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Abstract

We consider an irrational number o which is not a Brjuno number.
If there exists a cubic polynomial which has a Siegel point of multiplier
exp(27ic), for any d > 4 there exists a d — 2 dimensional holomorphic
family of Py 4 of which all elements have a Siegel point of multiplier
exp(2micr). |

1 Introduction

Consider a germ of a holomorphic map (C, 0) — (C,0)
f(z) = Az + apz® + azz® + -

with multiplier A at z = 0. And we consider the case that |A| = 1 but A is
not a root of unity. Thus the multiplier A can be written as

A = ™ for anaER—Q.

The origin is said to be an irrationally indifferent fixed point.
The linearization problem for f is whether or not there exists a holomor-

phic local change of coordinate z = h(w) with h(0) = 0 and »/(0) # 0 which
conjugates f to the irrational rotation w — Aw so that

h(Aw) = f(h(w))

near the origin. We say that an irrationally indifferent fixed point is a Siegel
point or a Cremer point according as the local linearization is possible or not

(cf. [2]).
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For a suitable ¢ > 0, the map z — f(tz) is holomorphic and univalent
on the unit disk D. So we consider the special case that f is holomorphic
and univalent on the unit disk D. Let

= {f; holomorphic and univalent map on D f(O) =0, and If (0)] =1},
={fes; f(0)=2A}

Then we can consider the linearization problem for f € S\ at the origin.

Definition 1.1. A map f € S will be called linearizable at the origin if there
exist a neighborhood U r of the origin and a map Hj which is holomorphic
and univalent on Uy, and satisfies :

Hy(0) =0, Hi(0)=1, [f(Hs(z)) = Hs(\2).

In this case Hy will be called a linearizing map of f at the origin, and the
connected component of the Fatou set of f which contains the origin is called
a Siegel disk of f at the origin. ‘

In order to state the results on this problem, we should introduce the
following.
Definition 1.2. For o € R—Q, we consider the continued fraction expantion
1

1
a2+...

a = qg +

a; +

where ay ts an integral part of o, and a; := a — do. ay 15 an integral part of
1/ai, and ay = 1/ay — ay. ay is an integral part of 1/ay. Inductively, we
define a,. And we define the n-th approzimate fraction

Pn 1
— =ag+
G 1

a; +

P
a . s e
2 1

Op-1+ —
Qn
where pn/qn is an wrreducible fraction. An a € R — Q is called a Brjuno
number if

log g;
>l o,

We define B := {a € R — Q; a is a Brjuno number.}.
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Next we state the known results about this problem.

"Theorem 1.1 (Bx_'juno). If a € B, all maps f € Sexp(2ria) are linearizable
at the origin. ’

And Yoccoz proved that this result is best possible.

Theorem 1.2 (Yoccoz [5]). If a & B, there exists a map f € Sexp(@mia)
which is non linearizable at the origin. .

Furthermore for quadratic polynomials, Yoccoz proved the following.
Theorerh 1.3 (Yoccoz [5]). If a € B, o
P(z) = ¥z + 2°
is non linearizable at the origin.

For d > 2, we define
Pra :={P(z) = Az +ag2” + - + agz®; (ag,... ,aq) € C 1} = -t
- For Py 4, d > 3, Pérez-Marco proved the following.

Theorem 1.4 (Pérez-Marco [4]). Fiz A = exp(2mia) (o & B) and d > 3.
There exists an open dense subset of Pyq of which all elements are non
linearizable at the origin.

Theorem 1.5 (Pérez-Marco [4]). In the same condition as above, for any
(a3, ... ,adq) € C (ag # 0), There exists an open dense subset U of C such
that if ag € U, then z — Az + as2% + asz® - - - + aqz? is non linearizable at the
oT1gIN.

We would like to consider the linearizability of polynomials of degree more
than two in Section 2.

2 Linearizability of polynomials of degree more
than two

For A = 2™ (a € R—Q), and A € C, let Py 4 be a cubic monic polynomial
Pya(z) := Az + Az? + 23

Then Py has a fixed point of multiplier A at z = 0. Conversely, for any cubic
polynomial with a fixed point of multiplier A, there exists some A € C such
that it is affine conjugate to Py 4.
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Theorem 2.1. Fiz A = e?™ (o & B) and d > 4, Suppose there exists A € C
such that Py 4 is linerizable at the origin, then the family Py 4 contains a d—2
dimensional holomorphic family of which all elements are linearizable at the
origin.

Now we shall prove this main theorem.

2.1 Cubic perturbation of univalent maps

Let A = e2™ for a € R — Q, and let f be an element of S). We define, for
a€D—-{0},AecCandbeC,

faAb( ) =a f(az)+Abz +b"

By definition, the triplet (U, U, f) is called a polynomial-like map of
degree d if U’ and U are simply connected proper subdomains of C, and U’
is relatively compact in U, and f : U’ — U is a holomorphic and proper map
of degree d. ‘

Lemma 2.1. For A € C and b € C, we define

‘ 15
RAb =—|A|Ib|

81 o891
BA,b =2TRpp + 3|AHb| + T = 33'A||b| + W
W :={z;|2| < Rap} and
. 1 _
va“aAJ),::{z; IZ] < §} N fa,i,b(W)'

For f € S,a€D—{0}, A€ C and |b|?> > Bay, the triplet Wraoap, W, fanp)
15 a polynomial-like map of degree 3.
Proof. 1t is sufficient to prove this in @ = 1. Since f is univalent in D, it
follows that (1_+[I—I_ <|f(2)| < (i—_J—zl—z[U—z for z € D. In particular, if |z| = 1/3,
we have 3/16 < |f(2)] <3/4. For |z| = 1/3, it follows that
3 | o> |All8l 3
b223| — |AbZ? >I — b
) = |4be? + f()] 2 Bk~ E - 2 5 Ry

Thus f1 45({z;|2| < 1/3}) properly contains the disk W, so f1 a4 : W1 ap =
W is proper and Wy 1 4, is simply connected by the maximum modulus

principle. And for |z| = 1/3 and 2z; € W, it follows that
b%2% — z|>|b23|-—RAb>|Abz + f(2)] and
al s Bap o Rap
b2 |b|2 27RAb
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since |b]2 > Bap > 27Ray by definition. Thus by the theorem of Rouché,
fiap: Wiiap — W is a proper map of degree three. ‘

If W1,4 were not connected, then the number of connected components
of Wi ap would be three or two. First, if it were three, the connected
component of Wy 1, A,j, containing the origin would be conformally mapped to
W by fi,45. However this would contradict Schwarz lemma because |A\| = 1.
Second, if it were two, two cases would occur. If fi 43 would conformally
map the connected component of Wy 45 containing the origin to W, we
could derive a contradiction by the same argument as above. If not, there
would exist the connected component W' of Wy 43 which would not contain
the origin. Then f; 45 would conformally map W’ onto W. So there would
exist the only one point 29 € W’ such that fi 44(20) = 0. We define ¢ :=
(Fr.ap|W')™Y, and 9(2) := ¢(Rapz). Then b would conformally map D to
W', and ¢(0) = zp (See figure 1). |

W ={lz| < Rap}

Ray D

Figure 1:

By the Koebe one-quarter theorem, it follows that W' contains the open
disk of which the radius are +|¢'(0)| = 2R43|¢'(0)|. Since Dy/3 D Wepap D
W' and W’ # 0, we have 1 R4,|¢/(0)| < §. Hence

| 1 3RAp
> :
¢/(0)] 2
On the other hand, we have

1 | / 1B12 2
iy Mhaall <17 ol + 24l + 3o
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and by the Koebe theorem, |f'(29)| < 9/2 for || < 1/3. Since f1 a3(20) =
f(z0)+Abz0+l)2 = 0 and |f(z)| < —1%, we have 3[b]?|20|%+2|A||b]|20] <
5|A||b| for |z9| < 1/3. Hence

1 9 27 45 5 3
+—+ Allb| = — + Z|A|]b] = zRayp-
o7 < JAll = 2+ oAl =
That is a contradicton. So Ws.a ap 1s connected, and the proof is completed.

O

Remark 2.1. [b? > BAb if and only if |b] > BAy 1089|A]+891 =: N(|A]).

2.2 Straightenning of the polynomial-like mapping

Let M be an arbitrary positive number and take a smooth function n: R —
[0,1] identically 1 on (—o0,1/3] and identically 0 on [Ra4, +00). And we
define the round annulus A(M) := {b; N(M) < |b| < N(M) + 1}.

For f € Sy, a € D— {0}, A €Dy = {z;|2] < M} and b € AM), w
define

faap(2) = 1|2]) faap(2) + (1 = n(|2])) Az + Ab2® + b%2%).
Then f, 45 : C = Cis C> on C.

Lemma 2.2. Ifa — 0, then fa’A,b(z) converges to Az + Abz? + b%2% in C-
topology on C, and this convergence is uniform in f € Sy, A € Dy and
be A(M).

Proof. The function f, 45 is uniformly convergent to Az + Abz% + b2z on
{lz] < Rap} as a = 0. Since f(z) is univalent on D, the coefficients of the
power serles expantion of it can be estimated uniformly in f. It is clear that
this convergence is unifoum in A € Dy and b € A(M). O

We can also prove that two critical points of 2 — Az + Abz%+ 5223 is included
in {|2| < 1/3} by the theorem of Rouché. We can conclude the following.

Lemma 2.3. There ezxists an ag € (0,1] and a continuous function k
[0, ao] — [0,1) such that k(0) = 0 and for any f € S, A € Dy and b € A(M)
and a € Dy, — {0}, the map f, 44 is a branched covering map of C of degree
3 and it satisfies

0 fan0(2)

3faAb(z) S k(lal) (1/3 S |zl S RA,b)-
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: —-—a’;“Ab( holomorphically depends on A € Dy and b € A(M)

and a € D,, — {0}. If f is a polynomial, this complez dilatation is also
holomorphically depends on the coeffecients of f.

For f € Sy, A € Dy, b € A(M) and a € D,, — {0}, We can define a
Beltrami coefficient p = pif, 45 on C such that it is invariant for a pullback

—n

of faap and it assumes 0 on C — W and on (5o fiss(Waap). Since
suppu C W and ||p||lec < k(a) < 1, by the Ahlfors-Bers theorem, there
exists a unique quasiconformal homeomorphlsm ¢ = Pfaap of <C onto itself
which satisfies the following

(i) for a.e.z € C, 8¢(2) = u(z)04(z),
(ii) $(0) =0 and
(i) ¢(z) — z is bounded on C.
Lemma 2.4 (cf. [1]). There exists an A’ € C such that ¢o f,ap0 ¢ (2) =
Az + A'2%2 + b223, where A' € C holomorphically depends on A € Dy, b €

A(M) and a € D,, — {0}. If f is a polynomial, it also holomorphically
~depends on the coeffecients of f.

Proof. ¢ o f"a’b o¢ ! : C — C is holomorphic, fixes 0 and co. So it is a
branched covering map of C of degree 3 fixing the origin. Thus we can write
G0 fanpod Hz) =Nz + A2 +62 (N, 4, ¥ eC).

By the theorem of Naisul ([3]), the multiplier of the fixed point of a holomor-
phic map is topologically invariant when its module is 1. So we have ' = A.
Next, we would like to show &’ = b2. According to (iii), we have

Moreover

Pf.a,40(2) = 2+ c+ (lower terms)

at a neighborhood of the point at infinity. When |z| is sufficiently large,
faAb( ) = Az + Abz? + b%23 by definition, and we note that O(faan(2)) =
Aé(z ) + A'($(2))? + b'(¢(2))3. Therfore it follows that

Az + Ab2® + b22%) — (Az + Ab2® + b%2°)
= - bz)z + {(A" — Ab) + 3b'c}z + (lower terms).

Since this quantity is bounded as |z| — 400, it is necessary that ¥’ — 6% =0
and A’ — Ab+ 3V'c = 0. Thus it follows that ¥’ = b and A’ = Ab— 3b%c. O

Remark 2.2. It is easy to see the following: ¢ = ¢(f, a, A, b) holomorphically
depends on A € Dy, b € A(M) and a € D,, — {0}. If f is a polynomaal, it
also holomorphically depends on the coeffecients of f. And ¢ — 0 uniformly
inf eSSy, AecDy dndbe A(M) asa — 0.
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3 Completion of proof

Let a € B and A = e?™*. Suppose that Py, is linearizable at the origin.
Then for b € C*, $Pa,A(b2) = Az + Agbz? + b%23 is also linearizable at the
origin.

We take M = M, := 2|4¢| + 1. By the Remark 2.2, for any € > 0 there
exists an a; € (0, ag] which is independent of f € Sy, A €Dy and b € A(MO)
such that ‘ _

3[b||c(f,a,A,b)| <€ (0<|a| <aq):

We can take € > 0 so that |Ag| < My — 2e. We define a holomorphi}c map
Ff,a,b on DMO : '

Awr A—3bc(f,a,A,b).

By the theorem of Rouché, there exists A; = A;(f, a, b) such that Fy,;(A1) =
Ao. We can see that A; = A;(f, a, b) holomorphically depends on b € A(M))
and a € D,, — {0}, and if f is a polynomial, it also holomorphically depends
on the coeffecients of f. We can conclude the following.

Proposition 3.1. For any f € Sy, b € A(My) and a € Dy, — {0}, there
exists Ay = Ai(f,a,b) which is holomorphic in a € D,, — {0}, b € A(Mo)
and f € Sy and also exists ¢ = ¢4 4, which is a quasiconformal homeo-
morphism of C onto itself which is defined in the previous section such that

1

¢ (o] fa,Al,b o] QS—I(Z) = EPAOI’,\(bZ).

So if there exists Ag € C such that Pa, x is linearizable at the origin, fo a, b(2) =
a~!f(az) + A1bz® + b%2° is linearizable at the origin. |

In particular, we consider for d > 1,

d
= {P(2) = Az + a2 + -+ + agz%; Y nlay| <1} C Si.

n=2

~ Consequently we can at least conclude the Theorem 2.1.
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