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ABSTRACT. A compact set $C$ in the Riemann sphere is called uniformly perfect if the

moduli of annuli separating $C$ are bounded. $\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\acute{\mathrm{e}}- \mathrm{d}\mathrm{a}$ Rocha and Hinkkanen showed
independently uniform perfectness of the Julia sets of rational maps of degree $\geq 2$ , but
they presented no explicit bounds for uniform perfectness. In this note, we shall provide
such an explicit bound and, as a result, we give another proof of uniform perfectness of
the Julia sets. As an application, we refer to alower estimate of the Hausdorff dimension
of the Julia sets. We also give a concrete bound for the family of quadratic polynomials
$f_{c}(z)=z^{2}+c$ in terms of the parameter $c$ .

1. INTRODUCTION

Let $C$ be a closed set in the Riemann sphere $\hat{\mathbb{C}}$ with $\# C\geq 3$ and $\Omega$ its complement.
We say $C$ is uniformly perfect if there exists a constant $0<c<1$ such that $C\cap\{z\in$

$\mathbb{C};cr<|z-a|<r\}\neq\emptyset$ for any $a\in C$ and $0<r<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(C)$ , where diam denotes the

Euclidean diameter.
The notion of uniform perfectness first appeared in Beardon-Pommerenke [3], and was

investigated more deeply by Pommerenke [12] and [13], and afterwards by many authors

(see [15] and its references). By definition, the sets with some kind of self-similarities are

expected to have uniform perfectness. In fact, the limit sets are known to be uniformly

perfect for a wide class of Kleinian groups (cf. Sugawa [16]). On the other hand, Pom-

merenke [13] first showed the uniform perfectness of the Julia sets of hyperbolic rational
maps. Later, $\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\acute{\mathrm{e}}-\mathrm{d}\mathrm{a}$ Rocha [11] and Hinkkanen [7] proved in the case of general rational
maps of degree $\geq 2$ , independently. For a simpler proof, see the textbook [4] by Carleson
and Gamelin. But, their proofs are done by contradiction, thus no explicit bounds for

uniform perfectness are given. In this note, we shall present such an explicit bound and

also exhibit some applications of this result. Our proof employs the hyperbolic geometry,
and hence is different from ones of the above authors. As Hinkkanen remarked in [7], we
should note that there exists an entire function whose Julia set is not uniformly perfect.

We also note that Hinkkanen and Martin [8] recently proved uniform perfectness for the

Julia sets of finitely generated rational semigroups.
We will state the main result in the next section as well as fundamental definitions and

notation. In Section 3, we shall discuss the connection between branched coverings and

uniform perfectness, which will be a key to prove our main theorem. Section 4 is devoted
to prove our main theorem, and we make an essential use of Sullivan’s No Wandering Do-

mains Theorem. We shall give applications of the main result to estimations of Hausdorff
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dimension, the (logarithmic) capacity density of the Julia set and the Poincar\’e metric
of the Fatou set in Section 5. In the last section, as a special case, we investigate the
quadratic family of polynomials $f_{c}(z)=z^{2}+c$ with $c\in \mathbb{C}$ outside the Mandelbrot set.
We have rather satisfactory result in the case $c<-2$ . For a general $c$ , we shall explain a
method using a holomorphic motion of the Julia set.

Finally, the author would like to express his hearty gratitude to P.rofessors M. Taniguchi
and K. Matsuzaki for helpful comments.

2. $\mathrm{M}\mathrm{A}\mathrm{l}\mathrm{N}$ RESULT

Let $C$ be a closed set in the Riemann sphere containing at least three points and $\Omega$ its
complement. We denote by $A_{\Omega}$ and $A_{[mathring]_{\Omega}}$ the sets of annuli and round annuli, respectively,
in $\Omega$ separating $C$, where annuli mean doubly connected domains and round annuli do
special annuli of the form $\{z\in \mathbb{C};r_{1}<|z-a|<r_{2}\}$ for some $a\in \mathbb{C}$ and $0\leq r_{1}<r_{2}\leq\infty$ ,
and we say that an annulus $A$ separates $C$ if $A\cap C=\emptyset$ and if each component of
$\hat{\mathbb{C}}\backslash A$ intersects $C$ . The $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}m(A)$ of an annulus $A$ is the number $m$ such that $A$ is
conformally equivalent to the round annulus $\{z;1<|z|<e^{m}\}$ . We set

$M_{\Omega}= \sup_{A_{\Omega}A\in}m(A)$
,

$M_{[mathring]_{\Omega}}= \sup_{A\in A_{\Omega}\mathrm{o}}m(A)$
,

and call them the modulus and the round modulus of $\Omega$ . (If $A_{\Omega}\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}A_{\Omega}^{\mathrm{o}}$ is empty,
then we define $M_{\Omega}=0\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}M_{[mathring]_{\Omega}}=0$ , respectively.) For these constants, it is known
that $\frac{1}{2}M_{\Omega}-1.7332\cdots\leq M_{[mathring]_{\Omega}}\leq M_{\Omega}$ , and that if $\Omega\subset \mathbb{C}$ , $M_{\Omega}-2.8911\cdots\leq M_{[mathring]_{\Omega}}\leq M_{\Omega}$

(cf. [15]).
It is easily verified that $C$ is uniformly perfect if and only if $M_{[mathring]_{\Omega}}<\infty$ , equivalently

$M_{\Omega}<\infty$ .
Next, for the later use, we consider quantities determined by the hyperbolic geometry

of $\Omega$ . Let $C$ be a closed set in the Riemann sphere with $\# C\geq 3$ and $\Omega=\hat{\mathbb{C}}\backslash C$ . Then each
component $D$ of $\Omega$ is hyperbolic, i.e., there exists a holomorphic universal covering map
$p:\mathbb{H}arrow D$ from the upper half plane onto $D$ . Thus $D$ can be regarded as the quotient
space $\mathbb{H}/\Gamma$ of $\mathbb{H}$ over the covering transformation group $\Gamma=\{\gamma\in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{R});p\mathrm{o}\gamma=p\}$ .
Since the hyperbolic (or Poincar\’e) metric $\rho_{\mathbb{H}}(z)|dz|--\frac{|dz|}{2{\rm Im} z}$ is invariant under the action
of $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{R})$ , $D$ inherits the hyperbolic metric $\rho_{D}(z)|dz|$ so that $p$ : $\mathbb{H}arrow D$ is a local
isometry with respect to the hyperbolic metric, i.e., $\rho_{\mathbb{H}}=p^{*}\rho_{D}$ . Therefore, we can define
the hyperbolic metric $\rho_{\Omega}$ of $\Omega$ componentwise.

The hyperbolic distance $d_{\Omega}(z0, z_{1})$ of a pair of points $z_{0},$ $z_{1}$ in the same component of
$\Omega$ can be defined by $\inf_{\alpha}\int_{\alpha}\rho_{\Omega}(z)|dz|$ , where the infimum is taken over all paths joining
$z_{0}$ to $z_{1}$ in $\Omega$ . We also difine $d_{\Omega}(z_{0}, z1)=+\infty$ if $z_{0}$ and $z_{1}$ do not belong to the same
component of $\Omega$ . For $z\in\Omega$ we denote by $\iota_{\Omega}(z)$ the injectivity radius of $\Omega$ at $z$ , that is,
$\iota_{\Omega}(z)$ is the maximal radius $r$ so that the hyperbolic disk $\{w\in\Omega;d_{\Omega}(z,w)<r\}$ is simply
connected.

Let $C_{\Omega}$ denote the set of free homotopy classes of non-trivial loops in $\Omega$ , where a loop
( $=\mathrm{c}1_{\mathrm{o}\mathrm{s}}\mathrm{e}\mathrm{d}$ curve) is called non-trivial if this is not null-homotopic $(=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e})$ in $\Omega$ .
For a loop $\alpha$ in $\Omega$ , we define the length of it by

$l_{\Omega}( \alpha)=\int_{\alpha}p_{\Omega}(z)|dZ|$ ,
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and for the free homotopy class $[\alpha]$ represented by a, we define

$\ell_{\Omega}[\alpha]=,\inf_{\mathrm{J}}\ell\Omega(\alpha)\alpha\in \mathrm{I}\alpha J$ .

Finally, we set
$L_{\Omega}=$ inf $\ell_{\Omega}[\alpha]$ .

$[\alpha]\in C_{\Omega}$

(If $C_{\Omega}$ is an empty set, we set $L_{\Omega}=+\infty.$ ) We remark that the injectivity radius $\iota_{\Omega}(z)$

is equal to half the infimum of lengths of non-trivial loops in $\Omega$ passing through $z$ . In
particular, $L_{\Omega}$ is nothing other than twice the (global) injectivity radius $\inf_{z\in\Omega}\iota_{\Omega(}Z$ ) of
$\Omega$ .

Concerning the constant $L_{\Omega}$ , the following estimate is fundamental.

Proposition 2.1 ([15]).

$L_{\Omega} \leq\frac{\pi^{2}}{M_{\Omega}}\leq\min\{L_{\Omega}e^{\iota_{\Omega}}, \frac{L_{\Omega}^{2}}{2}\coth^{2}(L\Omega/2)\}$ .

In particular, $M_{\Omega}<\infty$ if and only if $L_{\Omega}>0$ .
In order to estimate $M_{\Omega}$ from above, by this proposition, we have only to do $L_{\Omega}$ from

below. Now let us state the main theorem. For basic definitions and results about the
complex dyamics of the rational maps, we refer to the textbook [2] by Beardon as a general
reference.

Let $f$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ be a rational map of degree $d\geq 2$ . We denote by $J=J_{j}$ and $\Omega=\Omega_{f}$

the Julia set and the Fatou set of $f$, respectively. (In other words, $\Omega_{f}$ is the domain of
normality of the iteration family $\{f^{n}\}_{n=1,2},\cdots$ of $f$ and $J_{f}=\hat{\mathbb{C}}\backslash \Omega_{f}.$) Note that $\Omega_{f}$ is
completely invariant under $f$ , precisely, $f(\Omega_{f})=\Omega_{f}=f^{-1}(\Omega_{j})$ .

We denote by Crit $(f)$ the set of critical points of $f$ in the Fatou set $\Omega_{f}$ and let $U_{1},$ $\cdots,$
$U_{s}$

be the complete list of the components of $\Omega_{f}$ which contains at least one critical point
of $f$ and is not simply connected. And we set $W_{j}=f(U_{j})$ and $C_{j}=\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f)\cap U_{j}$ for
$j=1,$ $\cdots$ , $s$ . Note here that $\#^{\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}}(f)\leq 2d-2$, so $s\leq 2d-2$ . Now we introduce two kinds
of curve family: $S(v_{1,2}v)$ and $\mathcal{T}(v)$ , for $v_{1},$ $v_{2},v\in f(C_{j})$ with $v_{1}\neq v_{2}$ . Let $S(v_{1,2}v)$ and
$\mathcal{T}(v)$ consist of the loops $\beta$ : $\mathrm{S}^{1}arrow W_{j}$ , where $\mathrm{S}^{1}$ denotes the unit circle $\{z\in \mathbb{C};|z|=1\}$ ,
satisfying the conditions (a), (b), (c) and (a), $(\mathrm{b}’),$ $(\mathrm{c})$ , respectively, in the following:

(a) $\beta$ is contractible in $W_{j}$ .
(b) $\beta$ passes through $v_{1}$ and $v_{2}$ .

$(\mathrm{b}’)\beta$ passes through $v$ essentially two times, at least.
(c) There exists a non-trivial loop $\alpha$ in $U_{j}$ such that $f_{*}(\alpha)=\beta$ .
More precisely, the condition $(\mathrm{b}’)$ says that there exist distinct points $\zeta_{0}$ and $\zeta_{1}$ in $\mathrm{S}^{1}$

with $\beta(\zeta_{0})=\beta(\zeta_{1})=v$ such that the restrictions $\beta|_{\overline{I_{1}}}$ and $\beta|_{\overline{I_{2}}}$ of the loop $\beta$ are both non-
trivial closed curves in $W_{j}$ , where $I_{1}$ and $I_{2}$ are the connected component of $\mathrm{S}^{1}\backslash \{\zeta_{0}, (_{1}\}$ .
In particular, $\mathcal{T}(v)$ is empty if $W_{i}$ is simply connected. And we set

$a_{j}(v1, v_{2})= \beta\in S(\inf_{v_{2}v1)},\ell\Omega(\beta),$ $b_{j}(v)= \beta\in \mathcal{T}()\inf_{v}l_{\Omega}(\beta)$
and

$a_{j}= \min_{v_{1},v2\in f\langle C_{j})v1\neq v2},a_{j}(v1, v2)$
, $b_{j}= \min_{jv\in j(C)}b_{j}(v)$ ,

where we set $a_{j}=+\infty$ if $\# f(C_{j})=1$ .
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Finally, let $A_{1},$
$\cdots,$

$A_{t}$ be all of the cycles of Herman rings of $f$ . We note here that, by
Shishikura’s theorem, $0\leq t\leq d-2$ , in particular, if $d=2$ there are no Herman rings.
And, since the Julia set has no isolated points, the Herman rings have finite moduli, so
$L_{A_{k}}>0$ for all $k$ .

Now we are ready to state our main theorem.

Theorem 2.2 (Main Thoerem). For an arbitrary rationd map $f$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ of degree
$d\geq 2$ , the following holds.

$L_{\Omega_{f}} \geq\min\{a_{1}, \cdots,a_{S}, b1, \cdots, b_{s’ A_{1}}L, \cdots,L_{A_{t}}\}$ .

The proof of this theorem will be given in Section 4.
For any $\beta\in S(v_{1},v2)$ , it is clear by definition that $l_{\Omega}(\beta)\geq 2d_{\Omega}(v1,v2)$ . Similarly, for

$\beta\in \mathcal{T}(v)$ , we have $\ell_{\Omega}(\beta)\geq 4\iota_{\Omega}(v)$ . Thus, we conclude that $a_{j}(v_{1},v_{2})\geq 2d_{\Omega}(v1,v2)$ and
$b_{j}(v)\geq 4\iota_{\Omega}(v)$ and hence have the following

Corollary 2.3. Under the same situation as the Main Theorem, it follows that

$L_{\Omega_{f}} \geq\min\{C_{1}, C_{2}, C_{3}\}(>0)$ ,

where

$C_{1}= \min_{\neq v_{1}v_{2}\in f(\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f))}2d_{\Omega}f(v_{1},v_{2})$ ,

$C_{2}=v \in f(\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(\min_{)J)}4\iota\Omega_{t}(v)$
, and

$C_{3}= \min_{k=1,\cdots t},L_{A_{k}}$ .

In particular, the Julia set $J_{f}$ is uniformly perfect.

Remark 1. As is well-known, any polynomial has no Herman rings. In general, if
there exsits a Herman ring $A$ , it is known that the boundary of $A$ is contained in the
closure of forward orbits of the critical points of $f$. Therefore, if each critical point of $f$ is
(pre)periodic or contained in a (super)attracting or parabolic basin, then we can conclude
that $f$ has no Herman rings. We also note that a cycle of (super)attracting or parabolic
components always contains a critical point, thus a component of it appears as a member
of the list $U_{1},$ $\cdots,$

$U_{s}$ .

Remark 2. Let $B_{1}$ and $B_{2}$ be connected components of a cycle of Herman rings $A_{j}$ .
Then $B_{2}=f^{l}(B_{1})$ for some $l\in$ N. Since $f^{m}$ : $B_{1}arrow B_{1}$ is known to be analytically
conjugate to an irrational rotation of a round annulus, where $m$ is the period of $A_{j}$ , we
can see that $f^{l}$ : $B_{1}arrow B_{2}$ is biholomorphic. Hence, $L_{A_{\mathrm{j}}}$ is equal to the hyperbolic length
of the core curve of any component of $A_{j}$ .

Remark 3. A pair of critical values $v_{1},v_{2}$ can accidentally be very close to each other
in $\Omega$ , i.e., $d_{\Omega}(v_{1}, v_{2})$ is very small, while $a_{j}(v_{1},v_{2})$ is not so small. (The phenomenon
$\mathcal{T}(v)\neq\emptyset$ can be considered as a limiting case of the above situation.) So, the formulation
in the above corollary does not always provide a good estimate for uniform perfectness.
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3. BRANCHED COVERINGS AND UNIFORM PERFECTNESS

In this section, we shall investigate the connection between branched coverings and
uniform perfectness. Let $f$ : $Uarrow W$ be a holomorphic (possibly branched) covering map
from a (connected) hyperbolic Riemann surface $U$ onto another $W$. Precisely speaking,
for each point $w\in W$ there exists an open neighborhood $V$ of $w$ satisfying the condtion:
For each component $\tilde{V}$ of $f^{-1}(V)$ there exist a natural number $n\geq 1$ and conformal
homeomorphisms $\varphi$ : $\tilde{V}arrow\Delta_{r}$ and $\psi$ : $Varrow\Delta_{r^{n}}$ with $\psi(w)=0$ such that $\psi \mathrm{o}f\mathrm{o}\varphi^{-}(1\zeta)=$

$(^{n}$ , where $\Delta_{r}$ denotes the disk $\{|\zeta|<r\}$ .
When a loop $\alpha$ is freely homotopic to another $\alpha’$ in $U,$ $f*\alpha:=f\mathrm{o}\alpha$ is freely homotopic to

$f_{*}\alpha’$ . Therefore, the natural homomorphism $f_{*}$ : $C_{U}arrow C_{W}$ can be defined by $f_{*}[\alpha]=[f_{*}\alpha]$ .
First suppose that $f$ is unbranched, then by the homotopy lifting property we can see

that the induced map $f_{*}$ is injective. And moreover $l_{U}[\alpha]=l_{W}[f_{*}\alpha]$ because $f$ is a local
isometry, therefore we have the next

Proposition 3.1. If $f$ : $Uarrow W$ is an unbranched holomorphic covering map, then
$L_{U}\geq L_{W}$ .

In tlre case when $f$ is branched, we need more efforts to estimate $L_{U}$ from below. In
fact, for any finitely connected planar Jordan domain $U$, it is known that there exists
a branched holomorphic covering map from $U$ onto the unit disk (so-called the Ahlfors
map), thus $L_{U}$ cannot be estimated from below by only the data of $W$ (in this case,
$L_{W}=+\infty)$ .

Let Crit $(f)$ be the set of critical points of $f$ and for $v_{1},$ $v_{2},$
$v\in f(\mathrm{c}_{\mathrm{r}}\mathrm{i}\mathrm{t}(f))$ with $v_{1}\neq v_{2}$

define the curve families $S(v_{1},v_{2})$ and $\mathcal{T}(v)$ by the same way as in the previous section.
And we set

$a(v_{1},v_{2})=$ inf $l_{W}(\beta)$ , $b(v)=$ inf $l_{W}(\beta\rangle$ , and
$\beta\in S(v_{1},v_{2})$ $\beta\in \mathcal{T}(v)$

$a=$ inf $a(v_{1},v_{2})$ , $b=$ inf $b(v)$ .
$v_{1}\neq v_{2}\in f(\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(f))$

$v\in f(\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f))$

Then, the following lemma is a key step to our proof of the Main Theorem.

Lemma 3.2. For a non-trivial loop $\alpha$ in $U$ such that $\beta=f_{*}\alpha$ is contractible in $W$, it

follows that
$\ell_{U}[\alpha]\geq\min\{a,b\}$ .

Proof. First we show that $\ell\sigma[\alpha]>0$ . In fact, if $\ell_{U}[\alpha]=0$ then $\alpha$ surrounds a puncture
of $U$, in other words, there exists a holomorphic injection $g$ : $\Delta^{*}--\Delta\backslash \{0\}arrow U$ such
that $\alpha$ is freely homotopic to $\epsilon^{n}$ for some integer $n\neq 0$ , where $\epsilon=g(\{|\zeta|=1/2\})$ .
As is easily seen, $f(g(\Delta*))$ is a neighborhood of a puncture of $W$ and thus $\beta$ is freely
homotopic to non-zero multiple of a simple loop around the puncture in $W$. On the other
hand, $\beta$ is contractible in $W$, therefore $W$ must be conformally equivalent to the complex
plane $\mathbb{C}$ , but this is impossible because $W$ is hyperbolic. Hence we have $\ell_{U}[\alpha]>0$ . In
particulur, we see that $l_{U}[\alpha]=l_{U}(\alpha_{0})$ for the closed geodesic $\alpha_{0}$ freely homotopic to $\alpha$

in $U$. So, for the proof, it suffices to that $\ell_{U}(\alpha)\leq\min\{a, b\}$ in the case $\alpha$ is a smooth
curve. Approximating $\alpha$ by another smooth curve if necessary, we may further assume
that $\alpha$ does not pass any critical point. Here, we should observe $\ell_{U}(\alpha)\geq l_{W}(\beta)$ by the
Schwarz-Pick lemma: $f^{*}\rho_{W}\leq\rho_{U}$ .

43



Let $p:\Deltaarrow W$ be a holomorphic universal covering map of $W$ from the unit disk $\Delta$

and set $C=p^{-1}(f(\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f)))$ . Since $\beta$ is contractible, a lift $\tilde{\beta}$ : $\mathrm{S}^{1}arrow\Delta$ of $\beta$ via $p$ is closed.
Let $K$ be the holomorphically convex hull of $\overline{\beta}(\mathrm{S}^{1})$ in $\Delta$ . In other words, $K=\Delta\backslash D_{0}$ ,
where $D_{0}$ is the relatively non-compact component of $\Delta\backslash \tilde{\beta}(\mathrm{S}^{1})$ in $\Delta$ .

Now we show that $\#(K\cap C)\geq 2$ . If $K\cap C$ is an empty set, then it is clear that $\beta$ is
homotopic to a point with a homotopy in $W\backslash f(\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f))$ . Since $f$ : $U\backslash f^{-1}(f(\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(f)))arrow$

$W\backslash f(\mathrm{c}_{\mathrm{r}}\mathrm{i}\mathrm{t}(f))$ is an unbranched covering map, this homotopy can be lifted via $f$ to a
homotopy from $\alpha$ to a point, but this contradicts the assumption that $\alpha$ is non-trivial.
Next, suppose that $K\cap C$ consists of one point $\zeta_{0}$ . By assumption, we note that $\zeta_{0}\in$

$K\backslash \tilde{\beta}(\mathrm{S}^{1})$ . Then it is not difficult to see that the loop $\tilde{\beta}$ is freely $\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}8^{\mathrm{O}}\mathrm{P}^{\mathrm{i}\mathrm{c}}$ to $\epsilon^{n}$ in
$\Delta\backslash C$, where $\epsilon$ is a sufficiently small simple loop around $\zeta_{0}$ in $\Delta\backslash C$ and $n$ is the winding
number of $\tilde{\beta}$ around $\zeta_{0}$ . This implies that $\beta$ is freely homotopic to $p_{*}(\epsilon^{n})$ in $W\backslash f(\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f)\rangle$ ,
therefore $\alpha$ is freely homotopic to a loop $\delta$ with $f_{*}\delta=p_{*}(\epsilon^{n})$ . In particular, $\ell\sigma[\alpha]\leq P_{U}(\mathit{5})$

and the length of $\delta$ can be arbitrarily small, therefore $\ell_{U}[\alpha]=0$ , this is not the case. Now
we have proved that $\#(K\cap C)\geq 2$ .

Here we recall that $\tilde{\beta}$ is parametrized by $\mathrm{S}^{1}=\{z\in \mathbb{C} : |z|=1\}$ . For each $\theta\in \mathbb{R}$, we
denote by $S_{\theta}$ the hyperbolic segment joining $\tilde{\beta}(1)$ and $\tilde{\beta}(e^{i\theta})$ in $\Delta$ . Now we define positive
numbers $\theta_{+}$ and $\theta_{-}$ by

$\theta_{\pm}=\max${ $\theta\geq 0;S_{\pm u}\cap C=\emptyset$ for all $u\in[0,$ $\theta)$ }.

Then we see that $\theta_{+}+\theta_{-}\leq 2\pi$ and if the equality occurs we have $\#(S_{\theta}+\cap C)\geq 2$ since
$K \subset\bigcup_{t\in \mathbb{R}}S_{t}$ and $\#(K\cap C)\geq 2$ . In any case, there exist distinct two points $\tilde{v}_{+}$ and $\tilde{v}_{-}$

such that $\tilde{v}_{\pm}\in S_{\pm\theta}\pm\cap C$ . We put $v_{\pm}=p(\overline{v}_{\pm})$ .
Let $u_{n}^{\pm}$ $(n=1,2, \cdots)$ be an increasing sequence of positive numbers which converges

to $\theta_{\pm}$ for each signature, and $\overline{\beta}_{n}$ the curve obtained from $\overline{\beta}$ by replacing its subarcs
$\tilde{\beta}|_{I_{n}^{+\tilde{\beta}|}},I_{\overline{n}}$ by the hyperboic segments $s_{u_{n}^{+}’-u_{\overline{n}}}s$ , respectively, where $I_{n}^{\pm}$ denotes the subin-
terval $\{e^{i\theta}; \pm\theta\in[0,u^{\pm}]n\}$ of $\mathrm{S}^{1}$ . And set $\beta_{n}=p_{*}\overline{\beta}_{n}$ for each $n=1,2,$ $\cdots$ . By construction,
$\beta_{n}$ is freely homotopic to $\beta$ in $W\backslash f(\mathrm{c}_{\mathrm{r}}\mathrm{i}\mathrm{t}(f))$ , and it holds that $l_{W}(\beta_{n})=\ell_{\Delta}(\tilde{\beta}_{n})\leq$

$\ell_{\Delta}(\tilde{\beta})=\ell_{W}(\beta)$ . Let $\alpha_{n}$ be the lift of $\beta_{n}$ via. $f$ determined by $\alpha_{n}(1)=\alpha(1)$ , then $\alpha_{n}$ is
closed and homotopic to $\alpha$ .

Let $\alpha’=\lim\alpha_{n}$ and $\beta’=f_{*}\alpha’$ . Then, we note that $\ell_{W}(\beta’)=\lim\ell_{W}(\beta_{n})\leq\ell_{W}(\beta)$ .
Further, we can see that $\beta’\in S(v_{+},v_{-})$ or $\beta’\in \mathcal{T}(v_{+})$ according to that $v_{+}\neq v_{-}$ or not.
Therefore, we can compute as follows.

$\ell_{U}(\alpha)\geq\ell_{W}(\beta)\geq\ell_{W}(\beta’)\geq\min\{a(v_{+},v-), b(v_{+})\}\geq\min\{a, b\}$.

If $\beta=f_{*}\alpha$ is not contractible in $W$, then $\ell_{U}(\alpha)\geq\ell_{W}(\beta)\geq L_{W}$ . Whence we have the
following

Corollary 3.3. Let $f$ : $Uarrow W$ be a holomorphic branched covering between hyperbolic
Riemann surfaces $U$ and W. Then it follows that

$L_{U} \geq\min\{L_{W}, a, b\}$ ,

where the constants $a$ and $b$ are as in the above.
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4. PROOF OF THE MAIN THEOREM

Let $\alpha$ be a non-trivial $\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{S}\mathrm{e}\dot{\mathrm{d}}$ curve in $\Omega=\Omega_{f}$ . In order to prove our main theorem,
we should show that $l_{\Omega}(\alpha)\geq C$, where $C= \min\{a_{1}, \cdots , a_{s}, b_{1}, \cdots, b_{s},L_{A_{1}}, \cdots, L_{A_{t}}\}$ . We
denote by $\alpha_{n}$ the image $f^{n}\mathrm{o}\alpha=(f^{n})_{*}(\alpha)$ of $\alpha$ under the n-th iterate of $f$ . We note here
that $\ell_{\Omega}(\alpha)\geq\ell_{\Omega}(\alpha_{1})\geq\ell_{\Omega}(\alpha_{2})\cdots$ by the Schwarz-Pick lemma. Let $U$ be the component
of $\Omega$ containing $\alpha$ . Then, by Sullivan’s No Wandering Domains Theorem, $U$ is eventually
periodic, i.e., $D=f^{k}(U)$ is a periodic component for some integer $k$ . As is well-known, a
periodic component $D$ is one of the following:

1. a (super)attracting immediate basin. In this case, the sequence of curves $\alpha_{n}$ is
attracted to a (super)attracting cycle (in $\Omega$ ), in particular, $\alpha_{n}$ is contractible in $\Omega$

for sufficiently large $n$ .
2. a parabolic immediate basin. In this case, a subsequence of $\alpha_{n}$ is absorbed by a

simply connected attracting petal (in $\Omega$ ), therefore $\alpha_{n}$ is contractible in $\Omega$ , too, for
sufficiently large $n$ .

3. a Siegel disk. In this time, $D$ is simply connected itself, thus $\alpha_{k}$ is of course con-
tractible in $D$ .

4. a Herman ring.

Hence, we can conclude that if $\alpha_{n}$ is non-trivial for any $n$ , then $\alpha_{n}$ is contained in a
cycle of Herman rings $A_{j}$ for sufficiently large $n$ . In this case, $\alpha_{n}$ is freely homotopic to a
non-zero multiple of the core curve $\beta$ of a component of $A_{j}$ , thus $\ell_{\Omega}(\alpha_{n})\geq l_{A_{j}}(\beta)=L_{A_{j}}$ .

In particular, we have $\ell_{\Omega}(\alpha)\geq L_{A_{j}}\geq C$ .
Otherwise, there exists an integer $n\geq 0$ such that $\alpha_{n}$ is non-trivial while $\alpha_{n+1}$ is trivial

in $\Omega$ . Since $l_{\Omega}(\alpha)\geq\ell_{\Omega}(\alpha_{n})$ , we may assume that $n=0$ , in other words, $\alpha$ is non-trivial but
$\beta=f_{*}(\alpha)$ is contractible in $\Omega$ . If $f$ : $Uarrow W:=f(U)$ is unbranched covering, a homotopy
connecting $\beta$ with a constant curve in $W$ can be lifted to a homotopy connecting $\alpha$ with
a constant curve in $U$ via $f$ , thus a is contractible in $U$, this is a contradiction. Therefore,
$f$ : $Uarrow W$ must be branched, i.e., $U=U_{j}$ for some $j=1,$ $\cdots$ , $s$ . Now we can apply the
key lemma in the previous section! By Lemma 3.2, we have $l_{\Omega}( \alpha)\geq\min\{a_{j’ j}b\}\geq C$,
thus the proof is now completed.

5. APPLICATIONS

We now present some applications of the main result. For a rational map $f$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$

of degree $d\geq 2$ , we have seen that $L_{\Omega_{f}}\geq C$, where $\Omega_{f}$ denotes the Fatou set $\hat{\mathbb{C}}\backslash J_{f}$ and
$C>0$ is the constant which appears in Theorem 2.2 or Corollary 2.3.

First of all, we state a result concerning Hausdorff dimension. The following theorem
is essentially due to J\"arvi-Vuorinen [9], while a quantitative version as in the following
can be found in [15].

Theorem 5.1. The Hausdorff dimension of the Julia set $J_{f}$ of a rational map $f$ can be
estimated as

$\mathrm{H}-\dim(J_{f})\geq\frac{\log 2}{\log(2e^{M_{[mathring]_{f+)}_{\Omega}}}1}\geq\frac{\log 2}{M_{[mathring]_{f}_{\Omega}}+\log 3}\geq\frac{\log 2}{\pi^{2}/L_{\Omega,}+\log 3}$ .
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In particular, any rational map of degree $\geq 2$ has always the Julia set of positive Haus-
dorff dimension. This is a well-known fact and is also shown in [4] by uniform perfectness
of the Julia set in another context.

The next theorem ensures the regularity of the Julia set in the sense of Dirichlet (cf.
[17] $)$ by Wiener’s criterion.

Theorem 5.2 (Pommerenke [12]. See also [15]). Let $f$ be a rational map of degree at
least two. Then, for each point $a\in J_{f}$ and $0<r<$ diam$J_{f}$ , it holds that Cap $(J_{j}\cap$

$B(a, r))\geq cr$ , where $c\leq 1$ is a constant satisfying $\log 1/c\leq M_{[mathring]_{f}_{\Omega}}+7\log 2$ , diam stands
for the Euclidean diameter, Cap the logarithmic capacity and $B(a, r)$ is the closed disk
centered at $a$ with radius $r$ .

In fact, the above property characterizes uniform perfectness of $J_{f}$ (see [12]). Simi-
larly, we can state a characterization of uniform perfectness of the closed set in terms of
Hausdorff contents [9] (see also [15]).

Finally, we mention the estimate of the hyperbolic (or Poincare’) metric $\rho(z)|dz|=$

$\rho_{\Omega}(z)|dz|$ of $\Omega=\Omega_{f}$ in terms of the distance function $\mathit{5}(z)=\delta_{\Omega}(z)=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(z, J_{f})=$

$\inf_{a\in j_{f}}|z-a|$ , provided that $\infty\in J_{f}$ . It is always true that $\rho(z)\leq 1/\delta(z)$ . On the other
hand, if $\Omega$ is simply connected, it is well-known that $p(z)\geq 1/4\delta(z)$ , while this kind of
inequality need not hold in general, even in the case $\partial\Omega$ is a perfect set. But this is true
in our situation, indeed the validity of this inequality characterizes uniform perfectness.

Theorem 5.3 (cf. [15]). For a rational map $f$ of degree at least two, we set $L=L_{\Omega_{f}}$ . If
$\infty\in J_{f}$ then we have

$\frac{1}{4}\tanh L/2\leq\inf_{;z\in\Omega}\rho\Omega t(Z)\delta\Omega_{f}(Z)\leq\frac{\sqrt{3}L}{\sqrt{\pi^{2}+4L^{2}}}$ .

For other applications and characterizations of uniform perfectness, see [15] and its
references.

6. QUADRATIC POLYNOMIALS

In this section, as the simplest example, we shall consider the quadratic polynomials
$f(z)=f_{c}(z)=z^{2}+c$ and attempt to give concrete lower and upper bounds for the
uniform perfectness constant $L_{\Omega_{f}}$ (abbreviated by $L_{\mathrm{c}}$ ) of the Jula set $J_{c}$ of $f_{c}$ in terms of
the parameter $c$ . (For a general rational map $f$, we may estimate $L_{\Omega_{f}}$ in the similar way
as below, in principle.) For general results of the dynamics of quadratic polynomials, the
reader will find a good account in the book [4] by Carleson and Gamelin.

Since $f_{c}$ is a polynomial, the point at infinity is a superattracting fixed point of $f_{c}$ .
And $0$ is a unique finite critical point of $f_{c}$ and $c$ is the corresponding critical value. Let
$\mathcal{M}$ denote the Mandelbrot set { $c\in \mathbb{C};(f_{c}^{n}(0))_{n}=1,2,\cdots$ is a bounded sequence}. As is well-
known, $c\in \mathcal{M}$ if and only if the Julia set $J_{c}$ is connected, in which case $L_{c}=+\infty$ since
$\Omega=\Omega_{c}:=\hat{\mathbb{C}}\backslash J_{c}$ is simply connected, thus we have nothing to do. So we assume that
$c\not\in \mathcal{M}$ in the sequel. In this case, the Julia set $J_{c}$ is a Cantor set, therefore the Fatou
set $\Omega_{c}$ is connected. In order to estimate $L_{c}$ from below, by Corollary 2.3, it is sufficient
to estimate $d_{\Omega}(c, \infty),$ $\iota_{\Omega}(C)$ and $\iota_{\Omega}(\infty)$ from below. To accomplish it, we may utilize
the monotonicity property of the hyperbolic metrics. If we find a hyperbolic domain $\overline{\Omega}$
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containing $\Omega$ which is easier to estimate its hyperbolic metric, then $\rho_{\Omega}\geq\rho_{\tilde{\Omega}}$ by the
Schwarz-Pick lemma. Therefore, it holds that $d_{\Omega}(a,b)\geq d_{\tilde{\Omega}}(a, b)$ for any $a,b\in\Omega$ . On the
other hand, it is not always true that $\iota_{\Omega}(a)\geq\iota_{\tilde{\Omega}}(a)$ , but we can avoid this difficulty as
follows. Fix $a\in\Omega$ . Let $D$ be an arbitrary simply connected subdomain of $\Omega$ containing
$a$ , then we have

$\iota_{\Omega}(a)\geq\inf_{w\in\partial D}d_{\Omega}(a, w)\geq\inf_{w\in\partial D}d_{\tilde{\Omega}}(a,w)$ .

The most useful (but not necessarily sufficient) domain $D$ is thought to be a thrice
punctured sphere, since it has been studied for a long time and its hyperbolic metric can
be expressed almost explicitly (see, for example, [1] and [3]). Any thrice punctured sphere
is conformally (indeed, M\"obius) equivalent to the canonical one: $D_{0}=\hat{\mathbb{C}}\backslash \{0,1, \infty\}$ . The
following is the precise version of Landau’s theorem due to Hempel [6]: The hyperbolic
metric $\rho_{0}(z)|dz|$ of $D_{0}$ satisfies

(6.1) $\rho \mathrm{o}(z)\geq\frac{1}{2|z|(|\log|Z||+K)}$ ,

where $K= \Gamma(\frac{1}{4})^{4}/4\pi^{2}=4.3768796\cdots$ , and the equality occurs if $z=-1$ . Note that this
estimate is efficient only on the half plane ${\rm Re} z \leq\frac{1}{2}$ , otherwise we have only to use the
functional equation $\rho_{0}(1-z)=\rho_{0}(Z)$ .

In order to find out a thrice punctured sphere containing $\Omega$ , we have only to specify
three points $a_{1},a_{2},a_{3}$ in the Julia set, for example, repelling periodic points or their inverse
images. In our present case, any periodic point is repelling since $c\not\in \mathcal{M}$ . For example,
fixed points of $f_{c}$ are solutions of the equation: $z^{2}+c=z$ , thus $(1\pm\sqrt{1-4c})/2$ . We
note that if $\alpha$ is in $J_{c}$ , so $\mathrm{i}\mathrm{s}-\alpha$ . If we selected the three points $a_{1},$ $a_{2},$ $a_{3}$ in the Julia set,
let $T$ be the M\"obius transformation mapping $a_{1},$ $a_{2}$ and $a_{3}$ to $0,1$ and $\infty$ , respe,ctively.
Then, $d_{\Omega_{\mathrm{c}}}(c, \infty)\geq d_{\hat{\mathbb{C}}\backslash \{a1,a2,a_{3}\}}(C, \infty)=d_{0}(T(C),T(\infty))$, where $d_{0}$ denotes the hyperbolic
distance in $D_{0}$ , however it seems impossible to estimate $\iota_{\Omega_{\mathrm{c}}}(c)$ and $\iota_{\Omega_{\mathrm{c}}}(\infty)$ by only the
data $a_{j}$ .

For simplicity, we further assume that $c<-2$ for a moment. Set $\alpha=(1+\sqrt{1-4c})/2$

and $\beta=1-\alpha$ , then these are fixed points of $f=f_{c}$ . Then we see that $S= \bigcup_{n=1}^{\infty}f^{-n}(\alpha)\subset$

$[-\alpha, \alpha]$ , hence $J_{\mathrm{c}}\subset[-\alpha, \alpha]\sin \mathbb{C}\mathrm{e}\overline{S}=J_{c}$ .
For the later convenience, we set $t=\sqrt{1-4c}-3>0$ . Let $T(z)= \frac{(\beta-\alpha)(z+\alpha)}{(\beta+\alpha)(z-\alpha)}=$

$(3+t) \frac{\alpha+z}{\alpha-z}$ . Then $T(\infty)=-(3+t)$ and $T(c)=- \frac{t(3+t)}{4+t}$ . We also note that $T(J_{c})\subset[0, \infty]$ .
Using (6.1), we can calculate as

$d_{\Omega_{\mathrm{c}}}(c, \infty)\geq d\mathrm{o}(T(C), \tau(\infty))=\int^{T(}T(\infty c))\rho_{0}(X)dx\geq\frac{1}{2}Q(t)$ ,

where

$Q(t)=\{$

$\log\frac{\log(3+t)+K}{K}+\log\frac{\log\frac{4+t}{t(3+t)}+K}{K}$ if $t\leq t_{0}$

$\log(3+t)+K$
$\log\log\frac{\overline 4+t}{t(3+t)}+K$

if $t>t_{0}$

and $t_{0}=0.38297\cdots$ is the positive root of the equation $3+t=(4+t)/t(3+t)$ .
Next, we shall estimate the injectivity radii of $\Omega_{c}$ at $c$ and $\infty$ . As a preparation, we

consider the quantity $h(a)=\iota_{D_{0}}(-a)$ for $a>0$ . First we assume that $0<a\leq 1$ . Let
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$\Delta$ be the domain defined by $\{\tau\in \mathbb{H};0<{\rm Re}\tau<1, |\tau-\frac{1}{2}|>\frac{1}{2}\}$ , and $\lambda$ : $\Deltaarrow \mathbb{H}$

the conformal homeomorphism from $\Delta$ onto the upper half plane $\mathbb{H}$ which maps $0,1,$ $\infty$

to 1, $\infty,$
$0$ , respectively. We denote by $g$ : $\mathbb{H}arrow\Delta$ the inverse map of $\lambda$ . Then, as is

well-known, $\lambda$ is analytically continued to the universal covering map of $D_{0}$ from $\mathbb{H}$ by
the reflection principle, in particular, $1/2{\rm Im}\tau=\rho_{0}(\lambda(\mathcal{T}))|\lambda’(\mathcal{T})|$ . The map $\lambda$ is nothing
but the classical elliptic modular function. For the point $\tau_{0}=(e^{i\theta}+1)/2=g(1+a)\in$

$g((1,2])$ $(\pi/2\leq\theta<\pi)$ we can see that $d_{\mathbb{H}}(\tau_{0},g((\mathrm{O}, 1)))\leq d_{\mathbb{H}}(\tau_{0},g((-\infty, 0)))$ and that
the shortest hyperbolic segment $\gamma$ connecting $\tau_{0}$ and $g((\mathrm{O}, 1))=\{ti;t>0\}$ is contained
in $\{\tau\in\Delta;{\rm Re}\tau\leq\frac{1}{2}\}$ . Noting that $\lambda(\{\tau\in\Delta;{\rm Re}\tau=\frac{1}{2}\})=\{z\in \mathbb{H};|z-1|=1\}$ , we have
$h(a)= \iota D_{0}(-a)=\iota_{D}0(1+a)=\int_{\lambda_{*}\gamma}\rho \mathrm{o}(Z)|dz|$ and $\lambda_{*}\gamma$ is contained in $\{z\in\overline{\mathbb{H}};|z-1|\leq 1\}$ .
Denote by $\beta$ the closed curve obtained as the union of $1-\lambda_{*}\gamma$ and its complex conjugate,
then $|\beta|\leq 1$ and $2h(a)= \int_{\beta}\rho 0(Z)|dz|$ . Note that $|dz|\geq(|dr|+r|d\theta|)/\sqrt{2}$, where $z=re^{i\theta}$ .
Put $a_{0}= \min|\beta|$ , then by (6.1) we have

$2h(a) \geq\int_{\beta}\frac{|dz|}{2|z|(-\log|z|+K)}\geq\int_{\beta}\frac{|dr|+r|d\theta|}{2r\sqrt{2}(-\log r+K)}$

$\geq\frac{2}{2\sqrt{2}}\log(\frac{-\log a_{0+K}}{-\log a+K})+\frac{1}{2\sqrt{2}}\frac{2_{T}}{-\log a0+K}$

$\geq\frac{\pi/\sqrt{2}}{-\log a+K}$

because $K>\pi$ .
Next, we consider the case $a>1$ . Since the M\"obius transformation $zrightarrow 1/z$ preserves

$D_{0}$ , we have $h(a)=h(1/a)$ , thus $h(a)\geq\pi/2\sqrt{2}(\log a+K)$ . Therefore, for any $a>0$ , we
have

$\iota_{D_{0}}(-a)\geq\frac{\pi}{2\sqrt{2}(|1o\mathrm{g}a|+K)}$ .

Letting $D=\mathbb{C}\backslash [0, \infty)$ , we can estimate the injectivity radius of $\Omega_{c}$ at $T^{-1}(-a)$ as follows:

$\iota_{\Omega_{\mathrm{c}}}(T^{-1}(-a))=\iota\tau(\Omega_{\mathrm{c}})(-a)\geq\inf_{w\in\partial D}$ do $(-a,w)= \iota_{D_{0}}(-a)\geq\frac{\pi}{2\sqrt{2}(|\log a|+K)}$ .

Hence,

$\min\{2d_{\Omega_{c}}(_{C,\infty}),4\iota\Omega_{\mathrm{c}}(_{C)},4\iota_{\Omega \mathrm{c}}(\infty)\}$

(6.2) $\geq R(t):=\min\{Q(t),\frac{\sqrt{2}\pi}{\log(3+t)+K},\frac{\sqrt{2}\pi}{\log\frac{4+}{t(3+t)}+K}‘\}$

$=\{$

$\frac{\sqrt{2}\pi}{\log\frac{4+t}{t(3+t)}+K}$ if $0<t<0.12626\cdots$ ,

$\log\frac{\log(3+t)+K}{K}+\log\frac{\log\frac{4+t}{t(3+t)}+K}{K}$ if 0.12626 $\cdots<t\leq t_{0}$ ,

$\log\frac{\log(3+t)+K}{\log\frac{4+t}{t(3+t)}+K}$ if $t_{0}=0.38297\cdots<t$ ,

where $K= \Gamma(\frac{1}{4})^{4}/4\pi^{2}=4.3768796\cdots$ .
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In contrast, the estimation of $L_{c}$ from above is rather easy. In the same assumption
as the above, we set $\gamma=\sqrt{-c-\alpha}>0$ . Note that $\gamma\in J_{c}\subset[-\alpha, \alpha]$ since $f_{c}(\gamma)=$

$-\alpha\in J_{c}$ . Then, for $x\in(-\gamma,\gamma)$ , we see that $f_{c}(x)=x^{2}+c<\gamma^{2}+c=-\alpha$ , hence
$(-\gamma,\gamma)\subset\Omega_{c}$ . This implies that the annulus $A=\hat{\mathbb{C}}\backslash ([-\alpha, -\gamma]\cup[\gamma, \alpha])$ separates the
Julia set $J_{c}$ . The M\"obius transformation $T(z)= \frac{\gamma+z}{\alpha-z}$ maps $A$ onto Teichm\"uller’s extremal
domain $\hat{\mathbb{C}}\backslash ([-r_{1}, \mathrm{o}]\cup[r_{2}, +\infty])$ , where $r_{1}=(\alpha-\gamma)/2\alpha$ and $r_{2}=2\gamma/(\alpha-\gamma)$ . Thus we
have $m(A)=2\mu(\sqrt{r_{1}}/(r_{1}+r_{2}))$ , where $\mu(r)$ denotes the modulus of Gr\"otzsch’s extremal
domain $\mathrm{D}\backslash [0,r]$ for $0<r<1$ , where $\mathrm{D}$ denotes the unit disk (see [10]). The behaviour
of the function $\mu(r)$ is well understood. Amongst them, it will be useful to record the
following (cf. [10]): .

$\log\frac{(1+\sqrt{1-r^{2}})^{2}}{r}<\mu(r)<\log\frac{2(1+\sqrt{1-r^{2}})}{r}<\log\frac{4}{r}$ and

$\mu(r)\mu(\frac{1-r}{1+r})=\frac{\pi^{2}}{2}$ .

In particular, we can see that

$m(A)=2 \mu(\frac{\alpha-\gamma}{\alpha+\gamma})=\frac{\pi^{2}}{\mu(\gamma/\alpha)}$ .

Therefore, we have $L_{c}\leq\pi^{2}/M_{\Omega_{\mathrm{c}}}\leq\pi^{2}/2\mu((\alpha-\gamma)/(\alpha+\gamma))=\mu(\gamma/\alpha)$ . Noting Corollary
2.3, we summarize the results obtained above.

Theorem 6.1. For $c<-2$ , the Fatou set $\Omega_{\mathrm{c}}$ of $f_{c}(z)=z^{2}+c$ satisfies

(6.3) $R(t) \leq L_{\Omega_{\mathrm{c}}}\leq\frac{\pi^{2}}{2\mu(\frac{\alpha-\gamma}{\alpha+\gamma})}=\mu(\frac{\gamma}{\alpha})$ ,

where $t=\sqrt{1-4c}-3>0,\alpha=(1+\sqrt{1-4c})/2>2,\gamma=\sqrt{-c-\alpha}>0,R(t)$ is the
function defined by (6.2) and $\mu(r)$ denotes the modulus of $Gr\ddot{o}t_{Z}sCh^{f}S$ extremal domain
$\mathrm{D}\backslash [0,r]$ .

Remark. Since $(\alpha-\gamma)/(\alpha+\gamma)=2\alpha/(\alpha+\gamma)^{2}\sim 1/t$ , the upper bound in (6.3) behaves
like $\pi^{2}/2\log t$ as $tarrow\infty$ , while $R(t)\sim 4/t\log t$ .

When $tarrow+0$ , the upper bound in (6.3) $\mathrm{i}_{\mathrm{S}\frac{1}{2}}\log 1/t+O(1)$ since $\gamma/\alpha=\sqrt{t/8}(1+O(t))$ ,
however $R(t)\sim\sqrt{2}\pi/\log 1/t$ .

The badness of the lower bound $R(t)$ is mainly caused by having replaced the Julia
set with only three points in the estimation when the critical values are very close to the
Julia set.

In order to get a result for any $c\in \mathbb{C}\backslash \mathcal{M}$ , we can use the following fundamental
property of the uniform perfectness constants (cf. [15]).

Proposition 6.2. The constants $M_{\Omega}$ and $L_{\Omega}$ are quasi-invariant, in other words, if $f$ :
$\Omegaarrow\Omega’$ is a $K$ -quasiconformal homeomorphism $(K\geq 1)$ then

$M_{\Omega}/K\leq M_{\Omega’}\leq KM_{\Omega}$ and $L_{\Omega}/K\leq L_{\Omega’}\leq KL_{\Omega}$ .
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Next we consider a holomorphic motion of the Julia set, which is an important tool
introduced by $\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\acute{\mathrm{e}}$ -Sad-Sullivan. For a subset $E$ of $\hat{\mathbb{C}}$ and a pointed hyperbolic Riemann
surface (or, more generally, complex hyperbolic manifold) (X, $x_{0}$ ) with hyperbolic distance
$d_{X}$ , a map $F:X\mathrm{x}Earrow\hat{\mathbb{C}}$ is called a holomorphic motion of $E$ parametrized by (X, $x_{0}$ )
if the following holds:

1. $F(\cdot, a):Xarrow\hat{\mathbb{C}}$ is holomorphic for each $a\in E$ ,
2. $F_{x}:=F(x, \cdot)$ : $Earrow\hat{\mathbb{C}}$ is injective for each $x\in X$ , and
3. $F_{x_{0}}$ is the identity map of $E$ .
We can state the optimal $\lambda$-lemma proved by Slodkowsky [14] (see also [5]) as in the

following form.

Theorem 6.3 (Optimal $\lambda$-lemma). Let $F$ be a holomorphic motion of a subset $E$ of the
Riemann sphere parametrized by a simply connected hyperbolic Riemann surface $X$ with
basepoint $x_{0}$ . $Then_{f}F$ can be extended to a holomorphic motion $\overline{F}$ of the whole sphere $\hat{\mathbb{C}}$

parametrized by (X, $x_{0}$ ) with the following properties.

1. $\overline{F}$ : $X\cross\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ is ($j_{oin}tl\underline{y)}$ continuous,
2. for each $x\in X$ , the map $\underline{F}_{x}$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ is a quasiconformal homeomorphism with Bel-

trami coefficient $\mu_{x}=\partial_{\overline{z}}F_{x}/\partial_{z}\overline{F}_{x}$ satisfying $d_{T}(\mu_{x}, 0)\leq d_{X}(x, x_{0})$ , where $d_{T}$ denotes
the Teichm\"uller distance

$d_{T}( \mu, \nu)=\mathrm{e}\mathrm{s}\mathrm{s}Z^{\cdot}\in\sup_{\mathbb{C}}d\mathrm{D}(\mu(Z), \nu(z))=\mathrm{a}\mathrm{r}\mathrm{c}\tanh(||\frac{\mu-\nu}{1-\overline{\nu}\mu}||_{\infty})$ .

Now we construct a holomorphic motion of the Julia set by the standard method (see,
for instance, [5] $)$ . As is well-known (cf. [4]), the functions $\Phi_{n}(c):=(f_{c}^{n}(c))^{2^{-n}}$ converges
locally uniformly in $\mathbb{C}\backslash \mathcal{M}$ to a holomorphic function $\Phi(c)$ , which is, in turn, a conformal
mapping of $\mathbb{C}\backslash \lambda 4$ onto $D:=\{z\in \mathbb{C};|z|>1\}$ , where we take the branch $\Phi_{n}$ so as to
$\Phi_{n}(c)=c+O(1)$ as $carrow\infty$ . By the symmetry of the Mandelbrot set A4,

,
$\mathrm{w}\mathrm{e}$ note that

$\overline{\Phi(\overline{z})}=\Phi(z)$ , in particular, $\Phi((-\infty, -2))=(-\infty, -1)$ .
Now we define the function $p$ : $H=\{\zeta\in \mathbb{C};{\rm Re}\zeta>0\}arrow D$ by $p(\zeta)=-e^{(}$ , then

$q:=\Phi^{-1}\mathrm{o}p$ is a universal covering map of $\mathbb{C}\backslash \mathcal{M}$ from the right half plane $H$. Fix
an arbitrary point $c_{1}$ in $\mathbb{C}\backslash \mathcal{M}$ . Then there exists a $\zeta_{1}$ in $H$ such that $q(\zeta_{1})=c_{1}$ and
$-\pi<{\rm Im}\zeta_{1}\leq\pi$. Set $\zeta_{0}=|\zeta_{1}|,$ $c_{0}=q(\zeta_{0})$ and let $E_{0}$ be the set of repelling periodic
points of $f_{c_{0}}$ . Then, considering the roots of the equation $f_{c}^{n}(z)=z$ , where $c=q(\zeta)$

and $n$ is taken over all positive integers, we can obtain a holomorphic motion of the set
$E_{0}$ parametrizedby the right half plane $H$ with basepoint $\zeta_{0}$ because $f_{c}$ has no parabolic
periodic points for $c\in \mathbb{C}\backslash \mathrm{A}1$ , thus the roots do not collide. By the optimal $\lambda$-lemma,
we have a holomorphic motion $F:H\cross\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ such that $F_{C\mathrm{o}}=\mathrm{i}\mathrm{d}$ and that $F_{\zeta}(E_{0})$ is the
set of repelling periodic points of $f_{q(\zeta)}$ . (We can take an $F$ compatible with the dynamics,
thus $F_{(}$ is a quasiconformal conjugate of $f_{c_{0}}$ to $f_{q(\zeta)}$ , but we do not this property here.)
Since the set of repelling periodic points is dense in the Julia set, $F_{\zeta}(J_{c_{0}})=J_{q(\zeta)}$ holds.
Hence, by Proposition 6.2 and the second property in Theorem 6.3, we have

$1/K\leq L_{\Omega_{\mathrm{c}_{1}}}/L_{\Omega_{\mathrm{c}_{0}}},$ $M_{\Omega_{\mathrm{c}_{1}}}/M_{\Omega_{\mathrm{c}_{0}}}\leq K$,

where $\frac{1}{2}\log K=d_{H}(\zeta_{1}, \zeta_{0})$ .
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Now we compute $K$ . We write $\zeta_{1}=|\zeta_{1}|e^{i\theta}=z_{0}e^{i\theta}$ with $\theta\in(-\pi/2,T/2)$ . Then we can
calculate as

$d_{H}( \zeta_{1}, \zeta_{0})=\mathrm{a}\mathrm{r}\mathrm{c}\tanh(|\frac{\zeta_{1}-\zeta 0}{\zeta_{1}+(_{0}}|)=\mathrm{a}\mathrm{r}\mathrm{c}\tanh(\tan\frac{\theta}{2})=\frac{1}{2}\log(\frac{1+\sin\theta}{\cos\theta})$ .

Now we have shown the following.

Theorem 6.4. For an arbitray $c\in \mathbb{C}\backslash M$ , take a point $\zeta=re^{i\theta}$ with $\theta\in(-\pi/2,\pi/2)$

such that $-e^{\zeta}=\Phi(c)$ and that $-\pi<{\rm Im}\zeta=r\sin\theta\leq\pi$ . Then, we have the following

estimates:
$L_{\Omega_{\mathrm{c}_{0}}}/K\leq L_{\Omega_{\mathrm{c}}}\leq KL_{\Omega_{\mathrm{c}_{0}}}$ and $M_{\Omega_{\mathrm{c}_{0}}}/K\leq M_{\Omega_{\mathrm{c}}}\leq KM_{\Omega_{\mathrm{c}_{0}}}$ ,

where $c_{0}<-2$ is the number determined by $\Phi(c_{0})=-e^{r}$ , and

$K= \frac{1+\sin\theta}{\cos\theta}$ .

We remark that $\log|\Phi(c)|=r\cos\theta$ is Green’s function of the domain $\hat{\mathbb{C}}\backslash \mathcal{M}$ with pole

at the infinity.
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