
Learning One-Variable Pattern Languages in Linear Average Time*

R\"UDIGER REISCHUK
Med. $Un\dot{i}versit\ddot{a}t$ zu L\"ubeck

Institut f\"ur Theoretische Informatik
Wallstrafle 40

23560 L\"ubeck, Germany
reischuk@informatik.mu-luebeck.de

THOMAS ZEUGMANN
Department of Informatics

Kyushu University
Kasuga 816

Japan
thomas@i.kyushu-u.ac.jp

Abstract. A new algorithm for learning 1-
variable pattern languages is proposed and analyzed
with respect to its average-case behavior. We con-
sider the total learning time that takes into account
all operations till an algorithm has converged to a
correct hypothesis. For the expectation it is shown
that for almost all meaningful distributions defin-
ing how the pattern variable is replaced by a string
to generate random samples of the target pattern
language this algorithm converges within a constant
number of rounds with a total learning $t\dot{i}me$ that is
linear in the pattern length. Thus, the algorithm is
average-case optimal in a strong sense.

Though 1-variable pattern languages cannot be
inferred finitely, our approach can also be considered
as probabilistic finite learning with high confidence.

1. Introduction

The formal definition of patterns and pattern
languages goes back to Angluin [1]. Since then,
pattern languages and variations thereof have
widely been investigated (cf., e.g., [11, 12, 14].

As far as learning theory is concerned, pat-
tern languages are a prominent example of non-
regular languages that can be learned in the
limit from positive data. Gold [5] has intro-
duced the corresponding learning model. Let
L be any language; then a text for L is any
infinite sequence of strings containing eventu-
ally all strings of L , and nothing else. The in-
formation given to the learner are successively
growing initial segments of a text. Processing

*This work was performed while the first author was
visiting the Department of Informatics at Kyushu Uni-
versity and was supported by the Japan Society for the
Prolnotion of Science under Grant JSPS 29716102.

these segments, the learner has to output hy-
potheses about L . The hypotheses are chosen
from a prespecified set called hypothesis space.
The sequence of hypotheses has to converge to
a correct description of the target language.

Looking at applications of limit learners, effi-
ciency becomes a central issue. But defining an
appropriate measure of efficiency for learning in
the limit is a difficult problem (cf. [9]). Various
authors have studied the efficiency of learning
in terms of the update time needed for comput-
ing a new single hypothesis. But what counts
in applications is the overall time needed by a
learner until convergence, i.e., the total learning
time. Since the total learning time is unbounded
in the worst-case, we study the expected total
learning time. Next, we shortly summarize what
has been known in this regard.

Angluin [1] provides a learner for the class of
all pattern languages that is based on the notion
of descriptive patterns. Since no efficient algo-
rithm is known for computing descriptive pat-
terns, and finding a descriptive pattern of $\max-$

imum length is $N7\mathit{2}$ -hard, its update time is
practically infeasible.

Therefore, one has considered restricted ver-
sions of pattern language learning in which the
number k of different variables is fixed, in par-
ticular the case $k=1$. Angluin [1] gives a
learner for one-variable pattern languages with
update time $O(l^{4}\log^{\ell})$, where p is the sum of
the length of all examples seen so far. Nothing
is known concerning the expected total learning
time of her algorithm.

Erlebach et al. $[3, 4]$ presented a one-variable

数理解析研究所講究録
1041巻 1998年 95-102 95

pattern learner achieving an average total learn-
ing time $O(|\pi|^{2}\log|\pi|)$, where $|\pi|$ is the length
of the target pattern. This result is also based
on finding descriptive patterns quickly. This ap-
proach has the advantage that the descriptive-
ness of every hypothesis output is guaranteed,
but it may have the disadvantage of preventing
the learner to achieve a better expected total
learning time. Thus, we ask whether there is
a one-variable pattern language learner achiev-
ing a subquadratic expected total learning time.
Clearly, the best one can get is a linear aver-
age total learning time. If this is really possible,
then such a learner seems to be more appro-
priate for potential application than previously
obtained ones, even if there are no guaranteed
properties concerning the intermediately calcu-
lated hypotheses. Such a learner would have al-
ready finished his learning task with high prob-
ability before any of the known learner has com-
puted a single guess.

What we like to present in this paper is such
a one-variable pattern learner. Moreover, we
prove that our learner achieves an expected lin-
ear total learning time for a very large class of
distributions with respect to which the input ex-
amples are drawn.

2. Preliminaries

Let IN $=\{0,1,2, \ldots\}$ be the set of all natural
numbers, and let $\mathbb{N}^{+}=1\mathrm{N}\backslash \{0\}$. For all real
numbers y we define $\lfloor y\rfloor$, the floor function,
to be the greatest integer less than or equal to
y . Let Σ be an alphabet with $s:=|\Sigma|\geq 2$.
By Σ^{*} we denote the free monoid over Σ , and
we set $\Sigma^{+}=\Sigma^{*}\backslash \{\epsilon\}$, where ϵ is the empty
string. Let x be a symbol with $x\not\in\Sigma$. Every
string over $(\Sigma\cup\{x\})^{+}$ is called a one-variable
pattern. We refer to x as the pattern variable.
Let Pat denote the set of all one-variable pat-
terns. We write $\#(\pi, x)$ for the number of oc-
currences of the pattern variable x in π .

The length of a string $w\in\Sigma^{*}$ and of a pat-
tern $\pi\in Pat$ is denoted by $|w|$ and $|\pi|$, re-
spectively. Let w be a string with $\ell=|w|\geq 1$,
and let $\dot{i}\in\{1, \ldots, l\}$; we use $w[i]$ and $w[-i]$

to denote the \dot{i} -th symbol in w counted from

left to right and right to left, respectively, i.e.,

w $=$ $w[1]w[2]\ldots w[\ell_{-}1]w[^{\ell]}$

$=$ $w[-l]w[-\ell+1]\ldots w[-2]w[-1]$.

For 1 $\leq\dot{i}\leq j\leq\ell$ we denote the substring
$w[\dot{i}]\ldots w[j]$ of w by $w[\dot{i}\ldots j]$. Let $\pi\in Pat$

and $u\in\Sigma^{+};$ we use $\pi[x/u]$ for the string
$w\in\Sigma^{+}$ obtained by substituting all occur-
rences of x in π by u . The string u is called
a substitution. For every $\pi\in Pat$ we define the
language generated by pattern π by

$L(\pi)$ $:=$ $\{y\in\Sigma^{+}|\exists u\in\Sigma^{+}, y=\pi[x/u]\}$

For discussing our approach to learning all one-
variable pattern languages we let

$\pi=w_{0}X^{\alpha 1}w_{1}X^{\alpha}u)2\cdots w2-m1X^{\alpha}mwm$

be the target pattern throughout this paper.
Here the α_{i} denotes positive integers (the mul-
tiplicity by which x appears in a row), and
$w_{i}\in\Sigma^{*}$ the separating constant substrings,
where for $1\leq\dot{i}<m$ the w_{i} are assumed to
be nonempty.

The learning problem considered in this pa-
per is exact learning in the limit from positive
data. A sequence $(\psi_{i})i\in 1\mathrm{N}^{+}$ of patterns is said
to converge to a pattern π if $\psi_{i}=\pi$ for all but
finitely many \dot{i} .

DEFINITION 1. Given a target pattern π ,
the learner gets a sequence of example strings
$X_{1},$ $\lambda_{2}^{r},$

\ldots from $L(\pi)$. Having received λ_{g}^{Γ} he
has to compute as hypothesis a one-variable pat-
tern ψ_{g} . The sequence of guesses $\psi_{1},$ $\psi_{2},$. . -

eventually has to converge to a pattern ψ such
that $L(\psi)=L(\pi)$.

Note that in the case of one-variable pat-
tern languages this implies that $\psi=\pi$. Some
more remarks are mandatory here. Though our
definition of learning resembles that one given
in Gold [5], there is also a major difference.
In [5] the sequence $(\lambda_{i}^{\Gamma})i\in \mathbb{N}+\mathrm{i}\mathrm{s}$ required to fulfill
$\{\lambda_{i}^{\Gamma}|\dot{i}\in \mathbb{N}^{+}\}=L(\pi)$. $\mathrm{N}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{S}\mathrm{S}_{i}$ this re-
quirement will be hardly fulfilled. We therefore
omit this assumption here. Instead, we only re-
quire the sequence $(\lambda^{r_{i}})_{i\mathbb{N}}\in$ to contain ζ‘enough”
information to recognize the target pattern π .
What is meant by “enough” will be made precise

96

when discussing the set of all admissible distri-
butions with respect to which the example se-
quences are allowed to be randomly drawn.

We continue with the complexity measure
considered in this paper. The length of the pat-
tern π to be learned is given by $n:=n_{w}+n_{x}$

with $n_{w}:= \sum|w_{i}|$ and n_{x} $:=$ $\sum\alpha_{i}$. This
parameter will be considered as the size of prob-
lem instances, and the complexity analysis will
be done with respect to this value n . We as-
sume the same model of computation and the
same representation of patterns as Angluin [1],
i.e., in particular a random access machine that
performs a reasonable menu of operations each
in unit time on registers of length $O(\log n)$ bits,
where n is the input length. The inputs are read
via a serial input device, and reading a string of
length n is assumed to requ.ire n steps.

In contrast to previous work [1, 6, 13, 15], we
measure the efficiency of a learning algorithm by
estimating the overall time taken by the learner
until convergence. This time is referred to as the
total learning time. We aim to determine the to-
tal learning time in dependence on the length of
the target pattern. Of course, if examples are
provided by an adversary the number of exam-
ples one has to see before being able to converge
is unbounded in general. Thus analyzing the to-
tal learning time in such a worst-case setting will
not yield much insight. But such a scenario is
much too pessimistic for many applications, and
therefore, one should consider the average-case
behavior. Analyzing the expected total learn-
ing time of limit learners has been initialized
by Zeugmann [16]. Average-case complexity in
general depends very much on the distribution
over the input space. We perform our analy-
sis for a very large class of distributions. An
optimal result of linear expected total learning
is achieved by carefully analyzing the combina-
torics of words generated by a one-variable pat-
tern. This linear bound can even be shown to
hold with high probability. Let

μ : $\Sigma^{+}arrow[0,1]$

be the probability distribution specifying how
given a pattern π the variable x is replaced to
generate random examples $\pi[x/Z]$ from $L(\pi)$.

Here $Z=Z_{\mu}$ is a random variable with dis-
tribution μ .

Range (Z) $:=$ $\{w\in\Sigma^{+}|\mu(w)>0\}$

denotes the range of Z , i.e., the set of all sub-
stitution strings that may actually occur. From
this we get a probability distribution

μ_{π} : $\Sigma^{+}arrow[0,1]$

for the random strings generated by π based on
μ . Let $X=X_{\pi,\mu}$ denote a random variable
with distribution μ_{π} . The random examples
are then generated according to X , thus the
relation between X and Z is given by $\lambda^{\Gamma}=$

$w_{0}Z^{\alpha_{1}}w_{1}Z^{\alpha_{2}}w_{2}$... $w_{m-1}Z^{\alpha_{m}}w_{m}$. Note
that μ is fixed, and in particular independent of
the special target pattern to be learned.

What we consider in the following is a large
class D of distributions μ that is defined by re-
quiring only very simple properties. These prop-
erties basically exclude the case where only a
small subset of all possible example strings oc-
cur and this subset does not provide enough in-
formation to reconstruct the pattern. We show
that there exists an algorithm that efficiently
learns every one-variable pattern on the average
with respect to every distribution in D .

By $E[|Z|]$ we denote the expectation of $|Z|$,
i.e., the average length of a substitution. Then
the expected length of an example string X for
π is given by $E[|X|]$ $=n_{w}+n_{x}\cdot E[|Z|]$ \leq

$n\cdot E[|Z|]$. Obviously, if one wants to analyze
the bit complexity of a learning algorithm with
respect to the pattern length n one has to as-
sume that $E[|\lambda’|]$, and hence $E[|Z|]$, is finite,
otherwise already the expected length of a single
example will be infinite.

Assumption 1. $E[|Z|]<\infty$.
Let \mbox{\boldmath λ}ノ $=$ $X_{1},$ $X_{2},$ X_{3} , .. . denote a se-

quence of random examples that are indepen-
dently drawn according to μ_{π} . Note that the
learner, in general, does not have information
about μ_{π} a priori. On the other hand, the
average-case analysis of our learning algorithm
presupposes information about the distribution
μ . Thus, unlike the PAC-model, our framework
is not completely distribution-free. Neverthe-
less, we aim to keep the information required

97

about μ as small as possible. Finally, let are smaller than 1, too. Next, define

$L(\pi, \mu)$ $:=$ $\{y\in\Sigma^{+}|\mu_{\pi}(y)>0\}$

be the language of all example strings that may
actually occur.

3. Probabilistic Analysis of Substi-
tutions

For obtaining most general results we would
like to put as little constraints on the distri-
bution μ as possible. Note that one cannot
learn a target pattern if only example strings
of a very restricted form occur. This will be
in particular the case if Range (Z) itself is con-
tained in a nontrivial one-variable pattern lan-
guage. For seeing this, suppose there exists a
pattern $\phi\in Pat\backslash \{x\}$ such that Range $(Z)\subseteq$

$L(\phi)$. Clearly, then the languages generated
by π $=$. $w0x^{u}w1Xw_{2}0u1\ldots w7n-1^{X^{u}}mw_{7n}$ and
$\pi’$ $=$ $w\mathrm{o}\phi^{u0}w1\phi^{u_{1}}w2\cdots w_{7}n-1\phi^{u_{m}}w_{m}$ cannot
be distinguished, since $L(\pi, \mu)\subseteq L(\pi’)$. Thus,
even from an information theoretic point of view
the learner has no chance to distinguish this case
from the one where the pattern to be learned is
actually $\pi’$ and the examples are generated by
the corresponding projection $\mu’$ of μ . Hence,
such a problem instance (π, μ) should be re-
garded as the instance $(\pi’, \mu’)$. To exclude this
case, let us define

p_{0}
$:=\phi \mathrm{p}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{e}\Gamma \mathrm{n},$$| \phi\max|>1\mathrm{p}\mathrm{r}[z\in L(\phi)]$.

and let us make

Assumption 2. $p_{0}<1$.
An alternative approach would be to consider

the correctness of the learning hypotheses with
respect to the distribution μ . The learner solves
the learning problem if he converges to a pattern
ψ for which $L(\psi, \mu)=L(\pi, \mu)$. This model is
equivalent, but conceptually more involved and
complicates the algorithm. Therefore we stick
to the original definition. If $p_{0}<1$ then the
following quantities

p_{a} $:=$ $\max_{\sigma\in\Sigma}\mathrm{P}\mathrm{r}[Z[1]=\sigma]$,

p_{e} $:=$ $\max_{\sigma\in\Sigma}\mathrm{P}\mathrm{r}[z[-1]=\sigma]$,

p $:=$ $\max\{p_{a},p_{e}\}<1$,

and for sequences of substitutions $Z=$

$Z_{1},$ $Z_{2},$ $Z_{3},$
\ldots the event

$F_{g}[Z]$ $:=$ $[(Z_{1}[1]=Z_{2}[1]=\cdots=Z_{g}[1])$

V $(Z_{1}[-1]=z_{2}[-1]=\cdots=Z_{g}[-1])]$.

Then $\mathrm{P}\mathrm{r}[F_{g}]$ \leq $2p^{g-1}$. Define $f(Z)$ $:=$

$\min\{g|\neg F_{g}[\mathcal{Z}]\}$.
LEMMA 1. The expectation of $f(\mathcal{Z})$ can be

bounded as $E[f(Z)]$ $\leq 2/(1-p)$.

4. Symmetries of Strings

We now come to the main technical tool that
will help us to detect the pattern variable and
its replacements in sample strings, respectively.

DEFINITION 2. Let y $=y[1]y[2]\ldots y[l]\in$
Σ^{+} be a string of length ℓ . If for some k with
$1\leq k\leq\ell/2$ the k -length prefix and suffix of
y are identical, that is $y[1\ldots k]$ $=y[\ell-k+$
1 . . . p] , we say that y has a k-symmetry
$u=y[1\ldots k]$ (or symmetry, for short).

A symmetry u of y is said to be the smallest
symmetry if $|u|<|\hat{u}|$ for every symmetry \^u of
y with $\text{\^{u}}\neq u$.

DEFINITION 3. Let u be a symmetry of y

and choose positive integers $c,$ d maximal such
that for some string v_{0} y $=$ $u^{c}v_{0}u^{d}$, $\mathrm{i}.\mathrm{e}.$,
u is neither a prefix nor a suffix of v_{0} . This
includes the special case $v_{0}=\epsilon$. In this case,
since c and d are not uniquely determined, we
choose $c\geq d$ such that their difference is at
most 1. This unique representation of a string
y will be called factorization of y with re-
spect to u or simply $u-.f$actorization, and
u the base of this factorization.

If all occurrences of u are factored out in-
cluding also possible ones in v_{0} one gets a
representation y $=$ $u^{c_{0}}v_{1}u^{c_{1}}v_{2}$. . . $v_{r}u^{c_{r}}$

with positive integers $c_{i}(c_{0}=c, c_{r}=d)$

and strings v_{i} that do not contain u as sub-
string. This will be called a complete $u-$

factorization of y .
Of particular interest for a string y will be

its symmetry of minimal length, denoted by

98

$mls(y)$, which gives rise to the minimal fac-
torization of y . For technical reasons, if y

$\dot{\mathrm{d}}$oes not have a symmetry then we set $mls(y)$ $:=$

$|y|+1$. Let $sym(y)$ denote the number of all
different symmetries of y .

If $0<E[|Z|\cdot sym(z)]<\infty$ then also $0<$
$E[sym(Z)]<\infty$. Thus we can find a constant
c such that

$E[|Z|\cdot sym(Z)]\leq c\cdot E[|Z|]\cdot E[sym(Z)]=O(1)$.

The following properties will be important for
the learning algorithm described later.

LEMMA 2. Let $k\in \mathbb{N}^{+}$ and let $u,$ $y\in\Sigma^{+}$

be any two strings such that u is a k-symmetry
of y . Then u) e have

(1) u is a smallest symmetry of y iff u itself
has no symmetry.

(2) If y has the factorization y $=$ $u^{c}v_{0}u^{d}$

then it also has $k’$ -symmetries for $k’$ $=$

$2k,$ $3k,$
$\ldots,$ $\min\{c, d\}k$.

(3) If u^{c}
v_{0}

u^{d} is the minimal factoriza-
tion of y then, for all $k’$ \in {1, \ldots ,
$\max\{c, d\}ml_{S}(y)\},$ y does not have other
$k’$ -symmetries.

(4) $sym(y)\leq|y|/2?nls(y)$.

Assertion (4) of the latter lemma directly im-
plies the simple bound $sym(y)\leq|y|/2$, which
in most cases, however, is far too large.

Now, we consider the expected number of
symmetries. To motivate our Assumption 3, we
first take a look at the length uniform case.

LEMMA 3. In the length uniform case

$E[sym(Z)]\leq s/(2(_{S}-1)^{2})$.

Symmetries and factorizations should be com-
puted fast; we thus show:

LEMMA 4. The minimal symmetry of a
string y can be found in $O(|y|)$ operations.
Given the minimal symmetry, all further sym-
metries can be generated in linear time.
From a symmetry, the corresponding factoriza-
tion can be computed in linear time as well.

Let Σ_{sym}^{+} denote the set of all strings in Σ^{+}

that possess a symmetry and let

$p_{\mathrm{s}\mathrm{y}\mathrm{r}\mathrm{n}}$. $:=\mathrm{P}\mathrm{r}[Z\in\Sigma_{sy}+]m$.

We require that the distribution is not re-
stricted to substitutions with symmetries-with
positive probability also nonsymmetric substitu-
tions should occur.

Assumption 4. $p_{\mathrm{s}\mathrm{y}\mathrm{m}}<1$.

Now consider the event

$Q_{g}[Z]$ $:=$ $[\{Z_{1}, \ldots, Z\}g\in\Sigma_{sym}^{+}]$

$Q_{g}[Z]$ means that among the first g substitu-
tions all have a symmetry. Obviously,

$\mathrm{P}\mathrm{r}[Q_{\mathit{9}}[Z]]\leq p_{\mathrm{s}\mathrm{y}\mathrm{m}}g$.
Thus, in this case the number of symmetries

only depends on the size s of the alphabet. Let
us now estimate the total length of all factoriza-
tions of a string y , which can be bounded by
$|y|\cdot sym(y)$. For the length uniform case,

$E[|Z|\cdot sym(Z)]\leq E[|Z|]$: $E[sym(Z)]$.

can be shown, but for arbitrary distributions, we
have to require

Assumption 3. $E[|Z|\cdot sym(Z)]<\infty$.
Remember that we already had to assume

that $E[|Z|]$ is finite. Trivially, the expecta-
tion of $|Z|\cdot sym(Z)$ is guaranteed to be finite if
$E[|Z|^{2}]<\infty$, that means the variance of $|Z|$ is
finite, but in general weaker conditions suffice.

Define $q(Z)$ $:=$ $\min\{g|\neg Q_{g}[Z]\}$. Similarly
to Lemma 1, one can show

LEMMA 5. $E[q(Z)]\leq 1/(1-p\mathrm{s}\mathrm{y}\mathrm{m})$.

5. Basic Subroutines: Factoriza-
tions- and Compatibility

For a subset A of Σ^{*} let PRE(A) and
$\mathrm{S}\mathrm{U}\mathrm{F}(A)$ denote the maximal common prefix
and suffix of all strings in A , respectively. Fur-
thermore, let $m_{\mathrm{P}^{\mathrm{l}\mathrm{e}}}(A)$ and $m_{\mathrm{s}\mathrm{u}\mathrm{f}}(A)$ be their
lengths. The first goal of the algorithm is to
recognize the prefix w_{0} and suffix w_{m} before
the first and last occurrence of the variable x ,
respectively, in the pattern π . In order to avoid
confusion, x will be called the pattern variable,

99

where variable simply refers to any data variable
used by the learning algorithm.

The current information about the prefix and
suffix is stored in the variables PRE and SUF.
The remaining pattern learning is done with re-
spect to the current value of these variables. If
the algorithm sees a new string X such that
PRE $(\{X, \mathrm{P}\mathrm{R}\mathrm{E}\})\neq$ PRE or $\mathrm{S}\mathrm{U}\mathrm{F}(\{X, \mathrm{S}\mathrm{U}\mathrm{F}\})\neq$

SUF then these variables will be updated. We
will call this the begin of a new phase.

DEFINITION 4. For a string $Y\in\Sigma^{+}$ a
(PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-faCtorizati_{on}$ is defined as fol-
lows. Y has to start with prefix PRE and end
with suffix SUF. For the remaining middle part
$\mathrm{Y}’$ we select a symmetry u_{1} . This means Y

can be written as $Y=$ PRE $u_{1}^{C_{1}}v_{1}u_{1}^{d_{1}}$ SUF
for some strings $u_{1},$ v_{1} and $c_{1},$

$d_{1}\in \mathrm{I}\mathrm{N}^{+}$.
If such a representation is not possible for a

given pair (PRE, SUF) then Y is said to have
no (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{Z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$.

Moreover, $Y’$ may have other symmetries
$u_{2},$ $u_{3},$ \ldots giving rise to factorizations Y $=$

PRE $u_{i}^{c_{i}}v_{i}u_{i}^{d_{i}}$ SUF for $c_{i},$
$d_{i}\in \mathrm{I}\mathrm{N}^{+}$. For

simplicity, we assume that the symmetries u_{i}

are ordered by increasing length, in particular
u_{1} always denotes the minimal symmetry with
corresponding minimal factorization.

LEMMA 6. Let $Y=$ PRE $u_{1}^{c_{1}}v_{1}u_{1}^{d_{1}}$ SUF
be the minimal (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-faCtoriZat_{i}on$ of
Y. Then, for every string \tilde{Y} of the form
\tilde{Y} . $=$ PRE $u_{1}\tilde{v}u_{1}$ SUF for some string \tilde{v} ,
the minimal (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-factoriZati_{on}$ of \tilde{Y} is
based on u_{1} , too.

Though the following lemma is easily verified,
it is important to establish the correctness of our
learner presented below.

LEMMA 7. Let $\pi=w_{0}xvw_{m}$ be any pat-
tern with $\#(\pi, x)$ \geq 2 , let u \in

Σ^{+} , and
let $Y=\pi[x/u]$. Then Y has a $(w_{0,n}w_{7})-$

factorization with base u and its minimal
$(w_{0}, w_{n\mathrm{t}})$ -factorization is based on the minimal
symmetry u_{1} of u .

The results of Lemma 4 directly translate to
LEMMA 8. The minimal base for a (PRE,

$\mathrm{S}\mathrm{U}\mathrm{F})-factori\chi ati_{on}$ of a string Y can be com-
puted in time $O(|Y|)$. All additional bases can

be found in linear time. Given a base, the
corresponding (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-faCtorizati_{on}$ can be
computed in linear time as well.

DEFINITION 5. Two strings Y,\tilde{Y} are said
to be directly compatible with respect to
a given pair (PRE, SUF) if from their mini-
mal (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t}_{0}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}$a single pattern
$\psi=\psi(\mathrm{Y},\tilde{\mathrm{Y}})$ can be derived from which both
strings can be generated. More precisely, it has
to hold:
$Y=$ PRE $u_{1}^{c_{1}}v_{1}u_{1}^{d_{1}}$ SUF and
$\tilde{Y}=$ PRE $\tilde{u}_{1}^{\tilde{c}_{1}}\tilde{v}_{1}\tilde{u}_{1}^{\tilde{d}_{1}}$ SUF , and for

$c_{1}-1$ $d_{1}-1$
$Y_{\mathrm{m}\mathrm{i}\mathrm{d}}$ $:=$ u_{1} $v_{1}u_{1}$ and $\tilde{\mathrm{Y}}_{\mathrm{m}\mathrm{i}\mathrm{d}}$

$:=$

$\tilde{u}_{1}^{\tilde{c}_{1}}-1\tilde{v}_{1}\tilde{u}_{1}^{\tilde{d}_{1}}-1$ every occurrence of u_{1} in
$Y_{\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{d}}$ –including further ones in v_{1} –is matched
in $\tilde{Y}_{\mathrm{m}\mathrm{i}\mathrm{d}}$ either by an occurrence of \tilde{u}_{1} (which
indicates that at this place π has a pattern vari-
able) or by u_{1} itself (indicating that the con-
stant substring u_{1} occurs in π). In all the re-
maining positions $Y_{\mathrm{m}\mathrm{i}\mathrm{d}}$ and $\tilde{\mathrm{Y}}_{\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{d}}$ have to agree.

We extend this compatibility notion to pairs
consisting of a string Y and a pattern π . Y

is directly compatible to π with respect to
(PRE, SUF) if for the minimal symmetry u_{1}

of the (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{Z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of Y holds
$\pi[x/u_{1}]=Y$.

The following lemma is easily verified.

LEMMA 9. Assume that (PRE, SUF) $=$

(w_{0}, w_{m}) has the correct value. If a string Y

is generated from π by substituting the pattern
variable by a nonsymmetric string u then the
string u_{1} on which its minimal (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-$

factorization is based equals u . Thus, Y is di-
rectly compatible to π .

If one of the substitutions u,\tilde{u} for $Y=$
$\pi[x/u]$, resp. $\tilde{Y}=\pi[x/\tilde{u}]$ is a prefix of the
other, let us say $\tilde{u}=uu’$ for some nonempty
string $u’$ then there may be an ambiguity if $uu’$

appears as a constant substring in $Y_{\mathrm{m}\mathrm{i}\mathrm{d}}$. If this
is not followed by another occurrence of $u’$ it
can easily be detected. In general, if $uu’$ is a
constant in π then the number of occurrences
following this substring will be the same in the
corresponding positions in $\mathrm{Y}_{\mathrm{m}\mathrm{i}\mathrm{d}}$ and $\tilde{\mathrm{Y}}_{\mathrm{m}\mathrm{i}\mathrm{d}}$, oth-
erwise it $\mathrm{h}\mathrm{a}’ \mathrm{s}$ to be one more in \tilde{Y} .

Using this observation it is easy to see that

100

even in such a case testing of direct compatibil-
ity is easy.

be checked and $\psi(Y, \psi, \cdot)$ can be constructed in
linear time, too.

LEMMA 10. Let the minimal factorizations
of two strings Y,\tilde{Y} be given. Then by a sin-
gle joint scan one can check whether they are
directly compatible, and if yes construct their
common pattern $\psi(Y,\tilde{Y})$. The scan can be per-
formed in $O(|Y|+|\tilde{Y}|)$ bit operations.
Moreover, for a pattern π it can be

$.$

c

. hecked in
time $O(|Y|+|\pi|)$ whether Y is directly com-
patible to π .

The extra effort in the degenerated case of
u being a prefix of \tilde{u} can be omitted if in this
case the pattern matching is done from right to
left since the procedure is completely symmetric.
This will only fail if u is both prefix and suffix
of \tilde{u} , implying that $\tilde{u}=uu’u$. But this means
that \tilde{u} has a symmetry and thus cannot derive
from a minimal factorization of \tilde{Y} .

DEFINITION 6. A string Y is downwards
compatible to a string \tilde{Y} with respect to a
given pair (PRE, SUF) if for some $\kappa\geq 1$, from
the minimal (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{Z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of Y

and the $\kappa- \mathrm{t}\mathrm{h}$ (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of $\tilde{\mathrm{I}}^{r}$

a single pattern $\psi=\psi(Y,\tilde{Y}, \kappa)$ can be derived
from which both strings can be generated. We
also say that \tilde{Y} is upwards compatible to Y .

Again, these notions are extended to pairs
consisting of a string and a pattern.

LEMMA 11. Assume (PRE, SUF) $=$

(w_{0}, w_{m}) having the correct value. Let $Y=$

$\pi[x/u]$ for a nonsymmetric string u . Any other
string \tilde{Y} in $L(\pi)$ obtained by substituting the
pattern variable by a string \tilde{u} for u)$hichu$ is not
a symmetry is upwards compatible to Y with re-
spect to (PRE, SUF).
The pattern $\psi(Y,\tilde{Y})$ equals the pattern π to be
learned.

Given the (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-faCtoriZati_{\mathit{0}n}$ of both
strings, $\psi(Y,\tilde{Y})$ can be constructed in time
at most $O((1+sy7n(\tilde{Y}))\cdot(|Y|+|\tilde{Y}|))$, where
$sy_{7}n(\tilde{Y}):=sy?n(\tilde{u})$ denotes the number of sym-
metries of the string \tilde{Y} that generates \tilde{Y} .
Furthermore, given a pattern ψ and the factor-
ization of a string Y it can be checked in time
$O(|Y|+|\psi|)$ whether Y is upu)$ards$ compatible to
ψ , For Y , downwards compatibility to ψ can

Note that one cannot decide whether a string
Y was generated by substitution with a non-
symmetric string by counting the number of its
factorizations–which is likely to be one. How-
ever, there are rare cases with more factorization
than the one induced by the substitution–for
example, if α_{1} and α_{m} have a common non-
trivial divisor or even if $\alpha_{1}=\alpha_{m}=1$, but by
chance $w_{1}=vuv’$ and $w_{m-1}=v’’uv$ for
some arbitrary strings $v,$ $v’,$ $v”$

6. The Algorithm

The learner may not store all sample strings
he has seen so far. Therefore let $A=A_{\mathit{9}}=$

$A_{g}(\lambda \text{ノ})$ denote the set of examples he remem-
bers after having got the first g samples of the
random sequence X $=X_{1},$ $\lambda_{2}^{\Gamma},$

\ldots , and, simi-
larly, let $\mathrm{P}\mathrm{R}\mathrm{E}_{g}$ and $\mathrm{S}\mathrm{U}\mathrm{F}_{g}$ be the values of the
variables PRE and SUF at that time. We will
call this round g of the learning algorithm.

Let us first describe the global strategy of
the learning procedure. When the pattern is a
constant $\pi=w$ all sample strings are equal to
w and the variables PRE and SUF are not
defined. Thus, as long as the algorithm has seen
only one string, it will output this string.

Otherwise, we try to generate a pattern from
2 compatible strings received so far. If this is
not possible or if one of the samples does not
have a factorization then the output will be the
default pattern $\psi_{0}:=\mathrm{P}\mathrm{R}\mathrm{E}_{g^{X\mathrm{s}}}\mathrm{U}\mathrm{F}_{g}$.

If a non-default pattern has been generated
as a hypothesis further samples are tested for
compatibility with respect to this pattern. As
long as the test is positive the algorithm will
stick to this hypothesis, else a new pattern will
be generated. In the simplest version of the al-
gorithm we remember only a single exampie. In-
stead of a set A we will use a single variable Y .

The One-Variable Pattern Algorithm

$Y:=X_{1}$; PRE $:=X_{1}$; SUF $:=X_{1;}$

output X_{1} ;

for $g=2,3,4$, ... do

101

PRE’ $:=\mathrm{P}\mathrm{R}\mathrm{E}$; $\mathrm{S}\mathrm{U}\mathrm{F}’:=\mathrm{S}\mathrm{U}\mathrm{F}$;
$\psi:=$ output of previous round;
read the new sample $\lambda_{\mathit{9}}^{\Gamma}$;

if $\lambda_{g}^{\Gamma}=\psi$ then output ψ , else
PRE $:=\mathrm{P}\mathrm{R}\mathrm{E}(\{\mathrm{p}\mathrm{R}\mathrm{E}, x_{g}^{\Gamma}\}))$

SUF: $=\mathrm{S}\mathrm{U}\mathrm{F}(\{\mathrm{S}\mathrm{U}\mathrm{F}, \lambda_{g}^{r}\})$;
if PRE $\neq \mathrm{P}\mathrm{R}\mathrm{E}’$ or SUF $\neq \mathrm{S}\mathrm{U}\mathrm{F}’$ then
compute the (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of $l^{\prime^{r}}$;

ψ_{0} $:=$ PRE x SUF;
$\psi:=\psi_{0}$ endif;

compute the (PRE, $\mathrm{S}\mathrm{U}\mathrm{F}$) $-\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{Z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of λ_{g}^{Γ} ;

case 1: Y does not have a factorization
then output ψ_{0} :

case 2: λ_{g}^{Γ} does not have a factorization
then output ψ_{0} and $Y:=\lambda_{g}^{\Gamma}$;

case 3: $\psi=\psi_{0}$

if X_{9} is downwards compatible to Y

then output $\psi(X_{g}, Y, \cdot)\mathrm{l}$

else output ψ_{0} ,
if λ_{g}^{Γ} is shorter than Y then $Y:=X_{g}$;

case 4: λ_{9}^{r} is upwards compatible to ψ

then output ψ ;
case 5: λ_{g}^{Γ} is downwards compatible to ψ

then output $\psi(\lambda_{g}^{\prime,\psi}, \cdot)$ and $Y:=X_{g}$;
else output ψ_{0} .

Next, we state the main result of this paper.
THEOREM 1. One-variable pattern languages

can be learned in linear expected time for all dis-
tributions that with nonzero probability generate
a sample strings by a nonsymmetric replacement
of the pattern variable.

For a proof we refer the reader to [10]. An
additional nice feature of the algorithm is the
immediate convergence in the final phase when
a sample with a nonsymmetric replacement oc-
curs. The expectation of this event is $E[G]$,
hence with probability at least 1/2 the algo-
rithm converges within 2 $E[G]$ rounds. If this
did not happen, no matter which bad samples
have occurred, again there will be convergence
in $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ next 2 $E[G]$ rounds with probability at
least 1/2. Thus, the probability of failure de-
crease exponentially with the number of rounds:

$\mathrm{P}\mathrm{r}[Time_{t_{\mathit{0}}t}al\geq 2k\cdot E[T_{\dot{i}m}etotal]]$ $\leq 2^{-k}\}$

which implies that the variance is small.

References

[1] D. Angluin. Finding Patterns Common to a Set
of Strings, J.CSS 2i:46-62, 1980.

[2] M. Crochmore, W. Rytter. Text Algorithms,
Oxford University Press, 1994.

[3] T. Erlebach, P. Rossmanith, H. Stadtherr,
A. Steger, T. Zeugmann. Effi$ci\dot{e}nt$ learning
of one-variable pattern languages from pos-
itive data, DOI-TR-128, Kyushu University,
Fukuoka, Japan, 1996.

[4] T. Erlebach, P. Rossmanith, H. Stadtherr,
A. Steger, T. Zeugmann. Learning One-Variable
Pattern Languages Very Efficiently on Aver-
age, in Parallel, and by Asking Queries, Proc.
8. ALT, 1997, LNAI 1316, 260-276.

[5] E. Gold. Language identification in the limit,
Inf. &Control 10:447-474, 1967.

[6] M. Kearns, L. Pitt. A polynomial-time algo-
rithm for learning k -variable pattern languages
from examples, Proc. 2. COLT, 1989, 57-71.

[7] S. Lange} R. Wiehagen. Polynomial-time infer-
ence of arbitrary pattern languages, New Gen-
eration Computing 8:361-370, 1991.

[8] S. Lange, T. Zeugmann. Set-driven and re-
arrangement-independent learning of recur-
sive languages, Mathematical Systems The-
ory $29(6):599-634$, 1996.

[9] L. Pitt. Inductive inference, DFAs and com-
putational complexity, in K. Jantke (Ed.),
Proc. AII, 1989, LNAI 397, 18-44.

[10] R. Reischuk and T. Zeugmann. Learning One-
Variable Pattern Languages in Linear Aver-
age Time, DOI-TR-140, Kyushu University,
Fukuoka, Japan, 1997. http://www.i.kyushu-
u.ac.$\mathrm{j}\mathrm{p}/\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{S}/\mathrm{t}\mathrm{r}\mathrm{e}_{\mathrm{P}}\mathrm{o}\mathrm{r}\mathrm{t}.\mathrm{h}\mathrm{t}\mathrm{m}1$

$’[11]$ A. Salomaa. Patterns, EATCS Bulletin 54:46-
62, 1994.

[12] A. Salomaa. Return to patterns, EATCS Bul-
letin 55:144-157, 1994.

[13] R. Schapire. Pattern languaqes are not learn-
able, Proc. 3. COLT, 1990, 122-129.

[14] T. Shinohara, S. Arikawa. Pattern inference,
in “Algorithmic Learning for Knowledge-Based
Systems,” (K. Jantke and S. Lange (Eds.))
LNAI 961, 1995, 259-291.

[15] R. Wiehagen, T. Zeugmann. Ignoring data may
be the only way to learn efficiently, J. Exper-
imental and Theoretical Artificial Intellige.nce
6:131-144, 1994.

[16] T. Zeugmann. Lange and Wiehagen’s pattern
language learning algorithm: An average-case
analysis with respect to its total learning time,
RFIIS-TR 111, Kyushu U.niversity, Fukuoka,
Japan, 1995.

102

