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1. Isoparametric hypersurfaces in a real space form.
This part is a joint work with Sadahiro Maeda [KM]. In differential geometry

it is interesting to know the shape of a Riemannian submanifold by observing the
extrinsic shape of geodesics of the submanifold. For example: A hypersurface
$M^{n}$ isometrically mersed into a real space form $\overline{M}^{n+1}(c)$ of constant curvature $c$

(that is, $\overline{M}^{n+1}(C)=\mathbb{R}n+1,$ $S^{n+1}(C)$ or $H^{n+1}(c)$ according as the curvature $c$ is zero,
positive, or negative) is totally umbihc in $\overline{M}^{n+1}(c)$ if md only if every geodesic of
$M$ , considered as a curve in the ambient space $\overline{M}^{n+1}.(c\rangle$ , is a circle. Here we treat
a geodesic as a circle of null curvature.

In this talk we are interested in a hypersurface $M^{n}$ of a real space form $\overline{M}^{n+1}(c)$

satisfying that there exists such an orthonormal basis $\{v_{1}, \cdots, v_{n}\}$ at each point
$p$ of the hypersurface $M^{n}$ that all geodesics of $M^{n}$ through $p$ in the direction
$v_{i}(1\leq i\leq n)$ are circles in the ambient space $\overline{M}^{n+1}(c)$ . The classification problem
of such hypersurfaces is concerned with studies about isoparametric hypersurfaces
$M^{n}’ \mathrm{s}$ in a real space form. $\overline{M}^{n+1}(c).(.\mathrm{t}$hat is, all principal curvatures of $M^{n}$ in
$\overline{M}^{n+1}(c)$ are constant).

Theory of isoparametric submanifolds is one of the most interesting objects in
differential geometry. In particular, E. Cartan studied extensively isoparametric
hypersurfaces in a standard sphere. The classification problem of isoparametric
hypersurfaces in a sphere is still open (for details, see [CR]).

The initial purpose of this talk is to provide a characterization of all isopara-
metric hypersurfaces by observing the extrinsic shape of geodesics of hypersurfaces
in a real space form.

Theorem 1. Let $M^{n}$ be a connected hypersurface of a real space form $\overline{M}^{n+1}(c)$

of constant curvature $c$ .
$.$ . Then $M^{n}$ is isoparametric in $\overline{M}^{n+1}(c)$ if and only if

there $e\dot{m}\mathit{8}ts$ such an orthonormal basis $\{v_{1}, \cdots, v_{m}\}$ of the orthogonal complement
of $\mathrm{k}\mathrm{e}\mathrm{r}$ $A$ in $T_{p}(M)(m=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A)$ that all geodesics of $M$ through $p$ in $ihe$ direction
$v_{i}(1\leq i\leq m)$ are circles of nonzero curvature in the ambient space $\overline{M}^{n+1}(c)$ .

*This research was partially $\dot{\sup}\mathrm{p}\mathrm{o}$rted by $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}-\mathrm{i}\mathrm{n}-\dot{\mathrm{A}}$id for $\mathrm{S}_{\mathrm{C}}\mathrm{i}\mathrm{e}\dot{\mathrm{n}}\overline{\mathrm{t}}\mathrm{i}\mathrm{f}\mathrm{i}\dot{\mathrm{C}}$ Research (No.
09740050), Ministry of Education, Science and Culture.
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Theorem 2. Let $M^{n}$ be a connected $hyper\mathit{8}urface$ of a $rea\overline{l}\mathit{8}pace$ form $\overline{M}^{n+1}(c)$ of
constant curvature $c$ . Then $M^{n}$ is $i_{SO}paramet\dot{n}c$ with nonzero $con\mathit{8}tant$ principal
curuatures in $\overline{M}^{n+1}(c)$ if and only if for each point $p$ of $M_{f}$ there $exist\mathit{8}$ such an
orthonormal baris $\{v_{1}, \cdots,v_{n}\}$ of $T_{p}(M)$ that all $geode\mathit{8}ic\mathit{8}$ of $M$ through $p$ in the
direction $v_{i}(1\leq i\leq n)$ are circles of nonzero curvature in the ambient $\mathit{8}pace$

$\overline{M}^{n+1}(c)$ .

Theorem 3. Let $M^{n}$ be a connected $hyper\mathit{8}urface$ of a real space form $\overline{M}^{n+1}(c)$

of constant curvature $c$ . Then $M^{n}$ is $i_{Sop}ammet\dot{n}c$ in $\overline{M}^{n+1}(c)$ if and only if for
each point $p$ of $M_{f}$ there $exi\mathit{8}ts$ such an orthonormal basis $\{v_{1}, \cdots, v_{n}\}$ of $T_{p}(M)$

of $p$rincipal curvature $vector\mathit{8}$ that all $geode\dot{n}\underline{Cs}$of $M$ through $p$ in the direction
$v_{i}(1\leq i\leq n)$ are circles in the ambient space $M^{n+1}(c)$ .

2. Homogeneous real hypersurfaces in a complex projective space.
This part is a joint work with Toshiaki Adachi and Sadahiro Maeda [AKM].

Let $P_{n}(\mathbb{C})$ be an $\mathrm{n}$-dimensional complex projective space with Fubini-Study metric
of constant holomorphic sectional curvature 4, and let $M$ be a real hypersurface of
$P_{n}(\mathbb{C})$ . Then $M$ has an almost contact metric structure $(\phi, \xi, \eta, g)$ inherited from
the Kaehler structure of $P_{n}(\mathbb{C})$ . Many differential geometers have studied $M$ by
using this structure (cf. [O]). Typical examples of real hypersurfaces in $P_{n}(\mathbb{C})$ are
homogeneous real hypersurfaces, that is, real hypersurfaces given as orbits under
subgroups of the projective unitary group PU$(n+1)$ .

Takagi $([\mathrm{T}])$ classified homogeneous real hypersurfaces in $P_{n}(\mathbb{C})$ . Due to his
work, we find that a homogeneous real hypersurface in $P_{n}(\mathbb{C})$ is locally congruent
to one of the six model spaces of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ and $E$ . They are realized as
tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or 2. A
homogeneous real hypersurface of type $A_{1}$ is usually called a geodesic hypersphere.

In the study of real hypersurfaces in $P_{n}(\mathbb{C})$ , there can be the following two
problems:

(A) Give a characterization of homogeneous real hypersurfaces in $P_{n}(\mathbb{C})$ .
(B) Construct non-homogeneous nice real hypersurfaces in $P_{n}(\mathbb{C})$ and charac-

terize such examples.
In this talk we are interested in Problem (A). In differential geometry it is

interesting to know the shape of a Riemannian submanifold by observing the ex-
trinsic shape of geodesics of the submanifold. $i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}$ this point of view we here
recall the fact that a hypersurface $M^{n}$ in $\mathrm{R}^{n+1}$ is locally a standard sphere if and
only if all geodesics of $M$ are circles of positive curvature in $\mathrm{R}^{n+1}$ . We shall provide
a characterization of all homogeneous real hypersurfaces in $P_{n}(\mathbb{C})$ by observing the
shape of geodesics on the real hypersurfaces as curves in $P_{n}(\mathbb{C})$ .

The purpose of this part is to prove the following result which is an improve-
ment of the previous paper [MO].

Theorem 4. Let $M$ be a connected real $hyper\mathit{8}urface$ of $P_{n}(\mathbb{C})$ . Then $M$ is congru-
ent to a homogeneous real $hyper\mathit{8}urface$ if and only if there $exi\mathit{8}t$ such orthonormal
vectors $v_{1},$ $v_{2},$ $\cdots,$ $v_{2n-2}$ orthogonal to $\xi$ at each point $p$ of $M$ that all $geode\mathit{8}i_{C}s$

$\gamma_{i}=\gamma_{i}(s)$ on $M$ with $\gamma_{i}(\mathrm{O})=p$ and $\dot{\gamma_{i}.}(0)=v_{i}(1\leqq i\leqq 2n-2)$ are circles in $P_{n}(\mathbb{C})$

with positive curvature.
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In the hypothesis of our Theorem we do not need to suppose that we take
the vectors $\{v_{1}, \cdots, v_{2n-2}\}$ as a local field of orthonormal frames in $M$ . However,
for all homogeneous real hypersurfaces $M’s$ in $P_{n}(\mathbb{C})$ , we can take a local field of
orthonormal frames in $M$ satisfying the hypothesis of our Theorem.

It is well-known that there does not exist a real hypersurface all of whose
geodesics are circles in $P_{n}(\mathbb{C})$ . Every circle in Theorem is a simple closed curve
which lies on some totally real totally geodesic $P^{2}(\mathbb{R})$ in $P_{n}(\mathbb{C})$ . We note that for
any homogeneous real hypersurface $M$ , at each point $p$ of $M$ the geodesic $\gamma=\gamma(s)$

with $\gamma(0)=p$ and $\dot{\gamma}(0)=\xi$ is also a circle in $P_{n}(\mathbb{C})$ which is a simple closed curve
lying on some holomorphic totally geodesic $P_{1}(\mathbb{C})$ in $P_{n}(\mathbb{C})$ . All circles in $P_{n}(\mathbb{C})$

are simple curves. However, a circle in $P_{n}(\mathbb{C})$ is not necessarily closed (see, [AMU]).
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