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1 Introduction

Let $f$ be a transcendental entire function, and let $F_{f}\subset \mathbb{C}$ and $J_{f}\subset \mathbb{C}$

be the Fatou set and Julia set of $f$ respectively. A connected component $U$

of $F_{f}$ is called a Fatou component. Then $U$ is either a wandering domain
(that is, $f^{m}(U)\cap f^{n}(U)=\emptyset$ for all $m,$ $n\in \mathrm{N}(m\neq n)$ ) or eventually periodic
(that is, $f^{m}(U)$ is periodic for an $m\in \mathrm{N}$). If it is periodic, it is well known
that there are four possibilities; $U$ is either an attractive basin, a parabolic
basin, a Siegel disk, or a Baker domain. Note that $U$ cannot be a Herman
ring. This fact follows easily $\mathrm{h}\mathrm{o}\mathrm{m}$ the maximum principle.

In this paper we consider an unbounded periodic (that is, $f^{n}(U)\subseteq U$

for some $n\in \mathrm{N}$) Fatou component $U$ . It is known that $U$ is simply connected
$([\mathrm{B}], [\mathrm{E}\mathrm{L}])$ and so let $\varphi:\mathrm{D}arrow U$ be a uniformization (Riemann map) of $U$ ,
where $\mathrm{D}$ is a unit disk. The boundary $\partial U$ of $U$ can be very complicated as
the following example shows:

Example. Let us consider the exponential family $E_{\lambda}(z):=\lambda e^{z}$ . If
the parameter $\lambda$ satisfies $\lambda=te^{-t}(|t|<1)$ , then there exists a unique
unbounded completely invariant attractive basin $U$ which is equal to the
Fatou set $F_{E_{\lambda}}$ and $\partial U$ is equal to the Julia set $J_{E_{\lambda}}$ which is so called a
Cantor bouquet. Moreover,

$\mathrm{O}-\infty:=\{e^{i\theta}|\varphi(e^{i})\theta:=\lim_{r\nearrow 1}\varphi(rei\theta)=\infty\}\subset\partial \mathrm{D}$

is dense in $\partial \mathrm{D}([\mathrm{D}\mathrm{G}])$ . This implies that $\varphi$ is highly discontinuous on $\partial \mathrm{D}$ and
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hence $\partial U(=J_{E_{\lambda}})$ has a very complicated structure. $\ln$ fact the Hausdorff
dimension of $J_{E_{\lambda}}$ is equal to 2 $([\mathrm{M}\mathrm{c}])$ .

Later, Baker and Weinreich investigated the boundary behavior of $\varphi$

generally in the case of attractive basins, parabolic basins and Siegel disks
and showed the following:

Theorem (Baker-Weinrech, [BW]). Let $U$ be an unbounded invariant
Fatou component, then either

(i) $f^{n}arrow\infty$ in $U$ (that is, $U$ is a Baker domain) or

(ii) the $\mathrm{p}\mathrm{o}.\mathrm{i}$nt $\infty$ belongs to the impression of every prime end of U. $\square$

From the classical theory of prime end by Carath\’eodory it is well known
that there is a 1 to 1 correspondence between $\partial \mathrm{D}$ and the set of all the prime
ends of $U$ . Let us denote $P(e^{i\theta})$ the prime end corresponding to the point
$e^{i\theta}\in\partial \mathrm{D}$ . The impression ${\rm Im}(P(e^{i}\theta))$ of a prime end $P(e^{i\theta})$ is a subset of
$\partial U$ which is known to be written as follows:

$1 \mathrm{m}(P(e^{i\theta}))=\{p\in\partial U|\mathrm{t}\mathrm{h}\mathrm{e}_{\mathrm{C}}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{h}\mathrm{S}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{X}\mathrm{a}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{a}_{\mathrm{S}}\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\{\mathrm{S}narrow\lim^{\mathrm{c}\mathrm{e}}zn=e^{i\theta},\lim_{arrow\infty}^{=}Z_{n}\}n1\subset \mathrm{D}\infty n\infty\varphi(Z_{n})=p\}$

For the details of the theory of prime end, see for example, [CL]. Define
the set $I_{\infty}\subset\partial \mathrm{D}$ by

$I_{\infty}:=\{e^{i\theta}\in\partial \mathrm{D}|\infty\in{\rm Im}(P(ei\theta))\}$ ,

then the above result asserts that $I_{\infty}=\partial \mathrm{D}$ in the case of unbounded at-
tractive basins, parabolic basins and Siegel disks. This shows that $\partial U$ is
extremely complicated.

On the other hand, $\partial U$ can be very “simple” in the case when $U$ is a
Baker domain. For example, the function

$f(z):=2-\log 2+2z-e^{z}$

has a Baker domain $U$ on which $f$ is univalent and whose boundary $\partial U$ is
a Jordan curve (that is, $\partial U\cup\{\infty\}\subset\overline{\mathbb{C}}$ is a Jordan curve and $\partial U\subset \mathbb{C}$ is
a Jordan arc, [Ber, Theorem 2] $)$ . In this case $I_{\infty}$ consists of only a single
point.
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Then what can we say about the set $I_{\infty}$ in general when $U$ is a Baker
domain? For this problem we obtain the following:

Main Theorem. Let $f$ be a transcendental entire function and suppose
that $f$ has an invariant Baker domain $U$ . Let $\varphi$ : $\mathrm{D}arrow U$ be a uniformization
of $U$ and the set $I_{\infty}$ as above. Assume that $f|U:Uarrow U$ is not univalent.

(1) If $f|U$ is semi-conjugate to a hyperbolic M\"obius transformation $\psi$ :
$\mathrm{D}arrow \mathrm{D}$ , then $I_{\infty}$ contains a perfect set $K\subset\partial \mathrm{D}$ .

(2) If $f|U$ is semi-conjugate to a parabolic M\"obius transformation $\psi$ : $\mathrm{D}arrow$

$\mathrm{D}$ , then $I_{\infty}$ contains a perfect set $K\subset\partial\dot{\mathrm{D}}$ .
(3) If $f|U$ is semi-conjugate to a parabolic M\"obius transformation $\psi$ : $\mathbb{C}arrow$

$\mathbb{C}$ $z\vdasharrow z+1$ , then $I_{\infty}=\partial \mathrm{D}$ .

If $f|U$ is univalent, then $\#_{I_{\infty}}=1,2$ or $\infty$ .

Remark In the Main Theorem we assume that $U$ is an invariant Baker
domain for simplicity. Of course, we can obtain the same result when $U$ is
a periodic Baker domain of period $p\geq 2$ .

This result is based on the classification of Baker domains and an arbitrary
Baker domain falls into one of the above three cases. We explain the details
in \S 2. $\ln$ \S 3 we show the outline of the proof of the Main Theorem. Baker
and Weinreich’s result can be also proved by the similar method used in the
proof of the Main Theorem. So we briefly show this in \S 4.

2 Classification of Baker domains

In this section we classify Baker domains from the dynamical point of
view. Now let $U$ be an invariant Baker domain. By definition $f^{n}|Uarrow$

$\infty(narrow\infty)$ locally uniformly, so put

$g:=\varphi^{-1_{\mathrm{O}}}f\mathrm{o}\varphi:\mathrm{D}arrow \mathrm{D}$,

then $g$ is conjugate to $f|U$ : $Uarrow U$ and from the dynamics of $f|U,$ $g$ has
no fixed point in D. By the theorem of Denjoy and Wolff, there exists a
unique point $p_{0}\in\partial \mathrm{D}$ (which is called Denjoy-Wolff point) and $g^{n}arrow p_{0}$
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locally uniformly. It is known that there exists a radial limit

$c:= \lim_{r\nearrow 1}g’(rp\mathrm{o})$ with $0<c\leq 1$ ,

which means that $p_{0}$ is either an attracting or a parabolic fixed point of the
boundary map of $g$ . Next put

$z_{n}:=g^{n}(0)$ and $q_{n}:= \frac{z_{n+1}-z_{n}}{1-\overline{z_{n}}Z_{n+1}}$ ,

then by the Schwarz-Pick’s lemma $\{|q_{n}|\}_{n=1}\infty$ turns out to be a decreasing
sequence and hence there exists a limit $\lim_{narrow\infty}|q_{n}|([\mathrm{P}])$ . By using this limit
and the value $c$ , the dynamics of $g$ on $\mathrm{D}$ can be classified for three different
classes as follows. This result is essentially due to Baker and Pommerenke
$([\mathrm{B}\mathrm{P}])[\mathrm{P}])$ . They treated anlytic functions in the halfplane $\mathbb{H}$ and obtained
some results. The following is the translation of their results into the case
of analytic functions in $\mathrm{D}$ which is conformally equivalent to $\mathbb{H}$ .

Theorem (1) If $c<1$ , then $g$ is semi-conjugate to a hyperbolic M\"obius

transformation $\psi$ : $\mathrm{D}arrow \mathrm{D}$ with $\psi(z)=\frac{(1+c)z+1-c}{(1-c)Z+1+c}$ .

(2) If $c=1$ and $\lim_{narrow\infty}|q_{n}|>0$ , then $g$ is semi-conjugate to a parabolic

M\"obius transformation $\psi$ : $\mathrm{D}arrow \mathrm{D}$ with $\psi(z)=\frac{(1\pm 2i)Z-1}{z-1\pm 2i}$ .

(3) If $c=1$ and $\lim_{narrow\infty}|q_{n}|=0$ , then $g$ is semi-conjugate to a parabolic
M\"obius transformation $\psi$ : $\mathbb{C}arrow \mathbb{C}$ with $\psi(z)=z+1$ . $\square$

On the other hand, K\"onig investigated the relation between the above
classification and the dynamics of $f|U:Uarrow U$ and obtained the following
result:

Theorem (K\"onig, [K]) For an arbitrary point $w_{0}\in U$ define

$w_{n}:=f^{n}(w_{0})$ and $d_{n}:=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(w_{n}, \partial U)$ ,

where “dist” is a Euclidean distance. Then

(1) $f|U$ is semi-conjugate to a hyperbolic M\"obius transformation $\psi$ : $\mathrm{D}arrow \mathrm{D}$

if and only if there exists a constant $\beta=\beta(f)>0$ such that.

$\frac{|w_{n+1^{-w_{n}}}|}{d_{n}}\geq\beta$ $(n\in \mathrm{N})$
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holds for any $w_{0}\in U$ .
(2) $f|U$ is semi-conjugate to a parabolic M\"obius transformation $\psi$ : $\mathrm{D}arrow \mathrm{D}$

if and only if
$\lim_{narrow}\inf_{\infty}\frac{|w_{n+1^{-w_{n}}}|}{d_{n}}>0$

holds for any $w_{0}\in U$ but

$\inf_{w_{0}\in U}\lim_{narrow}\sup\frac{|w_{n+1^{-w_{n}}}|}{d_{n}}=0\infty$.

(3) $f|U$ is semi-conjugate to a parabolic M\"obius transformation $\psi$ : $\mathbb{C}arrow \mathbb{C}$

with $\psi(z)=z+1$ if and only if

$\lim_{narrow\infty}\frac{w_{n+1}-w_{n}}{d_{n}}=0$

holds for any $w_{0}\in U$ . $\square$

For each cases K\"onig also gave concrete examples $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\Phi \mathrm{i}\mathrm{n}\mathrm{g}$ the above con-
ditions:

(1) $f(z)=3_{\mathcal{Z}}+e-z)$

(2) $f(z)=z+2\pi i\alpha+e^{z}$ , where $\alpha\in(0,1)$ satisfies the Diophantine
condition,

(3) $f(z)=e^{\frac{2\pi i}{p}}(z+ \int_{0}^{z}e^{-\zeta}pd\zeta)$ , where $p\in \mathrm{N},$ $p\geq 2$ .

Note that in the case (3), the function $f$ above has a Baker domain of period
$p\geq 2$ , not an invariant one. Of course, if we consider $f^{p}$ instead of $f,$ $f^{p}$

has an invariant Baker domain.

3 Outline of the proof of Main Theorem

With the above classification, we show the outline of the proof of Main
Theorem.

Since $U\subset \mathbb{C}$ is unbounded, we have $I_{\infty}\neq\emptyset$ and it is easy to see that
$I_{\infty}$ is a closed subset of $\partial \mathrm{D}$ . Then $\partial \mathrm{D}\backslash I_{\infty}$ is open in $\partial \mathrm{D}$ and it can be
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shown that $g$ can be analytically continued over $\partial \mathrm{D}\backslash I_{\infty}$ . So in particular
$g$ is analytic on $\partial \mathrm{D}\backslash I_{\infty}$ and we have

$g(\partial \mathrm{D}\backslash I_{\infty})\subseteq\partial \mathrm{D}\backslash I_{\infty}$ .

If $g$ is a $d$ to 1 map $(2\leq d<\infty)$ , then $g$ is a finite Blaschke product
of degree $d$ and its Julia set $J_{g}$ is either $\partial \mathrm{D}$ or a Cantor set (in particular,
it is a perfect set) in $\partial \mathrm{D}$ . Assume that $J_{g}\cap(\partial \mathrm{D}\backslash I_{\infty})\neq\emptyset$, then from the
general property of the dynamics of rational maps and the $g$-invariance of
$\partial \mathrm{D}\backslash I_{\infty}$ we have

$\partial \mathrm{D}\subset\partial \mathrm{D}\backslash I_{\infty}$,

that is, $I_{\infty}=\emptyset$ , which is a contradiction. Therefore we have $J_{g}\subset I_{\infty}$ . This
proves the case (1) and (2) with a further assumption that $g$ is a finite to
one map.

If $g$ is an $\infty$ to 1 map, we can show that

$\bigcup_{n=1}^{\infty}g-n(_{\mathcal{Z}}0)\cap\partial \mathrm{D}\subset I\infty$

holds for every $z_{0}\in \mathrm{D}$ (there may be some exception) and the set
$\overline{\bigcup_{n=1}^{\infty}g^{-}(n)z0}\cap\partial \mathrm{D}$ is either equal to $\partial \mathrm{D}$ or at least contains a certain perfect
set $K\subset\partial \mathrm{D}$ . This result comes from a property of $g$ as a boundary map
$g:\partial \mathrm{D}arrow\partial \mathrm{D}$ . This completes the proof for the case (1) and (2).

For the case (3), since we have $\lim_{narrow\infty}|q_{n}|=0$ , we can obtain that

$\bigcup_{n=1}^{\infty}g^{-}(nz\mathrm{o})\cap\partial \mathrm{D}=\partial \mathrm{D}\subset I\infty$
’

and hence $I_{\infty}=\partial \mathrm{D}$ . This fact comes from the ergodic property of $g$ as an
inner function. This completes the proof for the case (3).

lf $g$ is univalent, then $g$ is either hyperbolic or parabolic M\"obius trans-
formation. $g$ has either one or two fixed points and the every orbit of a
point other than the fixed points has infinitely many points. On the other
hand, we have

$g(\partial \mathrm{D}\backslash I_{\infty})\subseteq\partial \mathrm{D}\backslash I_{\infty}$ ,

so we can conclude that $\#_{I_{\infty}=1,2}$ or $\infty$ . $\square$
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4Another proof of the theorem $\mathrm{b}.\mathrm{y}$ Baker and Wein-
reich

We show only the outline. Put $V:=\partial \mathrm{D}\backslash I_{\infty}$ and suppose that $V$ is
not empty. Then $g(V)\subseteq V$ and $g$ is 1 to 1 on each component of $V$ in $\partial \mathrm{D}$ .
As we mentioned in \S 3 $g$ can be extended to an analytic function in $\overline{\mathbb{C}}\backslash I_{\infty}$

by reflection principle. Now assume that $g$ is not univalent, then we have
$\#_{I_{\infty}}\geq 3$ and hence $\{g^{n}\}_{n=1}^{\infty}$ is a normal family.

If $U$ is an attractive basin, then there exists a fixed point $p\in \mathrm{D}$ of $g$

and from the dynamics of $f$ in $U$ we have

$g^{n}(z)arrow p$ $(narrow\infty)$ $z\in \mathrm{D}$ .

On the contrary, we have

$g^{n} arrow\frac{1}{\overline{p}}$ $(narrow\infty)$ $z\in\overline{\mathbb{C}}\backslash \overline{\mathrm{D}}$ ,

which is a contradiction. This show that $V=\emptyset$ and hence $I_{\infty}=\partial \mathrm{D}$ holds
in this case.

If $U$ is a parabolic basin, we can show that

$\lim_{narrow\infty}|q_{n}|=0$

by using the several theorems and propositions by Doering and $\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\acute{\mathrm{e}}$

$([\mathrm{D}\mathrm{M}])$ . Then we have

$\bigcup_{n=1}^{\infty}g^{-}(nz\mathrm{o})\cap\partial \mathrm{D}=\partial \mathrm{D}\subset I\infty$
’

which shows that $I_{\infty}=\partial \mathrm{D}$.

If $U$ is a Siegel disk, then $g$ is an irrational rotation and so we have
$g^{n}(V)=\partial \mathrm{D}\subseteq V$ for an $n$ , which implies that $I_{\infty}=\emptyset$ and this is a contra-
diction. Hence in this case we have again that $I_{\infty}=\partial \mathrm{D}$ . This completes
the proof. $\square$
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