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Abstract. We introduce multichoice multistage game (MMG) with perfect information and
finite length in the paper. A method of construction. of MMG characteristic function is proposed.
The problem of time consistency and strongly time consistency (STC) of optimality principles in
MMG is investigated. A necessary and sufficient condition of STC of the core in MMG with the
terminal payoff function is stated. A regularization procedure leading to STC core is considered
for MMG with the integral payoff function.

Key words: multichoice multistage game, time consistency, strong time consistency, core.

1 Introduction.
It is known that in the classical cooperative g.ame every player has only next choices: to join

or not into this or that coalition and solution of cooperative games is concluded with finding of
grand coalition payoff sharing admissibled by every player. Chih-Ru Hsiao and Raghavan TES
[1] considered multichoice games in which every player had got more than two levels for activity
and proved axiomatical approach for the Shaply value in the introduced game class. Further
A. van den Nouweland, S. Tijs, J. Potters, J. Zarzuelo [2] continued researching of transferring
possibility of solution conceptions for cooperative games to multichoice one. $\mathrm{h}$ particular the
core was investigated. Nevertheless the mentioned papers related to the static games. This paper
we try to determine multichoice multistage game (MMG) and concern the problem of core time
inconsistency.

In the contemporary life we can find many examples of a coalition creation for a finite time, when
players enter into the coalition unsimultaneously, and jointed themselves they stays in the coalition
up to the end of the setted term. For instance, the new nuclear weapons testing prohibition or the
mines production prohibition are actual. In the paper we try to model similar processes by means
of multi-level coalition.

2 Notations.
Let $N=l\{1, \ldots,n\}$ be the set of players, $K(x_{0})$ –a tree-like graph with the initial node $x_{0}$ .

Determine MMG $\Gamma(x_{0}, T)$ with perfect information on $K(x_{0})$ , and with the length $T+1$ stages.
The stage $T+1$ is the terminal one. Let players move with an order and only once within a stage.
The ordering of players is not changed for the game. So any path $\overline{x}=(x0, \ldots,x),$ $x\in F(x_{0})$ , where
$F(x\mathrm{o})$ is the set of the terminal nodes of the tree $\dot{K}(x\mathrm{o})$ , has the same length. Let $H:F(x\mathrm{o})arrow R_{+}^{n}$

be apayoff fimction, where $H(x)=(H_{1}(X), \ldots,Hn(X))$ and $H_{i}(x)$ is the payoff of a player $i\in N$ .
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In [1] the authors proposed to represent coalition as a non-negative integer vector $s=(s_{1}, \ldots , s_{n})$

in $Z_{+}^{n}$ . The components show coo.peration levels and belong to a finite set $M_{0}=\{0,1, \ldots,m\}$ ,
$m\geq 2$ of cooperation levels. Zero means that the corresponding player does not participate in
coalition. Thus for the static cooperative game $(v,N)$ , where $v:2^{N}arrow R^{1}$ , we would have $m=1$ .

Let players have got one and the same set of cooperation levels in $\Gamma(x0,\tau)$ . In this case the set
$\overline{M}_{0}=\underline{M_{0^{\cross\cdots\cross M}0}}$ is the set of all coalitions.

3 $\mathrm{P}\mathrm{a}\mathrm{t}^{n}\mathrm{h}$ construction.
Suppose that for the game $\Gamma(x0,T)$ a set of players, called a carrier, $R\subset N$ is generated. Let

players can enter into $R$ on any stage of the game, but once entering are not able to leave it. We
propose that the cooperation level of a player is time while he is in $R$ . Hence, a coalition $s$ shows
how long every player stays in $R$ . To describe the current membership of $R$ , denote $R(s,t)$ as a
carrier $R$ with a coalition $s$ on the beginning of a stage $t$ . Thus, $\bigcup_{\tau=0}^{t}R(s, \tau)\subset R(s, t)$ for every
stage $t$ . $R(s,t)$ may be interpreted as a group of players which pledged themselves to carry out
some agreement for $T-t+1$ stages-. The pla.yer’s loyality to the agreeme..nt is showed by the
cooperation level.

We introduce one more restriction: the players in $N\backslash R(s, t)$ can not make coalitions each other.
Thus for each stage $t$ there exist $|N\backslash R(s,t)|+1$ coalitions in the game $\Gamma(x0,T)$ . Now we define
the consept of carrier formally.

Definition. Given a coalition $s=$ $(s_{1}, \ldots , s_{n})\in\overline{M}_{0}$ , we shall say that a player $i\in N$ belongs
to carrier $R$ in the stage $t$ , if $s_{i}\geq T-t+1$ :

$R(s, t)=\{i|i\in N, s_{i}\geq T-t+1\}$ , $0\leq t\leq T,$ $s\in\overline{M}_{0}$ .
Take a non-empty coalition $s\geq 0$ and consider construction of the carrier $R$ . First we should

discriminate players with the same cooperation levels. Create sets $Q(s_{i}),$ $i\in N$ :

$Q(s_{i})=\{j|j\in N, sj=si, sj\neq \mathit{8}_{k}, k>i\}$ .
In general, $Q(s_{i})$ may be empty. If $Q(s_{i})$ is non-empty, then it includes all players having the same
cooperation level and $i$ –the largest index of such players.

By excluding empty set $Q(s_{i})$ . for $i\in N$ , we arrange and relavel the rest sets in order of increasing
of $s_{i}$ . We get a sequence $Q(s_{i_{1}}),$ $Q(S_{i}2),$

$\ldots$ , $Q(s_{i_{k^{*}}})$ , where $s_{i_{1}}<s_{i_{2}}<\mathrm{v}\cdot\cdot<s_{i_{k}}$. for $k^{*}=1,$ $\ldots,n$ ,
and $k^{*}$ is the number of $\mathrm{n}\dot{\mathrm{o}}\mathrm{n}$-empty sets $Q(\cdot)$ . Hence, we have got a partition of $N$

1) $\bigcup_{j=1}^{k^{*}}Q(_{S}i_{j})=N$

2) $\forall j’,j’’=1,$
$\ldots,$

$k*$ $Q(s:_{i’})\cap Q(s_{i\prime})j^{l}\emptyset=$ .
If $k^{*}=n$ , then each $Q(\cdot)$ is a singlton set which consists of one player, i.e., $Q(s_{i_{j}})=\{i_{j}\}$ for
$j=1,$ $\ldots,n$ .

We distinguish two $\dot{\mathrm{t}}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{s}$ of $\mathrm{c}\mathrm{o}\mathrm{a}^{\mathrm{I}\prime}\mathrm{h}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$.
Case 1. Suppose there is not a player who $\mathrm{c}\dot{\mathrm{h}}$ose the maximal cooperation ievel in the coalition

$s\geq 0$ . Then $s_{i_{k}}$. $<T+1$ and the following construction process of carrier $R$ occurs.
When $0\leq t\leq T-s_{i}k^{\mathrm{v}}’ R(s,t)=\emptyset$ . As players in $Q(s:_{k}.)$ have the maximal time period of

staying in $R$ , they are to be the first who join to $R$ :

$R(s,T-S_{i_{k}*}+1)=Q(s_{i}.)k$ .

In what follow$s$ , the carrier doesn’t change up to the stage $T-S_{i_{\mathrm{k}-1}}.+1$ , i.e.,

$R(s,t)=R(s,T-s_{i}\mathrm{k}. +1)$ , $T-s_{i}k$ . $+1\leq t\leq T-S_{i_{k-1}}.$ .
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Players with the cooperation level $s_{i_{k^{*}-1}}$ enter into $R$ on the stage $T-s_{i_{k-1}}.+1$ :

$R(_{S,Ts_{i}.+}-\mathrm{k}-11)=Q(_{S_{i}}k.)\cup Q(S_{i}k.-1)$ .
For each stage $\mathrm{t}$ with $T-S_{i_{k-1}}.+1\leq t\leq T-Si_{\mathrm{h}^{*}-2}$ , the carrier $R$ doesn’t increase. The next
changing of the carrier $R$ will be on the stage $T-Si_{k^{*}-2}+1$ :

$R(_{S,\tau S_{i_{\mathrm{k}-2}}}-\wedge+1)=Q(s_{i})k*\cup Q(_{S}ik*-1)\cup Q(si_{k’-}2)$ .

The same argument is demonstrated in each remainder stages. $\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\vee$ ’ we come to the $1\mathrm{a}s\mathrm{t}$

situation:
a) when $s_{i_{1}}>0$ , then $R=N$ on and after the stage $T-s_{i_{1}}+1$ ;
b) when $\mathit{8}_{i_{1}}=0$ , the players in $Q(s_{i_{1}})$ will not enter into $R$ up to the end of the game $\Gamma(x_{0},T)$

and the constructing of the carrier $R$ will be finished on the stage $T-.s_{i_{2}}+1$ :

$R(s,t)=N\backslash Q(s_{i_{1}})$ , $T-s_{i_{2}}+1\leq t\leq T$ .

Case 2. Let $s_{i_{k}}$ . $=T+1$ now. It means that there exist players whose time of being in $R$ is
$T+1$ stages. To put in another way, the carrier $R\mathrm{i}\mathrm{s}\mathrm{n}’ \mathrm{t}$ empty on the original stage of the game
$\Gamma(x_{0},T)$ yet:

$R(s,t)=Q(si_{k}\cdot)$ , $0\leq t\leq T-s_{i_{k^{*}-}}1^{\cdot}$

The further development of $R$ is similar with the case $s_{i_{h^{*}}}<T+1$ , i.e., the carrier $R$ increases
on the “crucial” stages $T-\mathit{8}_{i_{j}}+1,$ $j=1,$ $\ldots,$

$k^{*}$ , and doesn’t change on the other one.
As $R$ increases monotonically, the set of the players decreases if $R$ is considered as one player.

We need to introduce two additional sets:
1) $\mathrm{Y}(t)-\mathrm{a}$ set of nodes of the tree $K(x_{0})$ , such that the game $\Gamma(x0, \tau)$ is able to occur in these

nodes after $t-1$ stages;
2) $N(t)-\mathrm{a}$ set of players on the beginning of a stage $t$ . For $.\mathrm{i}$nstance, let $N\backslash R(s,t)=\{i_{1}, \ldots,i_{l}\}$

and let $R(s, t)$ be considered as one player, then $N(t)=\{i_{1}, \ldots,i_{l}, R(s, t)\}$ .
We are going to find pathes of the game development using the $\mathrm{N}\mathrm{a}s\mathrm{h}$ solution. For the path

to be unique for every coalition we will apply the following algorithm of a solution selection. Let
$A$ be the set of the Nash solutions in the game $\Gamma(x_{0},T)$ . If $|A|=1$ then we will get an unique
path, so let $|A|>1$ . In this case we take a subset $A_{0}\subset A$ of the Nash solutions maximizing
the common payoff. If the restriction is satisfied by only one $s$olution, i.e., $|A_{0}|=1$ , we will get an
unique corresponding path. Otherwis.e..we consider a subset $A_{1}\subset A_{0}$ of the Nash solutions that
maximize the common payoff and the payoff of the first player. Again if $|A_{1}|=1$ , we will get an
unique path. Otherwise we consider a subset $A_{2}\subset A$ of the Nash solutions that maximize the
common payoff, the first player’s payoff and the second player’s payoff. If $|A_{2}|=1$ , we will get an
unique path and so on. We can continue the procedure up to the n-th player. If $|A_{n}|>1$ then the
needed Nash solution is arbitrary taken from $A_{n}$ .

We find the path related to the coalition $s$ moving from the terminal nodes to the initial one and
looking for temporary $\mathrm{N}\mathrm{a}s\mathrm{h}$ solutions on part$s$ of the way where the carrier is constant. For the
$s$ake of simplicity, first we investigate a case when $s.\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{n}’ \mathrm{t}$ got players with.the same coop.eration
levels. Of course it demands $T+1\geq n$ .

Let $s_{i_{1}}>0$ , then $R=N$ for $T-s_{i_{1}}+1\leq t\leq T$ and for every node $y^{\tau_{-\ell:_{1}}+1}\in \mathrm{Y}(T-s_{i}1+1)$

in subtrees $K(y^{T1}-\ell:1)+$ , players realize trajectories $\{y^{T+}-s:_{1}1, \ldots,\overline{y}(y\tau-s:_{1}+1)\}$ , such that

$\sum_{i\in N}H_{i}(\overline{y}(y^{T+}-si1)1)=\max\sum_{1x\in Fy^{\tau.+1})i\in N}H_{i}(i(X)$ .

When $T-s_{i_{2}}+1\leq t\leq T-s_{i_{1}}$

$N(t)=\{i_{1}, R(s, T-s_{i}2+1)\}$ .
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To determine behaviour of player $i_{1}$ on the stages $T-\mathit{8}_{i_{2}}+1\leq t\leq T-s_{i_{1}}$ , we have to know what
part of the common payoff $\sum_{i\in N}Hi(\overline{y}(y1)\tau_{-s}i+1)$ is got by the player $i_{1}$ for every node $y^{T:_{1^{+1}}}-s\in$

$\mathrm{Y}(T-s_{i}1+1)$ . For this reason we consider cooperative positional subgames $\tilde{\Gamma}(y^{T-s:}1+1, s_{i}1)$ on
subtrees $K(y^{T-s_{i}}1^{+1})$ , where $y^{T+1}-s:_{1}\in \mathrm{Y}(T-s_{i}1+1)$ with the length $s_{i_{1}}$ stages, the players set $N$

and the characteristic function $w(P,yT-s_{i_{1}}+1, S_{i_{1}}),$ $P\subset N$ . We suppose that core $C(y^{\tau_{-}1},\mathit{8}iS:_{1}+1)$

is a solution of the $\tilde{\Gamma}(y^{T-s_{i}}1+1, s_{i}1),$ $y^{T-s_{i_{1}}+1}\in \mathrm{Y}(T-s_{i_{1}}+1)$ (let $C(y^{\tau_{-}s+}, s_{i}):_{1}11$ be non-
empty). For every subgame $\tilde{\Gamma}(y^{T-s_{1}}\cdot, s_{i_{1}})+1,$ $\mathrm{a}’\mathrm{n}$ optimal imputation $\eta(y^{T-s}1)i+1$ is taken and
fixed. Then from $T-s_{i_{2}}+1$ to $T-\mathit{8}_{i_{1}}$ stages, players $i_{1}$ and $R(s, T-si_{2}+1)$ base themselves on
the payoffs $\eta_{i_{1}}(y^{T-s_{i_{1}}+1})$ and

$S,T-s:_{2} \sum_{j\in R(+1\rangle}\eta j(y^{\tau-}si_{1}+1)$
, respectively, when they take $\mathrm{d}$

,

ecisions. If

we find the Nash solution $Z(\tau_{-s:_{1}}+1y^{\tau_{-\delta}}2^{+}):1\in \mathrm{Y}(T-s_{i}1+1)\cap K(y^{\tau}-s:2+1)$ , for $N(y^{Ts_{i_{2}}+1}-)=$

$\{i_{1}, R(S, T-\mathit{8}i_{2}+1)\}$ and every node $y^{T-S:_{2^{+}}}1\in \mathrm{Y}(T-s_{i}2+, 1)$ , we will know the path of the
party after $T-s_{i_{2}}$ stage:

$\{y^{\tau-s+},.,\overline{y}(:_{2}1..z^{T}-S:1+1(y^{T-})s:_{2}+1)\}$ .

Hence, an imputation $\eta(z^{\tau-s_{i}}1+1(y-\epsilon_{i}2T+1))$ is stated in accordance with a node $y^{T-S+1}i_{2}\in \mathrm{Y}(T-$

$s_{i_{2}}+1)$ .
Knowing payoffs which players get if the trajectory goes through thi$s$ or that $\mathrm{n}\mathrm{o}\acute{\mathrm{d}}\mathrm{e}$ of the set

$\mathrm{Y}(T-S_{i_{2}}+1)$ leads us to the Nash solution construction for $N(\tau_{-\mathit{8}_{i_{3}}}+1)=\{i_{1},i_{2}, R(s,\tau_{-}s_{i\mathrm{s}}+1)\}$ .
Let $z^{\tau_{-\delta}+1}(:_{2}yT-s_{i}3^{+1})\in \mathrm{Y}(T-s_{i}2+1)\cap K(y^{\tau_{-s:}+1}\mathrm{s})$ be the $\mathrm{N}\mathrm{a}s\mathrm{h}$ solution for $N(T-Si_{3}+1)$ ,
then after stage $T-\mathit{8}_{i_{3}}$ the path corresponding to the coalition $s$ is

$\{y^{T1}-si_{3}+,$ $\ldots,\overline{y}(z^{T+1}-s:1(z-s_{i_{2}}(\tau+1-s_{i_{3}}+)y^{\tau 1\}}))$ , $y^{T-s+}:_{3}1\in \mathrm{Y}(\tau-S_{i_{3^{+1}}})$ ,

and payoffs $\mathrm{b}\mathrm{a}s$ed on players from $N(T-\mathit{8}_{i}4+1)$ are determined by imputations

$\eta(z^{T-s}1^{+}(:1z^{T}-s:1(2^{+}y\tau_{-s_{i_{3}}+1})))$ .

$\ddot{\mathrm{C}}0\dot{\mathrm{n}}$tinuing in the same way, we shall reach the initial node $x_{0}$ ultimately and get the path $x_{s}$ of
the coalition 8:

$x_{s}=\{x_{0},$ $\ldots,\overline{y}(z-si_{1}T+1(. .. (z^{T-s}(:_{k}\cdot+10x))\ldots))\}$ .
If $s_{i_{1}}=0$ , then the payoff of the player $i_{1}$ is known yet-it is the terminal payoff $H_{i_{1}}(\cdot.)$ . Therefore

we don’t have any obstacles to construct the Nash solution $z^{T}(y^{\tau-s+1}i_{2})\in \mathrm{Y}(T)\cap K(y^{\tau_{-}}si_{2}+1)$

for players in $N(y^{T-}s:2^{+1})=\{i_{1}, R(s, \tau-s_{i}2+1)\}$ . However, in order to find the Nash solution
for players in $N(y^{T-s+1}:3)=\{i_{1},i_{2}, R(\mathit{8}, \tau-sis+1)\}$ on stages $T-Si_{3}+1\leq t\leq T-s_{i_{2}}$ , we
need to know the payoff of the player $i_{2^{\dot{\mathrm{W}}}}\mathrm{h}\mathrm{e}\dot{\mathrm{n}}$ he participates in $R(s,t),$ $\tau-Si_{2}+1\leq t\leq T$ . For
the sake of the reason we deal with cooperative positional subgame$s\Gamma(y\approx T-\epsilon:_{2^{+}}1, si_{2})$ on subtrees
$K(y^{T-s}2^{+}):1,$ $y^{\tau_{-s_{i_{2^{+}}}}1}\in \mathrm{Y}(T-s_{i}2+1\rangle$ with the players set $N\backslash \{i_{1}\}$ , and the length $s_{i_{2}}$ stages.
The characteristic function $w(P, y\approx\tau-\mathit{8}_{t}2^{+}1, si_{2})$ of the subgame $\Gamma(y^{\tau_{-}S}2, S_{i_{2}})\approx i+1$ is constructed by
means of the characteristic function $\tilde{w}(P, y^{T-s_{i}}2, si_{2}+1)$ of the $s$.ubgame $\tilde{\Gamma}(y^{\tau_{-s:_{2}+}}, s_{i})12$ (the case
$s_{i_{1}}>0)$ :

$w.(P, y^{T-s:}2^{+}.’ S_{i})1=\approx.2$

$\sum$ $H_{j}(z^{T}(y.):_{2}+1)\tau-$

$\tilde{w}(P, y^{T+1}-s:_{2}, s_{i_{2}}).\frac{xj\in N\backslash \{\cdot 1\}}{\Leftrightarrow\in F(\nu\underline{\max}\sum T\cdot\dot{.}+12)j\in NH_{j}(x)}$
,

$P\subset N\backslash \{i_{1}\}$

$P\neq N\backslash \{i_{1}\}$ ,

$\sum$ $H_{j}(_{Z}T(y^{\tau_{-}s}2^{+1})i)$ , $P=N\backslash \{i_{1}\}$ .. $j\in N\backslash \{i_{1}\}$
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Deal with the formula for $P\neq N\backslash \{i_{1}\}$ . Here $w(P,y^{T-s.+1}2S_{i_{2}})\approx,$ is proportional decreasing of
$\tilde{w}(P, y^{\tau_{-}s+}2, s_{i_{2}}):1$ , and the factor of proportionality taken from relation of the payoff value of the

$R(s,T-si_{2}+1)$ to one which he could have get if he had included all players. Let $C(y^{T+}-s:2, S_{i_{2}})\approx 1$

be the core of a subgame $\Gamma(y^{\tau_{-}s:}\approx 2+1, s_{i_{2}})$ . We choose one optimal imputation $\eta(y^{\tau-s+1}:2)\in$

$C(y^{T-}2^{+}, S_{i_{2}})\approx \mathit{8}.1\subset R_{+}^{n-1}$ for every node $y^{T-s_{i_{2}}+1}\in \mathrm{Y}(T-s_{i_{2}}+1)$ and fix him. Hence $n$ -

dimensional p.ayoff-vectors $(\eta(y^{T-}2^{+}:1)s, H_{i_{1}}(y^{T-s}):_{2}+1)$ are in agreement with nodes from $\mathrm{Y}(T-$

$\mathit{8}_{i_{2}}+1)$ . Thus we can find the Nash solution between players in $N(T-\mathit{8}_{i}3+1)$ on a set $\mathrm{Y}(T-S_{i}2+$

$1)\cap K(y^{\tau_{-s_{3}+}}\cdot)1$

’

of a subtree $K(y^{T-s_{i}+}\mathrm{s})1$ for every $y^{T-\mathit{8}+1}i_{3}\in \mathrm{Y}(T-Si_{3}+1)$ . In what follows
trajectory developments are analogous to the case $s_{i_{1}}>0$ .

We are able to use the concerned algorithm when there are players with the sane cooperation
levels in $s=$ $(s_{1}, \ldots , s_{n})$ as, well. Of course we have to take account of that sets $N(T-S_{i_{j+1}}+1)$ ,
$s_{i_{j+1}}$ with $|Q(s_{i_{j}})|>1$ consi$s\mathrm{t}$ of more number of players:

$N(T-Si_{\mathrm{j}+}1+1)=N(T-s_{i}\mathrm{j}+1)\cup Q(s_{i_{j}})$ .

4 Characteristic function.
Definition. We shall say that a function $v(s, x_{0}, \tau)=\sum_{i\in N}H_{i}(x_{s})_{\tau 1}s\mp,$

$s\in\overline{M}_{0}$ is called the

characteristic function of the game $\dot{\Gamma}(x0,\tau)$ , if it is superadditive, $i.e.,$ $\forall\overline{s},\overline{\overline{s}}\in\overline{M}_{0}$ such that for
every player $i$ with $\overline{s}_{i}\cdot\overline{\overline{S}}_{i}=0$ ,

$v(\overline{s}, x_{0},\tau)+v(\overline{\overline{s}},x_{0}, \tau)\leq v(\overline{s}\cup\overline{\overline{s}}, x0,T)$ .

The coefficient $\mp\tau^{s}1$ may be explained as a tax for uncooperation. If a player $i$ in coalition $s$ stays
on the level $0$ , he gives nothing for the benefit of the $s$ .

Definition. We shall say that the characteristic function $v(s, x_{0}, t)$ of the game $\Gamma(x_{0},T)$ is
non-decreasing if for every $i\in N$ , and every $s$ with $s_{i}\geq 1$ ,

’

$v(s, x_{0},\tau)\geq v(s||(s_{i}-1), x0,T)$ ,

where $s||(s_{i}-1)=(s_{1}, \ldots, s_{i-}1,\mathit{8}_{i}-1, si+1, ., ., sn)$ .
We confine ourself to dealing with multichoice $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{e}$. games with non-decreasing character-

istic $\dot{\mathrm{f}}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$.

5 Set of imputations and core.
Let $L^{0}=\{(i, s_{i})|i\in N, s_{i}\in M_{0}\}’$ ’ and let $\Delta^{0}$ : $L^{0}arrow R_{+}^{1}$ be a mapping such that

$\Delta_{is_{i}}^{0}\iota\geq v$(( $\mathrm{O},$

$\ldots,$
$0$ , si, $0,$

$\ldots,$
$0$), $x0,\tau$) $-v((\mathrm{O}, \ldots, \mathrm{o}, S_{i}-1,\mathrm{o}, \ldots,\mathrm{o}),x0,T)$ , $s_{i}\in M_{0}$ .

Definition. We shall say that matrix $\xi^{0}=\{\grave{\Delta}_{ij}0\},$ $i=\overline{1,n},$ $j=\overline{1,m}$ is a division of the game
$\Gamma(x0,T)$ , if the following restrictions are $sati_{S}fie.d$

1) $\xi^{0}$ ( $0,$
$\ldots,$

$0$ , si, $0,$ $\ldots,0$) $\geq v$ ( ( $\mathrm{O},$

$\ldots,$
$0$ , si, $0,$ $\ldots,0$), $x0,T$), $\forall i\in N,\forall s_{i}\in M_{0}$ .

2) $\xi^{0}(m, \ldots,m)=v((m, \ldots , m), x0,T)$, where $\xi^{0}(s)=\sum_{i\in N}\sum_{j=0}^{s}\Delta_{i}0j$ .
We denote the set of imputations of the game $\Gamma(x_{0},T)$ by $I(x0,T)$ .
Definition. A set $C(x_{0},T)$ of imputations such that

$C(x_{0},T)=\{\xi^{0}| 1)\xi^{0}\in I(x_{0},T);2)\forall s\in\overline{M}_{0},\xi^{0}(S)\geq v(s,x_{0},\tau)\}$

is called by the core of the game $\Gamma(x_{0},T)$ .
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6 Time consistency.
we see that players are interested in choosing of the maximal cooperation level for the trajectory

$\overline{x}$ maximizing the grand coalition payoff

$\sum_{i\in N}H_{i}(\overline{X})=\max\sum H_{i}x\in p(x_{0})i\in N(X)$

to realize. Call $\overline{x}$ an optimal path and consider along it subgames $\Gamma(\overline{x}^{t},T-t),$ $1\leq t\leq T$ . Introduce
the following notations for a subgame $\Gamma(\overline{x}^{t},T-t)$ :

1) $M_{t}=\{0,1, \ldots , m-t\}$ –the cooperation levels set;
2) $\overline{M}_{t}=\underline{M_{t}\cross\cdots}.\cross M_{t}$ –the coalition set;

$n$

3) $v(s^{t},\overline{X}^{t},\tau-t)$ –the characteristic function, $s^{t}\in\overline{M}_{t}$ ;
4) $I(\overline{x}^{t}, T-t)$ –the set of imputations;
5) $C(\overline{x}^{t},T-t)$ –the core.
6) let $L^{t}=\{(i, s_{i}^{t})|i\in N, S_{i}^{t}\in M_{t}\}$ .
Definition. A division $\xi^{0}\in C(x0, \tau)$ of the game $\Gamma\langle x_{0},$ $T$) with the terminal payoff function is

called time consistent, if for every stage $t$ the matrix $\overline{\xi}=\{\Delta_{ij}^{0}\},$ $(i,j)\in L^{t}$ is an optimal imputation
of the subgame $\Gamma(\overline{x}^{t},T-t)$ .

Definition. We shall say that $C(x0,\tau)$ is time consistent optimality principle (TCOP), if every
imputation $\xi^{0}\in C(x0, \tau)$ is time consistent.

In [3] a condition of time consistency for cooperative multistage games was $\mathrm{s}\mathrm{t}\dot{\mathrm{a}}\mathrm{t}\mathrm{e}\mathrm{d}.\dot{\mathrm{W}}\mathrm{e}$ prove an
analogous one for multichoice multistage games.

Proposition. The core $C(x0,\tau)$ of the game $\Gamma(x0,\tau)$ with the terminal payoff function is a
TCOP if and only if for every stage $t$ the cor.e $C(.\overline{x},Tt-t.)$ of the subgame $\Gamma(\overline{x}^{t},T-t)$ consists of
an unique imputation $\xi^{t}$ , where

$\xi^{t}=$
$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\dot{\mathrm{f}}$. The core $C(\overline{X}^{T}, 0)$ of the $s$ubgame $\Gamma(\overline{x}^{T},0)$ consists of an unique imputation

$\xi^{T}=(_{H_{1}(\overline{X})}0$ ... $H_{n}(\overline{x})0$ ).
Therefore $\Delta_{i0}^{T}=H_{i}(\overline{x}^{T}),$ $i\in N$ . At the same time for every stage $t$

$v(m, x_{0}, \tau)=v((m-t)^{t},\overline{x}t,\tau-t)=\sum_{i\in N}Hi(\overline{X})\tau$
,

where $(m-t)^{t}=(m-t, \ldots,m-t)\in R^{n}$ . It mean$s$ that these equalities are able to be satisfied only
by an imputation $\xi^{0}\in C(x_{0},T):\Delta_{i0}^{0}=H_{i}(\overline{X})T$ , and $\forall j\in M_{0}\backslash \{0\},$ $\Delta_{i}^{0}j=0$ . If such imputation
$\xi^{0}$ doesn’t belong to $C(x0,\tau)$ , then the $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\overline{\xi}}=\{\Delta_{ij}^{0}\}(i,i)\in L^{T}\not\in C(\overline{X}^{T},0)$ and $C(x0,\tau)$ is
time inconsistent. Being obviously to backwards, the proof of the proposition is complete.

It is known that regularization of time inconsistent optimality principles is impossible if the
payoff function is terminal. Let us consider MMG with integral payoff functions. Let

$H_{i}(x)= \sum_{t=0}^{T}h_{i}(X)$ , $h_{i}(x)\geq 0,i\in N$ .
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and $\Delta^{0}$ be $\mathrm{d}\mathrm{i}\mathrm{s}\dot{\mathrm{t}}$ributed in time as well:

$\Delta_{ii}^{0}=\sum_{t=0}^{T}\Delta^{0}ij(t)$ , $\Delta_{ij}^{0}(t)\geq 0$ .

Definition. An imputation $\xi^{0}=\{\Delta_{ij}^{0}\}$ of the $\Gamma(x0,T)$ with the integral payoff function is called
time consistent if for every stage $\theta$

$\overline{\xi}^{\theta}=\{\overline{\Delta}^{\theta}ij\}\in c(\overline{X}, \tau\theta-\theta)$ , where $\overline{\Delta_{ij}}=\sum_{t=\theta}\Delta_{i}0(jt)T,$ $(l,j)\in L^{\theta}$ .

Definition. The core $C(x0,T)$ of the game $\Gamma(x_{0},T)$ with an integral payoff function is called
TCOP if every imputation $\xi^{0}\in C(x0,\tau)$ is time consistent.

Definition. An imputation $\xi^{0}=\{\Delta_{ij}^{0}\}\in C(x0,\tau)$ is called strongly time consistent, if for every

stage $\theta$ and every imputation $\xi^{\theta+1}=\{\Delta_{ij}^{\theta+1}\}\in C(\overline{x}^{\theta 1},T-+\theta-1)$ the $matri_{X}\overline{\xi}=\{\overline{\Delta}_{ij}\}$ , where

$\overline{\Delta}_{ij}=\{$

$\sum_{t=0}^{\theta}\Delta_{i}0(jt)+\sum_{\theta t=+1}^{T}\Delta^{\theta+}1(ijt)$ , $(i,j)\in.L^{\theta+1}$

$\sum_{t=0}^{\theta}\Delta_{ij}0(t)$ , $(i,j)\in L^{0}\backslash L^{\theta+}1$

belongs to $C(x_{0}, T)$

Definition. $C(x0,\tau)$ is called strongly time consistent optimality principle (STCOP) if every
imputation $\xi^{0}\in C(x_{0},T)$ is strongly time consistent.

It is clear that, as the cooperative multistage game being a special case of the multichoice
multistage game, the problem on time inconsistency of the classical optimality principles is actual
in multichoice multistage games as well. We propose a procedure of regularization of a time
inconsistent core.

7 Regularization.
For the game $\Gamma(x_{0},T)$ , we construct a new (regularized) game $\overline{\Gamma}(X0,T)$ with the strongly time

consistent core $\overline{C}(x0,T)$ . Let the payoff function $H(\overline{x})$ is additively separable over the stages:

$H_{i}( \overline{x})=\sum_{t=0}^{T}hi(\overline{X}^{t})$ , $h_{i}(\cdot)\geq 0$ .

For the simplicity of the notification, let $\min\{s^{t},m\}\theta,$ $\theta\leq t$ , denote a coalition

$( \min\{s_{1}^{t\theta t\theta t},m\},\min\{s_{2},m\}, \ldots,\min\{s_{n},m^{\theta}\})$ .

Introduce functions $w(s^{t},t),$ $0\leq t\leq T$ as follows:

$w(_{\mathit{8}^{t},t})= \frac{1}{T-t+1}((T-t+1)i\in\sum h_{i}N(\overline{X}^{t})-$

$\sum_{\theta=t}^{T}\frac{(v(m^{\theta},\overline{x}^{\theta},\tau-\theta)-v(\min\{\mathit{8}^{t\theta}m\},\overline{X},\tau\theta-\theta))\sum_{\in iN}h_{i}(\overline{X}^{\theta})}{v(m^{\theta},\overline{x}^{\theta},\tau-\theta)},)$ ,

or

204



$w(s^{t}, t)= \frac{\sum_{i\in N}hi(\overline{X}^{t})}{T-t+1}\sum_{\theta=t}^{T}\frac{v(\min\{S^{t},m^{\theta}\},\overline{X}^{\theta},\tau-\theta)}{v(m^{\theta},\overline{X}^{\theta},T-\theta)}$ .

We can see every funct.ion $w(S^{t}, t),$ $0\leq t\leq T$ is $s$uperadditive over coalition:

$w(m^{t},t)= \sum_{i\in N}hi(\overline{X}^{t})$
,

and
$w(0,t)=0$ .

Hence the functions $w(s^{t},t)$ may serve by distribution of a characteristic function of a game $\overline{\Gamma}(x0,\tau)$

$\overline{v}(s^{0}, x_{0},T)=\sum_{\tau=0}^{T}w(\min\{s^{0\tau}, m\}, \tau)$.

Note that for every $\mathrm{t}$ and $s^{t}$ the function $w(s^{t},t)$ is non-negative. That is why the characteristic
functions of subgames $\overline{\mathrm{r}}(\overline{x}^{t}, T-t)$ :

$\overline{v}(s^{t},\overline{X}^{t},\tau-.t)=\sum_{\tau=t}^{T}w(\min\{S,m\}t\tau, \mathcal{T})$

don’t increase by stages. Let $\xi^{t}=\{\Delta_{ik}^{t}\},$ $0\leq t\leq T$ be arbitrary taken optimal imputations in the
subgames $\Gamma(\overline{X}^{t},T-t)$ . For every stage $\mathrm{t}$ substitute these imputations into the functions $w(s^{t},t)$ in
place of $v(\mathrm{m}\mathrm{i}_{\mathrm{L}}\{st,m^{\theta}\},\overline{X}^{t},\tau-t)$. Taking into account the determination of $\overline{v}(s^{0}, x0,T)$ , we have
got an optimal imputation $\overline{\xi}^{0}=\{\overline{\Delta}_{ij}^{0}\}$ of the game $\overline{\Gamma}(X0,T)$ :

$\sum h_{i}(\overline{x}^{t})T$

$\sum(\min\{,\})\sum^{\ell^{0_{m}\theta}}\Delta_{ik}^{\theta}$
:

$\sum_{i\in N}\sum_{j=0}\dot{.}\overline{\Delta}=\frac{i\in N}{T+1}s^{0}iit\theta=\sum_{0}\frac{i\in Nk=0}{v(m^{\theta},\overline{x}^{\theta},\tau-\theta)}$ .

Consideration of the determination of the $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{S}\overline{v}(s, xtt, T-t)$ leads us to conclusion that
imputations $\overline{\xi}^{\iota}=\{\overline{\Delta}_{ii}^{0}\}_{(i},j)\in L^{\mathrm{e}}$ are optimal in the subgames $\overline{\mathrm{r}}(\overline{x},Tt-t)$ . Hence the $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\xi\triangleleft$

is strongly time consistent. By choosing all possible $\xi^{t}\in C(\overline{x},\tau-t),$ $0\leq t\leq T$ , we construct the
rest imputations of the strongly time consistent core $\overline{C}(x0,T)$ .

8 Conclusion.
.

We considered multichoice multistage game satisfying that players are able to enter into carrier
$R$ on any stage but can not leave $\dot{\mathrm{i}}\mathrm{t}$ . As a matter of fact, the carrier $R$ is an usual coalition
increasing in time. The vector coalition $s\in\overline{M}_{0}$ shows relations of players to the usual coaltion.
We have prohibited players’ leaving right in this paper. It seems to be interesting if the opposite
prohibition is used, i.e., suppose that at the beginning of the game all players in the carrier and
they can go out from it on any stage but once leaving can not enter again into carrier.

The following remark deal$s$ with $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{S}\mathrm{t}}\mathrm{i}_{\dot{\mathrm{C}}}$ function. We proposed to use a factor of propor-
tionality which puts zero for the zero coalition. If we as$s$ume that the zero coalition is able to get
non-zero value, then we can determine the characteristic function as follows.

$\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{l}\mathrm{n}i\mathrm{t}i0\mathrm{n}$ . We shall say that a function $v(s, x_{0}, \tau)=\sum_{i:s_{i}\neq 0}H_{i}(x_{s}),$
$s\in\overline{M}_{0}$ is called the

characteristic function of the game $\Gamma(x0,T)$ , if it is superadditive.
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Finally we should notice that the suggested regularization procedure creates characteristic func-
tion which redistributes payoff along the optimal trajectory and is not needed in any outside
payments. It occurs as on every stage $t$ we use payoffs that players have got yet to this stage.
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