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Abstract Let kOIA(T(n)) denote the class of languages accepted by k-dimensional one-way it-
erative arrays in T(n) time. We abbreviate notions such that opt = (k 4+ 1)n — k, kOIA (linear) =
Ueso ¥OTA (opt + cn), and kOIA (poly-I) = kOIA(opt + n!). Further, let 1AFA(k), 2AFA(k) de-
note the classes of languages accepted by one-way and two-way alternating k-head finite automata,
respectively. The main purpose of this paper is to show that for each k,I > 1, (1) kOIA(opt)R =
LIAFA(k + 1), (2) kOIA(linear) = 1-turn 2AFA(k + 1), and (3) kOIA(poly-l) C 2AFA(k + 1),
where “l-turn” of 2AFA(k) means that only one head among the k heads can turn at the right
end of the input and move to the left, while all the other heads must stop after arriving at
the right end. The superscript ‘R’ stands for reversal operation. Moreover, we show that (4)
I-turn 2AFA(k) C1AFA(k+1).

1. Introduction

One of the simplest models of parallel computation is the one-way iterative array (OIA) |2,
3]. Figure 1 shows one-dimensional iterative array (10IA) and two-dimensional i‘erative array
(20IA). These lower-dimensional arrays can be generalized to k dimensions (k > 1), ie.,
to a k-dimensional one-way iterative array (kOIA). Such an array has size n x --- x n (k
times). The input cell is at position (1,...,1) and the accepting cell is at position (n,...,n).
A kOIA operates in time T'(n) is denoted by kOIA(T(n)). Let kOIA(T(n)) denote the class of
languages accepted by kOIA(T'(n))s. For special complexity functions, define opt = (k+1)n—k,
kOIA (linear) = {J.o kOIA(opt + cn), and kOIA(poly-I) = kOIA (opt + n!). Note that time
complexity is at least (k+ 1)n — k for any k > 1 [2, 6].F Meanwhile, multihead finite automata
has being studied especially from theoretical interest [4, 11] as a simplest extension of finite
automaton. A k-head finite automaton is a finite-state automaton with k-heads on a single
read-only input tape. Let 1AFA(k) (INFA(k)) denote the class of languages accepted by
one-way k-head alternating (nondeterministic) finite automata. We denote the two-way version
of 1AFA(k) by 2AFA (k). As a relationship between multihead finite automata and one-way
iterative arrays, it is known [6] that INFA(k 4+ 1) C kOILA(opt) for each k > 1. Section 3 of
this paper generalizes it to the best result IAFA(k + 1)R = kOIA(opt), where ‘R’ stands for
reversal operation. ‘ ’

One of the well-known open problems concerning to OIA is whether 10IA (opt) C 10IA(linear).
Section 4 of this paper connects this problem to AFA-side open problems whether 1AFA (2)
C 2AFA(2) and whether 1AFA(2) ¢ 1AFA(3), by showing that KOIA (linear) = 1-turn 2AFA (k+
1) = finite-turn 2AFA(k + 1) C 1AFA(k + 2), where “I1-turn” of 2AFA(k) means that only
one head among the k heads can turn at the right end of the input and move to the left, while
all the other heads must stop after arriving at the right end, starting at the left end. The term
“finite-turn” means that the number of full scans of each two-way head between both ends of
the input (i.e., from the left end to the right end or vice versa) is restricted to be finite. This
section also shows that kOIA (poly-l) C 2AFA(k +1).

Section 6 summarizes the paper with concluding remarks.

fIn (7, 9], (k+1)n — k time is called ‘pseudo-real-time’ when k = 1.
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Figure 1. One-dimensional and two-dimensional one-way iterative arrays.

2. Definitions

“Unrolling” the computation of a kOIA in space and time [1, 5], we obtain an array of combi-
" national circuits: the (k + 1)-dimensional trellis automaton.

Definition 2.1. A (k+1)-dimensional trellis automaton (kTA) isasystem A = (E, ", X, A, f),
where E is the non-zero quadrant {(ip,%1,...,ix) € Z*¥! | ig,41,..., > 0} of (k + 1)-
dimensional discrete space Z*¥t1. At each point (49,71, ...,i) of E, an identical element, called
(i0,%1, . - -, ik)-element, computes a partial function f : I'*t1 — I', where I' (Wthh contains the
blank symbol A) is a finite operational alphabet. Output s(ig, i1, . . .,%%) of (ig,%1,. . . %k )-element
is recursively defined: s(io,1,...,%) = f(s0,51,...,5k), where sg = s(ip — 1,i1,...,1k), 51 =
s(0,91—1,...,%), ..., and sg = s(dp, i1, . . ., 4k — 1), with boundary condition 5(0, 41, 4, . . . , %) =
5(%0,0,92, ... ,%) = --- = 5(ig, %1, - - ,ik—1,0) = A foreach ig, 1, ..., > 1 except that s(ig, 1,. ..,
1,0) = a4, 1 < 49 < n. We says that A accepts input ajas...a, € E* in time T(n) if

s(I'(n),n,...,n) € A, where X,A C I" — {)\} are the sets of mput symbols and acceptzng
symbols, respectlvely

Let (k+ 1)TA(T'(n)) denote a (k + 1)TA operates in time T(n) and (k+ 1)TA(T(n)) denote
the class of languages accepted by (k+1)TA(T'(n))’s. Figure 2 illustrates 2TA(T'(n)). It is clear
that (k' + 1)TA(T(n)) = kOIA(T(n)) for any k > 1 and any T'(n) > (k+ 1)n —k

Next, we introduce a variety of alternating multihead finite automaton, ranging from ordinary
one-way machine to two-way one [11]. We first define the most general type of multihead finite
automaton: the two-way alternating finite automaton.

Definition 2.2. An alternating finite automaton with k heads (AFA(k)) is a structure M =
(Q,%,6,q0,U, F), where (1) Q is a finite, nonempty set of states; (2) X is the input alphabet (2
does not contain the symbols ¢ and §); (3) 6 is the transition function, mapping Qx(ZU{¢, $1)F
into the subsets of Q x{-1,0, +1}’c with the restriction that for any transition (g, (dy, . . dk))
8(p, (a1,...,ax)), a; = ¢ implies d; > 0 and a; = $ implies alJ < 0 for any j(1 < j < k); (

qo € Q is the lmtlal state; (5) U C @ is the set of umversal states; and (6) F' C Q is the set of
accepting states.
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Figure 2. 2TA(T'(n)).

The language accepted by M is L(M) = {x € X* | M accepts z}. The class of languages
accepted by AFA(k)’s is denoted by AFA(k). .. :

We next introduce special types of AFA (k) whose input heads are restricted in various ways.
A sweeping head is a two-way head whose motions are restricted to be sweeping ones between
both ends of the input (i.e., from the left end to the right end or vice versa). A finite-turn head
is a sweeping head whose number of sweeps is restricted to be finite. A I-turn head (I > 0) is
a finite-turn head which can reverse its direction at most [ times. A one-way head is an alias
of 0-turn head. An AFA(k) with kg two-way heads, k1 sweeping heads, ko finite-turn heads, ks

— ~ e~ —

1-turn heads, and k4 one-way heads is denoted by AFA (ko + k1 + ko + k3 + k4 ). (
The superscript ‘b’ of head notion implies their blindness, i.e., they cannot read input symbols

except the left and right boundary symbols ¢ and §, respectively [4, 12].

3. Optimal-Time kOIA

In this section, we shows the equivalence of optimal-time OIA and one-way AFA through reversal
operation of languages. In order to clarify our proofs, we introduce a special type of head of AFA,
a reversal-one-way head which can move right-to-left, rather than left-to-right as an ordinary

—

one-way head. An AFA(k) with k' reversal-one-way heads is denoted by AFA(---+ &' +---). It
— . — “— — — —

is clear that AFA(k )= AFA(k )R and AFA(1 +°%)=AFA(1 + k"R

) — —
Lemma 3.1. For each k> 1, kOIA(opt) C AFA(1 +°k).

Proof. Let A= (E,I', X, A, f) bea (k+1)TA(opt) equivalent to a kOIA(opt) accepting some
language L. It is easily seen that, given an input a; ...an, each (z,1,...,1)-element (1 <7 < n)
of A can distribute its input symbol a; to all the elements having the same i-coordinates. We
therefore assume that the initial condition of A is the following: For each 1 < 4,%1,...,% < n,
$(0,41,%2, . ..,1k) = A, and (3, 0,49, .. .,5) = 5(4,11,0,...,1%) = - = 5(¢, 01, ..., k-1,0) = a;.

Consider an AFA(T + b?) M = (Q,X,6,q,U, F) which executes the program shown in
Fig. 3 on a tape . We can imagine M to be an ordinary one-head finite autgjmaton whose input
tape x is a (k +1)-dimensional ‘hyper-rectangle.” Correctness of the algorithm can be proved by
induction as in the same way with that of Proposition 3.1 in [10]. We therefore conclude that
L =L(M). _ ¥ o ‘ O
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Main program
begin // start from the right boundary symbol $ //
moves all heads one square left (to the last symbol of z);
guess s, € A4;
OUTPUT(s,)
end
Procedure OUTPUT($)
begin
if some head reaches ¢ and reading head hg reads $
then accept else reject and halt
else
guess o, $1,52,...,5k € I' in such a way that § = f(sp, s1, 82, . ., Sk);
for each j(0 < j < k) do the following in universal branching
begin
moves head h; one square to the left;
OUTPUT(s;)
end '
end

Figure 3. Algorithm of reversal-one-way AFA simulating a OIA.

Lemma 3.2. For each k > 2, AFA(k ) C (k — 1)OIA (opt).

Proof. Our technique is essentially the same as that used in the proof of Theorem 6.2 in [11],
i.e., ‘reverse breadth-first search’ of the directed graph induced from all possible configurations
of an AFA.

Without loss of generality, we impose the following assumptions on any AFA(*E) M =
(Qa EaaaquUaF): k>2.

(1) Initially, all heads of M stay at the one left square to the right boundary symbol $, i.e.,
the initial configuration of M on a tape x is (go, (n,n,...,n)), where n = |z|.

(2) At each step, any two heads of M does not move left simultaneously. From this, we modify
the original transition function § of M to be a mapping & from Q x (£ [J{$})* into the
subsets of @ x {0,1,2,...,k}, where (¢,h) € &(p,a) implies a transition such that the hth
head moves right and all other heads keep stationary (especially A = 0 means all heads
stationary).

(3) If some head reaches ¢, all heads keep stationary afterward, i.e., (g, h) € &(p,(a1,-- -, ¢,- -,
ay)) implies A = 0. This is possible because we can modify M to the desired machine M’
as follows. Each time when some head h of M is going to move left, M’ guesses whether
the symbol of the square that h will enter is ¢ or not and universally branches into two
machines, one of which really moves h to the left and checks the correctness of the guess
(and halts), other of which continues the simulation of M, assuming ¢ on the left neighbor
square (and keeping h stationary).

Let M’ = ({q0,q1,---,9s}, X, 8, g0, U, F) be an AFA(?;) which satisfies the above-mentioned
conditions. Prior to the simulation of M’, we prepare a look-up table g : ({0, 1}5*1)¥ x
(ZU{8$})* — {0,1}**1, which is constructed by the algorithm shown in Fig. 4.

Note that the algorithm only uses the information of M’ not of individual input string and
that the resultant table g is of finite memory size.

Consider a kTA A= (E,I', X, A, f) on a tape = ajaz. .. a,. By using a standard ‘folding’
(and distribution) technique as in the proof of Theorem 3 in [6], we can assume that partial data
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Procedure g(u®,u® .. u® a)
begin
for each (0 < r < ) initialize u{? := { 1, ifg €F,
0, otherwise.
repeat s times do

begin
for each 7’s (0 < r < s) such that ug)) =0do
begin '
if g € U then
if for all pair (I,h) (0 <1<s,0 < h <k) such that
(qi, h) € §'(qy, @), it holds that ugh) =1then u!¥ =1
else // ¢ €Q-U// .
if at least one pair (I,h) (0 <1< s,0 <h <k) such that
(qi, h) € §'(gy,a), it holds that ugh) =1thenu? =1
end
end v
return u(® = (u{®, u{?, ... u{”)
end
Figure 4. Construction algorithm of look-up table g of AFA(?).
(ai;, iy, - - - 04, ) of input x is available for each (i1,1s, . ..,4x)-element of A (1 <41,19,...,% <
n). The operational function f of A with such a distributed input is thus defined as follows.
Foreach 1 < 41,49,...,1x < n, (41,92, . .., ik)-element outputs the vector 0 = g('v(l), 'v(g),
., v®) (a;,ai,, . .., a;,)), where v is the input vector from (i; — 1,42,...,x)-element,
v is the input vector from (41,43 — 1,43, ...,k )-element, ..., and v® is the input vector
J
from (41,49, . . .,%_1, i — 1)-element except that when 7; = 1, v = g(v*,...,v* (a1, ,é,

...,ay)), where ‘v*’ stands for an arbitrary (don't-care) vector.
Recall from the assumption (3) that all heads stop their motions after some head reaches ¢,
so the actual values of parameters u's have no relevance to the reference of g when another
parameter a contains symbol ¢.

Correctness of the whole algorithm can be proved by induction as in the same way with that
of Proposition 3.2 in [10]. Therefore, we can conclude that A accepts the same language as M'.
It follows that a (k — 1)OIA(opt) equivalent to A accepts L(M’). O

From Lemma 3.1 and 3.2, we get the main theorem of this section.

Theorem 3.1. For each k > 1, kOIA (opt)® = AFA(I + k°) = AFA(k 1 1). 0

4. Linear-Time and Polynomial-Time kOIA’s

In this section, we investigate the relationships between non-optimal-time OIA’s and AFA’s.
Notably, we show that linear-time OIA’s are completely characterized with finite-turn AFA’s.
Almost proofs are based on the characterization of time-bounded OIA in terms of a special type
of one-way AFA.

Definition 4.1. For any language L and any non-negative function 7'(n), define L#TM) =
{z#T™) | z € L} and #TWL = {#T(Mz | x € L}, where # is not in the alphabet of L.

In the below, superscript “#” on k means that the corresponding k heads initially stay at the
rightmost symbol of padding substring #'s, i.e., one square left to substring .
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As an easy generalization of Theorem 3.1, we have the following characterization of arbitrary-
time bounded OIA (recall that L#% = L). :

Theorem 4.1. Let L be any language and T(n) be any non- negative functzon Then, for each
k>1, L € kOIA(opt + T(n)) <= #TMLR ¢ AFA(I + #kb). u

By using the above characterization, we get the following speed-up theorem for multi-dimensional
OIA, which includes one- and two-dimensional versions [7, 8] as special cases.

Theorem 4.2 (multi-dimensional speed-up). Let T(n) be any non-negative function and
d >0 be any constant. Then, kOIA(opt + T(n)) = kOILA(opt + T(n)/d) for each k > 1.

Proof. From Theorem 4.1, it is sufficient to show that #7L ¢ AFA(l-i—#kb) = #TM/d[, ¢
AFA(L + #kb). Let M be an AFA(I + #kb) accepting #T™L. An AFA(T + #P) M’ that
simulates M behaves in the same way as M, except when the reading head h of M is on
padding symbols #’s of the given tape: Each time h moves d squares to the right, M’ moves its

reading head A’ one square to the right. It is clear that M’ accepts #7(W/d[, ]
~ Substituting T(n) = dn, we have the speed-up theorem in linear-time range.

Corollary 4.1. For each k > 1, kOIA(linear) = kOIA (opt + n). o

This fact will be used in the following discussions. In the case of linear-time OIA, we can
relax the restriction of initial head positions on the equivalent one-way AFA:

- Proposition 4.1. Let L be any language. Then, for each k > 1, #"L € AFA(l + #kb) =
#"L € AFA(1 + kP). _ O

The following pair of lemmas leads to the theorem which asserts the equivalence of linear-time
OIA and finite-turn AFA.

Lemma 4.1. For each k > 1, kOIA (opt +n)R C AFA(I + kb).

Proof. From Theorem 4.1 and Proposition 4.1, it is sufficient to show that #"L € AFA(l +
kb) = L € AFA 1+kb) Let M be an AFA(1+kb) accepting #" L. We construct an AFA(1+kb)
M’ which acts as follows. M’ behaves in the same way as M, except that some blind head ¥’ is
used for the reading head r of M (and its reading head ’ is used for the corresponding blind
head b of M). When ' wants to read input symbol, M’ performs a guess-and-check procedure
similar to that used in the assumption (3) of the proof of Lemma 3.2. It is clear that M’ accepts
L. ]

Lemma 4.2. For each k > 1, AFA(k’—i—vl) C kOIA (opt + n).

Proof. Indirect simulation using one-way AFA (T’I\l_eiorem 4.1) are rather complicated. Instead,

we briefly describe the direct simulation of AFA(k + 1) by kOIA(opt + n). Figure 5 illustrates

a trellis automaton equivalent to a 10IA(opt + n) that simulates an AFA(2) whose first head

is 1-turn and second is 2-turn. The shaded area in the figure is used for actual simulation.

The remaining part is used only for sending the input information to the simulation area. The

detailed construction is omitted. . O
From Lemma 4.1 and Lemma 4.2, we have the following equivalence.

Theorem 4.3. For each k > 1, kOIA (linear) = AFA(k + 1) = AFA(1 + k). O
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Figure 5. Simulation of AFA(2) by 10IA(opt + n).

Exchanging the blindness of zero-turn head and non-zero-turn heads of AFA(1 + Eb) (or

strengthening the one-way blind heads of AFA( 1+ kb) to finite-turn ones) we get a refined
hierarchy between kOIA (opt) and kOIA (linear):

Theorem 4.4. AFA(71 +k— 1° + 1°) = AFA(Ib + k) = AFA(T + &P). 0

Next, we show that finite-turning ability of input heads can be discarded at the cost of one
additional head.

~ —
Theorem 4.5. For each k > 2, AFA(k) C AFA(k+1).

Proof. From Theorem 3.1 and Theorem 4.3, it is sufficient to show that AFA(l:s'b +1)R C
AFA(I—c'b—i—i). Let M be an AFA(I;b—l—i) accepting some language L. We construct an AFA(Eb+5)
M’ which accepts L® as follows. The k° heads of M’ behave in the same way as the k® heads of
M, except that they move in the reversal direction of that of M. The simulation of the i—type
head h of M consists of two stages. Stage 1: Before h turns at the left end of the input, M’
moves one of its 2 heads, say #/, in the same way as h except that it moves in the reversal
direction, the remaining head h” being kept stationary at the left end. When &’ wants to read
input symbol, M’ performs a guess-and-check procedure similar to that used in the assumption
(3) of the proof of Lemma 3.2. Stage 2: After h turns at the left end (h’ arrives at the right
end), M’ begins to move h” to the right as A moves right. O

As a final result, we show that a polynomial-time kOIA can be simulated by a two-way
(I + k)-head AFA, where [ is the degree of the polynomial.

Theorem 4.6. For each k,1 > 1, kOIA(poly-l) C AFA(I -1+ k + 1°). u

5. Conclusion

Figure 6 summarizes the main results obtained in this paper. In the figure, we are omitting prefix
“AFA” from language class notation of AFA’s, e.g., “k+1” is the abbreviation of “AFA(k:—i— 1).”
It is unknown whether any one of the inclusions is proper or not.
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