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Dynamics of skew tent maps
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1 Introduction
We consider skew tent maps defined by

azr+1, (z£0)
fap(z) { —bz +1, (z > 0)

(a,) € D:={(a,b):a>0,b>1,a+b>ab}.

By the dynamical behavior of f,;, the parameter domain D is divided into sub-
domains Dy, defined by some algebraic curves : D = > reo Di. In each Dy, there
are subdomains Df where f,; has unique attracting periodic orbit of period k
and Dy where f,; has 2k or k chaotic intervals, which is analyzed by the method
of renormalization ([Ich]Ito]). In this paper we give the relation between *-
product for kneading sequence and renormalization as Theorem 1. We also give
an explicit proof of Theorem A in [MV91], which states monotonicity of kneading
sequence of this family. Moreover we correct Corollary of Theorem 2 in MV92]
as Proposition 4.

We denote kneading sequence of f,; by K(a,b) and topological entropy of fap
by h(a,b). We refer basic definitions and notations from [Ich][CES0].

2 Renormalization and x-product

We denote f,5 by f in this section. For getting maximal level of renormal-
ization, we assume sequence B is prime. Let |A| be the length of sequence A
and int(J) interior of an interval J. For the definitions of renormalization and
*-product, see [Ito] and [CER0] respectively.

Definition S is called prime if S does not have any finite sequence 4 (# 0) of
L’s and R’s and any finite or infinite sequence B (# C) such that S = Ax B.
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Theorem 1 K(a,b) = Ax B where A(# 0) is finite sequence of L’s and
'R's and B(# C) is prime if and only if there exist invariant closed intervals
{Ji}i:o,...’léj such that JIA_I 2 0, _fJz = Jz’+1 (’l = 0, Tty |A| - 1), fJ|A_| = JO and
int(J;) Nint(Jy) = 0 (¢ # 7). f can not have any refinement of {J;}.

Proof Assume K(a,b) = A B where A (# () is finite sequence of L’s or R’s
and B (# C) is prime. Set z, = f*(1) (n > 0), p = |A| and A = Ap4;--- Ap_s.
Let J; be convex hull of {Z;1kpt1) : £ =0,1,---} fori=0,---,p. Then, we have
fJi=Jig1(¢=0,---,p—1) and f is monotone on each J; except of 2 = p. Remark
that fP*! on each J; has same slopes. It follows that fP*!|;, ~ fP*1],, (i # ¥').
We consider the following two cases. ‘

The first case : B does not contain both L and R.

B is finite in this case. It follows that J, contains a turning point 0 as an
end point of it. Hence, fJ, = Jo. As f is monotone on J; for all i (0 < i < p),
P! restricted on J; is monotone and surjective on J;. Hence, its slope is —1.
Then {J;}’s are disjoint or there would exist some ¢,%' such that J; = Jy from
continuity of f. The latter can not occur
because of the assumption of A. Therefore {J;} are disjoint. Notice that the first
case corresponds to boundary curve of Df and DJ.

The second case : B contains both L and R. |

In this case fJ, = Jy and fP*!|; has unique turning point c; inside J;. We set
two slopes of fP*|; a(>0), B(< 0). We divide J; into two subinterval I,; and
I, corresponding to slope a and 8. As fP*!|;, is surjective on J;, we have that

sup{lal, |8]} > 1.

Ji

Ji

Figure 1: The graph of fP*! on J; having two turning points.
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If | 3| < 1, then turning point is attracted to a fixed point on I5. It follows that
B = L* or R®. This contradicts assumption of this case.

If || = 1, we reduce to the first case.

If |3 > 1 and int(J;) Nint(Jy) # 0, there exists Jy such that fP™|;, has
two turning points (see Figure 1) or there exist 4,7’ such that J; = Jy. In the
latter case we have J,, equals J, for some m (m # p). This contradicts that
f is monotone on J,, because J, includes turning point in it. Hence we obtain
int(J;) Nint(Jy) = 0. Notice that the second case corresponds to Df.

Conversely, if there exist disjoint invariant closed intervals {J;}i=q,...,| 4| In the—
orem, we have K(a,b) = Ax B with A = Ay Ay, ---Ay,_,. If B is not prime, f
has refinement of {J;}. Hence, B is prime. « | O

Now we have the relation of our renormalization (i.e., (|4|+1) - renormalization
is a skew tent map of D) and %-product.

Corollary 1 If |B| # 2 in above theorem, then f is renormalizable of level
|A| + 1.

Proof Let p be |A|. In the first case, we have |B| = 2 because a turning point
of f on J, is 2-periodic point of fP*!. In the second case, we have [3| > 1 and
fPriJ, = J;. It follows (o, 3) € D. Therefore f is (p + 1)-renormalizable on

[eis fP1H(es)] (resp. [P (e),ci]) if e < fPFH (i) (resp. fP7H(ai) < ). 0

It is well known that for a smooth unimodal map g, n-periodic g-admissible
sequence implies the existence of n or 2n-periodic point ([Dev89]). This fact is
proved by Schwarzian derivative. But we have the following analogous fact for
skew tent maps.

Corollary 2 IfK (a,b) = Ax B where A (+ 0) is finite sequence of L’s and R’s
and B (# C) is prime, then f has periodic points of period |A| 4 1. Moreover if
|B| = 2, then f also has periodic points of period 2(|A| + 1).

Remark For showing Corollary 1 and 2, we need only the assumptlon B #
C, L*, R*™ instead of primarity of B.

3 Monotonicity of kneading sequences

In this section we will mention the monotonicity property of kneading sequence

in the domain 3
D = {(a,b) € D; a > 1}.
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Let us define the order for parameter pairs as follows, according to M. Misi-
urewicz and E. Visinescu [MV91] : |

(a,b) = (a/,b) © a’ > a, b’ > b, and at least one of these inequalities is strict.
Kneading sequences are monotone increasing with respect to this order.

Monotonicity Theorem (Theorem A in [MV91]) For (d/,¥), (a,b) in D
with (a’,¥') = (a,b), it holds that K(a',b') > K(a,b).

This theorem is already proved in [MV91]. M. Misiurewicz and E. Visinescu
showed the claim by using the estimation of topological entropy. But we shall
reprove it by using only thier results for D* in [MV91], and renormalization
method, not via the topological entropy. For that purpose, we prepare Proposition
1, Proposition 2 and Proposition 3 ( for the detailed proofs, see [Ich]).

As to x-product, we have the following.

Proposition 1 Let A and B be symbolic sequences of L, R, and C with
A>B. Thenforalln>1, R""x A > R™ x B. ' .

3.1 Monotonicity in D*

Let D* be the domain {(a,b) € D; a +b < ab®,a > 1}.

M. Misiurewicz and E. Visinescu proved in [MV91] that K(a’,¥’) > K (a,b) for
(«/,¥), (a,b) € D* such that (a’,¥) > (a,b). This domain D* is characterlized by
the following.

Fact 1 (Lemma 2.1 in [MV91]) (a,b) € D* & K(a,b) = RLR™.
First, monotone increasing property of _kneading sequence is proved in D*.

Fact 2 (Proposition 4.3 in [MV91]) If (a,b) and (¢',b') are in D* with
(a,b) < (a',b'), then K(a,b) < K(a',b'). |

3.2 Renormalization and x-product ( for D)

Proposition 2  Let (a,b) be in D. The following three conditions are equiva-
lent mutually.

(i) (a,b) € D.



(i)

(iii)
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There exists a unique number m > 1 and a prime sequence B whose length
is longer than 2 such that K(a,b) = R x B.

There exists some number m > 1 such that ¢™(a, b) € D*, where p(a,b) =
(b%, ab).

Furthermore, there exist closed subintervals of I,p, {Ii}izo,\--, gm_1 Such
that their interiors are disjoint mutually, fopl; = Iiyq for 0 < ¢ < 2™ =2
and fa,bI2m—1 =1y, Iom_1 3 0, and fib l[z. ~ fgom(a,b)-

Proposition3 Let (a,b),(a’,b') € D\ D* such that (a,b) < (a’,b). If
¢™(a,b) € D* and ¢™(a’,b') € D*, then m > n.

3.3

Proof of Monotonicity Theorem

Assume that (a,b) < (a/, V).

(1)

(i)

(i)

If both (a,b) and (a’,b') belong to D*, then the proof is already given by
Fact 2.

Assume that either (a,b) or (a/,b’) belongs to D*. Then (o) is in D*
because (a,b) < (a’,b). By virtue of Fact 1, K(¢"(a,b)) X RLR* <
K(p™(a',b')). We have that K(a,b) < K(d/,b') as an order relation ”<” is
total.

Assume that (a,b) and (o', ') both belong to D\ D*. Then; by Proposition
3, their kneading sequences are written as, for some n < m,

K(a,b) = ™« K(¢™(a,b)) and K(d',b)=R"*K(¢"(a,b)).

If m = n, then we have that ¢™(a,b) < ¢™(a’,b') since ¢ is an increasing
function. Because K(¢"(a,d)) < K(¢"(a',t' )) and from Proposition 1, we
have that K(a,b) < K(d',V').

If n < m , then we have that ¢™(a,b) # D* and ¢"(a’,b') € D*. By virtue
of Fact 1, it follows that

K(¢"(a,b)) < RLR™® < K(¢"(d,V)).

By Proposition 1, we have that K(a,b) < K(a',V'). O
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4 Renormalization and topological entropy

Now we correct two statements of [MV92].

First : kneading sequence for boundary curve of An(= DA +1) and B,,(=
Dy 11)-
In Theorem 1 of the paper [MV92], they say ;

(A B)(= (a,0) € Am & K(X, ) = (RL™)™

(A, B) € BmﬁK()\,ﬁ) = RL™'xB with Be M
‘where M is set of kneading sequence for tent map fix (1 < A < 2).

A,, and B,, have common boundary curve : A™u = 1. In our opinion this curve
should be discussed separately from A,, and from B,,. We find our reason in the
fact that the kneading sequence on this curve is RL™RL™1C, not admitted by
one on A,, and on B,,. :

Second : topological entropy of B;(= D) is not constant.
In Corollary in [MV92], they say ;

let (\,3), N,8) e {(\B)eD; A< 1}_ such that (), 8) < (X', ),
A\ B), (X, B) € AnUBm = h(X,B) =h(X,5).

Namely, topological entropy on By, is constant for all m (> 1). But we can
show the followings : :

Pr0p051t10n 4 Let (\,08), N,8)e{(\B)e D;‘ A< 1} IE(NB) < (N, B,
| R(), B) < (X, ).

Proof From [MT&88] we obtain that topological entropy of f,» for B; naturally
follows from one of its renormalized map of subdomain a > 1 where the strictly
monotonicity holds. O

A counter example to this statement is given in [Ich].
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