathrm{L}$ , then follows for every later configuration

$\omega_{b}=(\pi_{b}, \mathrm{s}_{b})$ with TOP $(\pi_{b})=(\mathcal{R}, \mathrm{N}_{b}, \mathrm{P}_{b}, \mathrm{s}\mathrm{G}b)$ that $\mathrm{S}\mathrm{G}_{b}=\mathrm{N}\mathrm{I}\mathrm{L}$ .
As a consequence, if the row $\mathcal{R}$ of the matrix graph $(\mathcal{M}, \mathfrak{S})$ is totally connected, then the
row $\mathcal{R}$ must already be totally connected after the execution of all follow-up tasks of task
TOP $(\pi_{a})$ .
Definition 5 (proof procedure $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{p}_{m}^{LA}ult\tau$ ) In order to obtain from $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{muli}^{LA}$ the proof
procedure $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{mu}^{L}A\tau lt$ for multiplicative Linear Logic, we only have to deal with total connect-
edness. Due to Lemma 9 this check can be made incrementally. We have to store respective
tasks, which just contain a row $\mathcal{R}$ before a task with $\mathcal{R}$ as extension row is stored, and
whose execution is just a total connectedness check. This may be done by means of the
following modifications:

$\bullet$ The statement
‘ push ( $\emptyset,$ $\mathcal{R}$ , [], NIL) ;’
is inserted before push ( $\mathcal{R},$ $\mathrm{N},$ $\mathrm{P},$ NIL) in lines 3, 14 and 29.

$\bullet$ The additional task processing step (for a task $(\mathrm{R},$ $\mathrm{N},$ $\mathrm{p},$ $\mathrm{s}\mathrm{G})$ ) :
‘ if $\mathrm{R}=\emptyset$ then test: $\mathrm{N}$ totally connected;’
is inserted before line 31.

Conclusion
Proof search in the logics treated in this paper has already attracted some interest, where
the main emphasis was on Linear Logic. Most of the work carried out is based on sequent
calculi and labours under the many redundancies inherent in these systems. The approach,
which is most related to our work, is [4], where a proof procedure for multiplicative Linear
Logic is presented. It works with a translation into classical logic. A special unification
algorithm is used, which seems to be an efficient coding of the acyclicity check, which we
treated here as a black box. With their procedure the generated sets of connections must
pass a final check of minimality and of total connectedness, the latter being called relevance
there. The main improvement of our procedure $\mathrm{d}\mathrm{f}\mathrm{N}\mathrm{P}_{mu}^{LA\tau}|t$ over the algorithm presented in
[4] is that we got rid of the minimality check and that we can test total connectedness
incrementally.
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