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1 Introduction

A non-cooperative game with a continuum of players is an ideal represent.ation of strategic
situations where each player’s strategy is relatively negligible but aggregated strategies affect
on his payoff. However, if non-atomic ganies implied the same result as the corresponding finite
game, it would be sufficient to Study non&ooperative game with bma,ny but finite playérs and

the formulation with a continuum of players would be less attractive for the researchers.

One of the appealing features of non—afomic games is existence of a pure strategy equilib-
rium. This result is obtained in several formulations of a game with a continuum of players.
Schmeidler (1973) shows that there exists a pure strategy equilibrium if every player’s payoff
depends on his own strategy and the integral of the strategy profile. Rath (1992) refbrmulates

this case and shows the direct proof of the existence.

In this paper, we show sufficient conditions of the uniqueness of the equilibrium in Schfneidler
and Rath’s formulation. We show the conditions of players’ payoffs for the uniqueness of the
equilibrium. In the game‘ with finite players, these conditions of payoffs does not always imply
the uniqﬁenéss of the equilibrium. Thus, this uniqueness of the equilibrium can be regarded as

another appealing feature of the game with a continuum of players.

This paper is an intoroduction paper to the results of Watanabe (1997). In this paper we
focus to sufficient conditions of uniquness for the interior equilibrium on case of n strategies
and show the sketch of the proof for main theorems. However proofs of lemmas are omitted.

Watanabe (1997) shows the all proofs.
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2 Notations and Definitions

Let (T, kB , A) be a player space where T is a uncountable set in a complete separable metric space,
B is a o—algebra on T and A is an atomless proba,bility measure on B. Let E = {e!,...,e"}
be the finite set of strategies where e' is the ith unit vector in R™. A strategy profile is a
measurable function from T to E. The set of all strategy profiles is denoted by F. Let s(f) be

an average strategy for a strategy profile f-€ F defined by

s(f):/qfdA:(/Tfld,\,...,/rfnd)\).

Then S = {s(f)lf € I’} is the unit simplex in R™. A payoff function is a real valued function
déﬁned on F x S which is continuous on S. Let &/ be the set of all ‘payoff functions. We
introduce sup nérm topology on U. A game g is defined as a measurable function from T to U. -
Thus, for a gi.ven g.,‘ g(t)(e', g) means a payoff of player t € T when his strategy is e/ € E and

an average strategy is ¢ € S.

Definition 2.1 A f € F is said to be a Nash equilibrium of a game g, if and only if,
MEET| g@)(f(8), ) 2 g(t)(e?,f) forall e € E}) =1

The existence of pure strategybequilibria shown in the seque:ntial studies (e.g. Schmeidler
(1972) and Rath (1992)) with the unit interval is easily extended to our model with an un-
countable set in a complete separable metric space, since preserving upperhemicontinuity of

integrations shown by Aumann(1976), which is a key of the proof, can be extended to a set in a

complete separable metric space endowed with an atomless measure (see Hildenbrand (1974)).

Theorem 2.1 (Schmeidler(1973) and Rath(1992)) There exists pure strateqy equilibria

fof any game.

Hence, in the following we only consider about pure strategies.” As the definition of the
equilibrium, two strategy profiles which is different only on the nullsets are the same strategy

profilesin the game with a continuum of players. Thus, we consider that there exists the unique
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equilibrium if any equilibrium has identical value outside the null sets. Formally, we define the

uniqueness of the equilibrium as follows.

Definition 2.2 For any game g, we say that the equilibrium of g is unique if for any equilibrium

f and f’ in g,

At e TIF() # £/ () =0.

Rath (1992) defined a best response correspondence from the set of average strategies to the
set of ‘avéra,ge strategies and showed the excellent proof of existence of the equilibrium. Consid-
ering this correspondence makes analysis of the game easier than using\ the correspondence from

the set of the strategy profiles as finite games. We also use this best response Cofrespox1dence.

Let ' be a correspondence from S to S defined by

I'(g) = {/ fdXl f(t) € B(t,q), for almostallt € T }

where

B(t,q) = {fei € Ej g(t)(e",q)'.z g(t)(ej,q) for anye’ € E }

Thus, I’ is the best respénse correspondence for an average strategy. ¢ is said to be a fixed
point of T if and only if ¢ € T'(¢). Rath (1992) shows that a strategy profile f is an equilibrium
if s(f) is a fixed point of I'. However, there may be ;sev‘eral_s.;éveral strategy profiles which have
‘the same average strategy. The following condition implies‘tha,t the strategy profile is uniquely

defermined outside the null sets for the fixed point of T.

Condition N A game g satisfies Condition N if for any e, el KE'E, e’;‘;é e’ and any‘q € S,
A({t € Tlg(t)(e',q) = g()(¢', @)}) = 0 '

Condition N means that the set of players who have two indifferent strategies is an null set

for any average strategy.

Lemma 2.1 If a game g satisfies condition N and the fized point of T' of g is unique, then the

equilibrium of the game g is unique.
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proof. Let us consider that two equilibrium f, f € F. Since I' has the unique fixed point
and an average strategy of an equilibrium is the fixed point of I', we have s(f) = s(f’). Suppose

s(f) = s(f') = q and we define the subset of T, T, by T, = {t € T|f(t) # f'(t)}

We have to show A(T,) = 0. Let T be the set of players whose strategies are the best
response of g. This can be written as Ty = {t € T|t € B(t,q)} and by definition of the

equilibrium we have A(T' \ T}) = 0.

For any t € T, N T and any el € E , we have g(t)(f(t),q) > g(z{)(ej,‘q) and g‘(t)(f’(t),q) >
g(t) (€, q). “This implies g(t)(f(t),q) = g(t)(f'(t),q).‘ From condition N, we have A({t €
Tlg®)(F#),0) = (7, 9)}) = 0. Since (T, N Ty) C {t € Tlg)(F1).q) = aO(®), )},
T, NTy has zero measure. Since T, C (To NT3) U (T'\ T;), we have-A(T,) = 0. Q.E.D.

3 Case of n Strategies for Normalized Games

In this section 5, we consider only a normalized game in which payoff of the nth strategy is

always zero for any average strategy.

Definition 3.1 A game g is said to be a normalized game if g(t) (e“,vq) =0 foranyt €T and
g€ Ss. | '

Any game § can be normalized to the game g by

9(t)(e’,q) = §()(€’,q) - é(t)('e",q)-k

Since any positive affine transformation does not change the best response structure between
two games, any game also ﬁave the unique equilibriﬁm if its normalized game have the uniQue
equilibrium. Thus, we ;:a.n use the uniqueness condition for any game by the nbrma,liza,tion,
not only for normalized games, though our conditions is main]yAa.pplica.ble to the class of the

games which is originally a normalized game itself.

In this section, we consider the case where each player has n strategies. In the case we can

only show the uniqueness of an interior equilibrium.
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Definition 3.2 For any game g, the interior equilibrium of g is said to be unique if for any

equilibrium f and f' in g, satisfying that s(f); > 0 and s(f'); >0 for any i € {1,...,n},
A{t e TIF@) # £ @) =0.

g € S is said to be an interior fixed point of'[‘ if ¢ € T'(q) and ¢; > 0 for any 7 € {1,...,n}.
We find that the following lemma holds (see, Watanabe (1997))

Lemma 3.1 Let g be a normalized game. If a game g satisfies condition N and the interior

fized point of ' of g is unique, then the interior equilibrium of g is unique. -

In normalized games, nth strategy is a special strategy in compare to the other strategies.
To describe conditions of uniqueness, we consider the following two operations. In the first
operation, we add 6 to ith (i.= 1,...,n — 1) average strategy and subtract # from nth average
strategy. We denote this operation byAi(B). Formally, for any § > 0 and i € {1,...,n — 1},

we define Af(8) by
A(0) = (e — e).

The second operation makes n—1 average strategies multiplied by 8 and nth average strateg
. decreased to adjust the sum of all average strategies to one.. We denote this operation by ®.
Formally, for a given § > 0 and ¢ € S, we define 6 ® ¢ by
n—1
,95)
=1

J

0®q ——-v_(0q1,0q2,.. .,an_l,l - 0

Condition R: Rivalry Condition "For'anyt € T, ¢ € S, i,k € {1,...n —1}i # k,
7 € {1,...n} and 8 > 0 satisfying q + A*(8) € S, if g(t)(e',q) > g(t)(ej,q), then g(t)(e*,q +
A¥()) 2 g(6)(e/,q + A¥(6)). |

Condition H: Homogeneity Foranyt€T,q€ S, e, el € E é,rid 6 > 0 satisfying §@q € S,
if g(t) (', ) > g(t)(e’,q), then g(t)(e',0 ® q) > g(t)(e?,0 ® q) |
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Some useful class of functions satisfies the above conditions. The following condition de-

scribes the class of functions.

Condition G If g can be written as g(t)(e,q) = hs(qu,-..,qn-1)hi(¢;) i=1,...,n—1
where h¢(g1,...,qn_1) is a poéitive function and Ai(g;) (i = 1,...,n—1) is a non-increasing and

homogeneous of degree m function, then g is said to be satisfying condition G.
Lemma 3.2 If g satisfies condition G, then it satisfies condition H and R.
Two main theorems in this section are shown as follows.

Theorem 3.1 If normalized game g satisfies condition N, H and R and an interior equilibrium

ezists, then the interior equilibrium ezists uniquely.
This theorem and lemma 3.2 implies the following corollary.

Corollary 3.1 If normalized game g satisfies condition N and G, and an interior equilibrium

ezxists, then the interior equilibrium exists uniquely.

To prove the theorem we have to show three lemmas. As I mentioned in the introduction,

all proofs of the lemmas are omitted.

First lemma asserts that a correspondence I' is single-valued if condition N holds.
-Lemma 3.3 If g satisfies condition N, then the bést response correspondence I' is single valued.

Since.T' is single valued, we rewrite a correspondence I' as a function . In other words, we

define a function v from S to S by y(q) € I'(g) for any ¢ € S and 1 is uniquely determined.

We define S by S = {(z1,...,2n_1) € R Yz, >0 Yt a; <1.) Let ¥ bea function from .
S to S such that v;(q) € Ti(g) for any G € S and é € {1,...,n — 1}, where ¢ = (7,1 — Z;-"__fll q;)-

Thus, ¥ is a projection of I' to the n — 1 dimensional real space and lemma 3.3 implies that 5
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is uniquely determined. Hence we find that & € S'is a interior fixed point of ¥, if and only if

§(z) € R™ is a interior fixed point of ' where §(x) is defined by

z; 1<i<n~-1
1—2;‘;11:6_, i=n

Hence we have only to show the uniqueness of interior fixed points 4 to prove the uniqueness

of 1ntenor ﬁxed pomts .

If an average strategy is ¢, the measure of the set of players whose best response strategy is
e' equals to [';(g). But, the measure of the set of players whose best response strategy is only &
may be less than T';(g) because some non-null players whose best response strategy are e’ has
other best response strategies. Condition N excludes this possibility and the followmg lemma

asserts this fact, described as .

Lemma 3.4 If a normalized game g ‘satisﬁes'éovidition N, then for any z € S and i €

{1,...,n =1},
5(e) = A(B@) S

holds where Bi(z) = {t € T| g(t)(e',§(z)) > g'(t)(ef,(;(x)) for all j. } In other words, the

measure of the players whose best response for ¢(z) is only e is equal to %;(z).

Lenima 3.5 If a normalized game g satisfies condition N and condition R, then for anyz € S
i # k,e{l,...,n =1}, and any 8 > 0 satisfying x + 6&", we have Yi(z + 6e*) > Yi(z) where

e* € R*™1 is a kth unit vector, that is kth element is one and the other elements are zero.
Now we show that %; is a homogeneous function of degree zero.

Lemma 3.6 Ifa normalred game g satisfies condztmn N and H, then foranyi € {1 oyn—=1},
Yi is @ homogeneous functmn of degree zero, that is; for anJ €S andd >0 catzsfymg 0z 6 S

%;(z) is equal to 7;(0z).
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proof of theorem 3.1 To prove theorem 3.1, we have only to show that an interior fixed
point of I is at most one. Condition N and lemma 3.3 implies that we have 6nly to show that

an interior fixed point of ¥ is at most one.

Suppose that there exists two different interior fixed points y, y’. Then, there exists j such
that y; # y; Without loss of generality, we can assume y; < y;. Since y and y' is interior fixed

points, for any i € {1,...,n}, we have y; # 0 and y! # 0. Hence, there exists # such that

f = max; %j— Let 70 be the index which gives the maximum of the above equation, so that
— l, !
0= %-]’% Since y; < y; holds for some j, we have

Yio < Yio- ' @

Choose a sufficiently small € > 0 such that efy € S and €fy’ € S. and let z be efy and 2’ be
€fy’. For any i € {1,...,n— 1}, we have z; > 2! because z; — 2! = €(fy; — y!) > e(%’jy@- -y))=0.
Moreover y # y’ implies that zjp > 2}, holds at least for some i0. Note that zjo = z}o from the

~ definition of 8

We define {wy,...,w,-1} by

wl =2 wh=wrl4 (5 ~2)eb (k=1,...,n-1).

and AY5, €S (k=1,...,n-1) by A"y}“o = Yjo(w¥) = Fjo(w*"1). Lemma 3.5 implies ATk >0
for any k € {1,...,n—1},k # j0, and we find that 7;0(z) — 7j0(z") = Z;%_k# A'S/]’?O. Therefore

we have
Yio(2) — 7jo(2") > 0. ' 3)

Now consider ¢ defined by § = (%j0(2) —yjo) — (¥;0(2") = ¥jo)- (2) and (3) implies & >0. However,
since y and y’ are fixed points of ¥ and lemma 3.6 implies ¥is a homogenous function of degree

S5 (2) = 5 (eBy) = Voaly) = s ,
zero, 6 = 0 should be zero: 70(2) = Fiol ;y) 750(b) = vio This leads a contradiction, so
%io(2) = Yjo(€8Y') = jo(y') = Yjo.

that an interior fixed point of ¥ is at most one. Q.E.D.



229

Reference
R. J. Aumann (1976), An elementary prodf that integration preserves upper semiconti-
nuity, Journal of Mathematical E’co,n:omiics,‘ 3,15-18.
W. Hildenbrand (1974) Core and equilibria ofa lafgé economy, Princeton University Press.
H. Hotelling (1929), Stability in competifion,'Eéonorﬁics Journal, 39, 41-57.

K. P. Rath (1992) A direct proof of the exsistence of pure strategy equilbriua in games |

with a continum of players, Economic Theory, 2, 427-433..

D. Schmeidler (1973) Equilibrium Points of ‘nonatomic games. Journal of Statistical

Physics, 7, 295-300.

T. Watanabe (1997), Unfqueness of the Equilibrium in Non-cooperative Games with a
Continuum of Players |

J. G. ‘Wa‘rdrop (1952), Sofne theoritical aspects of road traffic resaerch, Proc Institute of
Civil Engineers, Part II, 1, 325-378. | |



