対称空間内の最大階数全測地的部分多様体

井川治 (福島高専) Osamu Ikawa ikawa@fukushima-nct.ac.jp

1 導入

対称空間内の全測地的部分多様体に関する今までの研究成果のいくつかを簡単に紹介し、 筑波大学数学系 田崎博之氏との最近の共同研究の結果を報告する。田崎氏との共同研究は、 正規実形に対応するコンパクト型対称空間内の最大階数全測地的部分多様体の分類と、コ ンパクト Lie 群内の極大全測地的部分多様体の分類、およびこれらから得られるコンパクト Lie 群内の最大階数全測地的部分多様体の分類である。

対称空間内の全測地的部分多様体の分類はまだ出来ていないが、半単純 Lie 環内の Lie 部分環の分類は Dynkin[4] によって出来ている。彼は半単純半単純 Lie 環内の Lie 部分環を分類するアルゴリズムを与え、例外型単純 Lie 環に対して、半単純 Lie 部分環の分類を得た。対応するコンパクト単純 Lie 群内で考えると、Lie 部分群は全測地的部分多様体になる。この研究の前に Borel-Siebenthal[1] はコンパクト単純 Lie 環内の最大階数 Lie 部分環を分類している。この結果が正規実形に対応するコンパクト型対称空間内の最大階数全測地的部分多様体の分類に必要になる。そこで 2 節で Borel-Siebenthal 理論の復習をする。

対称空間内の全測地的部分多様体の分類に関して、以下の結果が知られている。

- (1) 全測地的部分多様体と Lie triple sustem の対応:Cartan [6, p. 224, §7]
- (2) 階数 1 の対称空間内の全測地的部分多様体の分類: Wolf
- (3)Hermite 対称空間内の全測地的複素部分多様体の分類:佐竹 [14], 伊原 [7]
- (4) 対合的等長変換の不動点:Chen-長野 [3] とそれに続く一連の論文
- (5) 全測地的対称部分多様体の分類:内藤 [13]
- (6) 四元数対称空間内の四元数部分多様体の分類:田崎 [15]
- 3節では Borel-Siebenthal 理論を用いて正規実形に対応する compact 型対称空間内の最大階数全測地的部分多様体の分類を行う。正規実形に対応する compact 型対称空間の制限ルートの重複度は全て 1 になるのでこの場合は他の対称空間の場合より易しい。 compact Lie 群 G 内の全測地的部分多様体の分類は主 G 束上の不変平坦接続と密接に関係している。このことは 5 節で示される。そこで 4 節で compact 型対称空間上の不変接続についての復習とそれらについてのいくつかの準備をする。

2 コンパクト Lie 群内の最大階数 Lie 部分群

コンパクト Lie 群内の最大階数 Lie 部分群に関する Borel-Siebenthal 理論 ([1]) の復習をしておく。[5] を参考にした。

g'を compact Lie 環 g の Lie 部分環とする。g'はコンパクトである。 $rankg' \le rankg$ で 等 号成立のとき g'は**最大階数**であるという。最大階数 Lie 部分環の分類をするためには g を 半単純と仮定してよい。

 $t\subset \mathfrak{g}$ を極大可換部分環としこれを固定する。 $\mathfrak{t}^{\mathbf{C}}$ は $\mathfrak{g}^{\mathbf{C}}$ の Cartan 部分環である。 \mathfrak{g} は compact だから \mathfrak{g} 上に $\mathrm{Int}(\mathfrak{g})$ 不変内積 $\langle\ ,\ \rangle$ が存在する。

 $\alpha \in \mathfrak{t}$ に対して部分空間 \mathfrak{g}_{α} を

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}^{\mathbf{C}} \mid [H, X] = \sqrt{-1} \langle \alpha, H \rangle X \ (H \in \mathfrak{t}) \}$$

と定める。 $\alpha \in \mathfrak{t} - \{0\}$ が \mathfrak{g} の \mathfrak{t} に関するルートであるとは $\mathfrak{g}_{\alpha} \neq \{0\}$ となる場合を言う。 $\Delta(\mathfrak{g})$ でルート全部の集合を表わし \mathfrak{g} の \mathfrak{t} に関するルート系と呼ぶ。このとき $\mathfrak{g}^{\mathbf{C}}$ のルート 空間分解が得られる:

$$\mathfrak{g}^{f C}=\mathfrak{t}^{f C}+\sum_{lpha\in\Delta(\mathfrak{g})}\mathfrak{g}_lpha.$$

最大階数 Lie 部分環の $Int(\mathfrak{g})$ あるいは $Aut(\mathfrak{g})$ 共役類を考えるのだから代表元 \mathfrak{g}' は \mathfrak{t} を含む ものがとれる。 $D\subset \Delta$ が subsystem とは

- (i) $(D+D)\cap\Delta\subset D$
- (ii) D = -D

となる場合を言う。subsystem はルート系になる。 $H \in \mathfrak{t}$ に対して subsystem $H^\#$ を

$$H^{\#} = \{ \alpha \in \Delta(\mathfrak{g}) \mid \langle \alpha, H \rangle \in 2\pi \mathbf{Z} \}$$

と定める。最大階数 Lie 部分環を次で定める:

$$\mathfrak{g}(H^\#) = \left(\mathfrak{t}^{\mathbf{C}} + \sum_{lpha \in H^\#} \mathfrak{g}_{lpha}
ight) \cap \mathfrak{g}.$$

 $H^{\#}$ は $\mathfrak{g}(H^{\#})$ の \mathfrak{t} に関するルート系である。

定理 2.1 (B-S[1]) compact 半単純 Lie 環の最大階数極大 Lie 部分環 \mathfrak{g}' に対してある $H \in \mathfrak{t}$ が存在して \mathfrak{g}' は $\mathfrak{g}(H^\#)$ と $\operatorname{Int}(\mathfrak{g})$ 共役となる。

どの $H \in \mathfrak{t}$ に対して Lie 部分環 $\mathfrak{g}(H^{\#})$ が極大になるか知る必要がある。そのためには \mathfrak{g} を 単純と仮定してよい。 $\Pi(\mathfrak{g}) = \{\alpha_1, \ldots, \alpha_r\}$ を $\Delta(\mathfrak{g})$ の基本系とし、 $-\alpha_0$ を $\Delta(\mathfrak{g})$ の最高ルートとする。最高ルートは次のように表わせる。

$$-lpha_0 = \sum_{i=1}^r m_i lpha_i,$$

ここで各 m_i は自然数である。 $\Pi(\mathfrak{g})$ は \mathfrak{g} の Dynkin 図形を定め $\tilde{\Pi}(\mathfrak{g})=\{\alpha_0,\alpha_1,\ldots,\alpha_r\}$ は \mathfrak{g} の拡大 Dynkin 図形を定める。 H_i $(1\leq i\leq r)\in\mathfrak{t}$ を

$$\langle \alpha_i, H_j \rangle = 2\pi \delta_{ij}$$

で定める。

定理 2.2 (B-S[1]) (I) m_i が素数となるような i に対して $\mathfrak{g}((H_i/m_i)^\#)$ は最大階数極大部分 Lie 環である。この場合、 $\mathfrak{g}((H_i/m_i)^\#)$ は半単純で $\tilde{\Pi}(\mathfrak{g}) - \{\alpha_i\}$ は $(H_i/m_i)^\#$ の基本系である。

(II) $m_i=1$ なる i に対して $\mathfrak{g}((H_i/2)^\#)$ は最大階数極大 Lie 部分環である。この場合、 $\mathfrak{g}((H_i/m_i)^\#)$ は 1 次元の中心をもち、 $\Pi(\mathfrak{g})-\{\alpha_i\}$ は $(H_i/m_i)^\#$ の基本系である。

逆に任意の最大階数極大 Lie 部分環は上で述べた Lie 部分環の一つと Int(g) 共役である。

各 compact 単純 Lie 環内の Lie 部分環で上の定理で述べられているものを全て書き出し、その中でどの Lie 部分環が $\mathrm{Int}(\mathfrak{g})$ 共役あるいは $\mathrm{Aut}(\mathfrak{g})$ 共役となるのかを決定する。そのためには次の命題が有用である。 $\mathrm{Aut}(\tilde{\Pi}(\mathfrak{g}))$ で $\tilde{\Pi}(\mathfrak{g})$ の合同変換群を表わす。

命題 $2.3 \operatorname{Aut}(\tilde{\Pi}(\mathfrak{g}))$ の各元は \mathfrak{g} の自己同型を誘導する。

この命題の証明は Loos[12] Ch.VII Proposition 1.4 を参照せよ。

表 1は各 compact 単純 Lie 環内の最大階数極大 Lie 部分環全部をあげたものである。 $\mathfrak{g}' \sim \mathfrak{g}''$ はこられが $\operatorname{Int}(\mathfrak{g})$ 共役であることを意味する。単純ルートの番号付けは Bourbaki[2] に従う。

定理 2.2中の条件を満たす全ての H_i を見つけることはた易い。 どの Lie 部分環が $\mathrm{Aut}(\mathfrak{g})$ 共役かを決定するためには命題 2.3からどの H_i/m_i や $H_j/2$ が $\mathrm{Aut}(\tilde{\Pi}(\mathfrak{g}))$ の作用でうつりあうかを決定すれば良い。

定理 2.4 コンパクト単純 Lie 環 \mathfrak{g} 内の二つの最大階数極大 Lie 部分環はそれらが $\mathrm{Aut}(\mathfrak{g})$ 共役ならば $\mathrm{Int}(\mathfrak{g})$ 共役である。

証明 $N(\mathfrak{t})$ 及び $Z(\mathfrak{t})$ でそれぞれ $\operatorname{Int}(\mathfrak{g})$ 内での \mathfrak{t} の正規化群および中心化群を表わす。 $Z(\mathfrak{t})$ は $N(\mathfrak{t})$ の正規部分群である。商群 $W(\mathfrak{g}) = N(\mathfrak{t})/Z(\mathfrak{t})$ を \mathfrak{g} のワイル群と言う。 $\operatorname{Aut}(\tilde{\Pi}(\mathfrak{g})) \cap W(\mathfrak{g})$ は $\operatorname{Aut}(\tilde{\Pi}(\mathfrak{g}))$ の正規部分群である。 $\operatorname{Int}(\mathfrak{g})$ の元で上で述べた二つの Lie 部分環を写しあうものは $\operatorname{Aut}(\tilde{\Pi}(\mathfrak{g})) \cap W(\mathfrak{g})$ の元で選べる。 $\mathfrak{g} = \mathfrak{e}_6$ の場合に詳しい証明をのべ、次の命題で共役類に関する結果をまとめておく。 $\operatorname{Aut}(\tilde{\Pi}(\mathfrak{g}))$ は $\{\alpha_0,\alpha_1,\alpha_6\}$ に働く 3 次対称群 \mathfrak{S}_3 と自然に同一視することが出来る。この同一視のもとで $\operatorname{Aut}(\tilde{\Pi}(\mathfrak{g})) \cap W(\mathfrak{g})$ は偶置換の全体のなす部分群である。 \mathfrak{o} を巡回置換 $(\alpha_1,\alpha_0,\alpha_6)$ とすると \mathfrak{o} は $\operatorname{Aut}(\tilde{\Pi}(\mathfrak{g})) \cap W(\mathfrak{g})$ の元で

$$\sigma \mathfrak{g}((H_1/2)^\#) = \mathfrak{g}((H_6/2)^\#), \quad \sigma \mathfrak{g}((H_2/2)^\#) = \mathfrak{g}((H_5/2)^\#),$$

 $\sigma \mathfrak{g}((H_3/2)^\#) = \mathfrak{g}((H_2/2)^\#).$

となる。

g	type	Н	$\mathfrak{g}(H^\#)$
	(II)	$H_1/2$	$R \oplus \mathfrak{a}_{r-1}$
\mathfrak{a}_r		$H_i/2$	$ig \mathbf{R} \oplus \mathfrak{a}_{i-1} \oplus \mathfrak{a}_{r-i} \ (i=2,\ldots,[rac{r+1}{2}])$
	(I)	$H_2/2$	$\mathfrak{a}_1 \oplus \mathfrak{a}_1 \oplus \mathfrak{b}_{r-2}$
$ \mathfrak{b}_r $		$H_i/2$	$\mathfrak{d}_i \oplus \mathfrak{b}_{r-i} \ (i=3,\ldots,r-1)$
		$H_{m{r}}/2$	\mathfrak{d}_r
	(II)	$H_1/2$	$ig \mathbf{R} \oplus \mathfrak{b}_{r-1}$
\mathfrak{c}_r	(I)	$H_i/2$	$\mathfrak{c}_i \oplus \mathfrak{c}_{r-i} \ (i=1,\ldots, [rac{r}{2}])$
L'r	(II)	$H_{m r}/2$	$R \oplus \mathfrak{a}_{r-1}$
	(I)	$H_2/2$	$\mathfrak{a}_1 \oplus \mathfrak{a}_1 \oplus \mathfrak{d}_{r-2}$
\mathfrak{d}_r		$H_i/2$	$\mathfrak{d}_i \oplus \mathfrak{d}_{r-i} (i=3,\ldots,[rac{r}{2}])$
	(II)	$H_1/2$	$\mathbb{R}\oplus \mathfrak{d}_{r-1}$
	: 1	$H_{r-1}/2$	$\mathbf{R} \oplus \mathfrak{a}_{r-1}$
	(I)	$H_2/2$	$\mathfrak{a}_1 \oplus \mathfrak{a}_5$
\mathfrak{e}_6	(-)	$H_4/3$	$\mathfrak{a}_2 \oplus \mathfrak{a}_2 \oplus \mathfrak{a}_2$
	(II)	$H_1/2$	$\mathbf{R}\oplus\mathfrak{d}_{5}$
	(I)	$H_1/2$	$\mathfrak{a}_1 \oplus \mathfrak{d}_6$
0_		$H_3/3$	$\mathfrak{a}_2 \oplus \mathfrak{a}_5$
e ₇		$H_2/2$	\mathfrak{a}_7
	(II)	$H_7/2$	$\mathbf{R}\oplus \mathfrak{e}_6$
	(I)	$H_1/2$	ð ₈
		$H_2/3$	a ₈
e ₈		$H_{5}/5$	$\mathfrak{a}_4 \oplus \mathfrak{a}_4$
		$H_7/3$	$\mathfrak{a}_2 \oplus \mathfrak{e}_6$
		$H_8/2$	$\mathfrak{a}_1 \oplus \mathfrak{e}_{7}$
	(I)	$H_1/2$	$\mathfrak{a}_1 \oplus \mathfrak{c}_3$
f 4		$H_2/3$	$\mathfrak{a}_2 \oplus \mathfrak{a}_2$
		$H_{4}/2$	\mathfrak{b}_4
\mathfrak{g}_2	(I)	$H_1/3$	\mathfrak{a}_2
		$H_{2}/2$	$\mathfrak{a}_1 \oplus \mathfrak{a}_1$

表 1: compact 単純 Lie 環内の最大階数極大 Lie 部分環

命題 2.5 (1) $\mathfrak{g} = \mathfrak{a}_n \mathcal{O}$ とき、

$$\left(\frac{H_i}{2}\right)^{\#} \sim \left(\frac{H_{n+1-i}}{2}\right)^{\#} \quad (1 \leq i \leq [n/2]).$$

(2) $\mathfrak{g} = \mathfrak{c}_n \mathcal{O}$ とき、

$$\left(\frac{H_i}{2}\right)^{\#} \sim \left(\frac{H_{n-i}}{2}\right)^{\#} \quad (1 \leq i \leq [n/2]).$$

(3) $\mathfrak{g} = \mathfrak{d}_n \mathcal{O}$ とき、

$$\left(\frac{H_i}{2}\right)^{\#} \sim \left(\frac{H_{n-i}}{2}\right)^{\#} \quad (2 \leq i \leq [n/2]), \quad \left(\frac{H_{n-1}}{2}\right)^{\#} \sim \left(\frac{H_n}{2}\right)^{\#}.$$

(4) $g = e_6 のとき、$

$$\left(rac{H_1}{2}
ight)^\# \sim \left(rac{H_6}{2}
ight)^\#, \quad \left(rac{H_2}{2}
ight)^\# \sim \left(rac{H_3}{2}
ight)^\# \sim \left(rac{H_5}{2}
ight)^\#.$$

(5) $\mathfrak{g} = \mathfrak{e}_7 \mathcal{O} とき、$

$$\left(\frac{H_3}{3}\right)^{\#} \sim \left(\frac{H_5}{3}\right)^{\#}, \quad \left(\frac{H_1}{2}\right)^{\#} \sim \left(\frac{H_6}{2}\right)^{\#}.$$

上の命題の証明には次の補題を用いればよい。

補題 2.6 拡大 Dynkin 図形の合同変換の引き起こすルートの自己同型写像が内部自己同型 となるための条件は次で与えられる。

- (1) $\Delta = B_n, C_n, E_7$ 型のルート形の場合、拡大 Dynkin 図形の合同変換の引き起こすルートの自己同型写像は全て内部自己同型である。
- (2) $\Delta = E_6$ 型のルート形の場合、拡大 Dynkin 図形の合同変換群は自然に 3 次対称群 G_3 と同一視される。この同一視をしたとき、拡大 Dynkin 図形の合同変換 σ が内部自己 同型となるための条件は σ が偶置換となることである。
- (3) $\Delta = A_n$ 型のルート形の場合、

$$\operatorname{Aut}(\tilde{\Pi}) \cong \mathbf{D}_n = \mathbf{Z}_n \cdot \mathbf{Z}_2($$
半直積), $\operatorname{Aut}(\tilde{\Pi}) \cap \operatorname{Ad}(\Delta) \cong \mathbf{Z}_n$

(4) $\Delta = D_n \ (n \ge 5)$ 型のルート形の場合、拡大 Dynkin 図形の合同変換 f_1, f_2, f_3 を次で定める。

$$f_1: \alpha_0 \leftrightarrow \alpha_1, \ \alpha_i \mapsto \alpha_i \ (2 \le i \le n); \ f_1^2 = 1,$$

$$f_2: \alpha_{n-1} \leftrightarrow \alpha_n, \ \alpha_i \mapsto \alpha_i \ (0 \le i \le n-2); \ f_2^2 = 1, f_1 f_2 = f_2 f_1,$$

$$f_3: \alpha_i \leftrightarrow \alpha_{n-i} \ (0 \le i \le n), \ f_3^2 = 1.$$

このとき、拡大 Dynkin 図形の合同変換群は

$$\{1, f_1, f_2, f_3, f_1f_2, f_2f_3, f_1f_3, f_1f_2f_3\}$$

である。

 $lpha_1,lpha_{n-1},lpha_0,lpha_n$ をこの順に頂点とする正方形に働く二面体群 \mathbf{D}_4 を考えると、これは $\mathrm{Aut}(ilde{\Pi})$ と同型である。

n が偶数のときは

内部自己同型 = $\{1,f_1f_2,f_3,f_1f_2f_3\}$, 外部自己同型 = $\{f_1,f_2,f_1f_3,f_2f_3\}$, n が奇数のときは

内部自己同型 = $\{1,f_1f_2,f_2f_3,f_1f_3\}$, 外部自己同型 = $\{f_1,f_2,f_3,f_1f_2f_3\}$ である。

(5) $\Delta = D_4$ 型のルート形の場合、 $\operatorname{Aut}(\tilde{\Pi}) \cong \mathfrak{S}_4$ で

$$\operatorname{Aut}(\tilde{\Pi}) \cap \operatorname{Ad}(\Delta) = \left\{ 1, \begin{pmatrix} \alpha_1 & \leftrightarrow & \alpha_0 \\ \alpha_3 & \leftrightarrow & \alpha_4 \end{pmatrix}, \begin{pmatrix} \alpha_1 & \leftrightarrow & \alpha_4 \\ \alpha_3 & \leftrightarrow & \alpha_0 \end{pmatrix}, \begin{pmatrix} \alpha_1 & \leftrightarrow & \alpha_3 \\ \alpha_4 & \leftrightarrow & \alpha_0 \end{pmatrix} \right\}$$
 となる。

附記:二面体群について

平面上の正n角形のシンメトリー全部のなす群を二面体群 (dihedral group) と呼び \mathbf{D}_n と表わす。 $\sigma, \tau \in \mathbf{D}_n$ を次で定める。

 $\sigma = \mathbb{E} n$ 角形の中心のまわりの角 $2\pi/n$ の回転, $\tau = \mathbb{E} n$ 角形の一つの対称軸に関する鏡映

命題 2.7 次の関係式が成立する。

$$\sigma^n = 1, \ \tau^2 = 1, \ \tau\sigma = \sigma^{-1}\tau.$$

 σ, au は $\mathbf{D}_{m{n}}$ の生成元で $\#(\mathbf{D}_{m{n}})=2n$ かつ

$$\mathbf{D}_{n} = \{\sigma^{i}\tau^{j}; i = 0, 1, \dots, n-1; j = 0, 1\}.$$

 $\mathbf{Z}_n\cong\{\sigma^i;i=0,1,\cdots,n-1\}$ は \mathbf{D}_n の正規部分群で $\mathbf{Z}_2\cong\{\tau^j;j=0,1\}$ は \mathbf{D}_n の部分群である。更に

$$\{\sigma^i \tau^j; i=0,1,\cdots,n-1; j=0,1\} \cap \{\tau^j; j=0,1\} = \{1\}$$

となるので

$$\mathbf{D}_n \cong \mathbf{Z}_n \cdot \mathbf{Z}_2$$
 (半直積)

が成立する。

3 正規実形に対応するコンパクト対称空間

定義 3.1 複素半単純 Lie 環の実形の Cartan 分解に対応する対称対の階数が、元の複素半単純 Lie 環の階数に一致するとき、その実形を正規実形と呼ぶ。

複素半単純 Lie 環の正規実形に関しては、次の定理が知られている。後で必要になるので、定理の証明の概略も述べておく。詳しくは、例えば、Helgason [6] Ch.IX Theorem 5.10 を参照。

定理 3.2 複素半単純 Lie 環内には、内部自己同型を除いて一意的に正規実形が存在する。

証明の概略 複素半単純 Lie 環をしで表し、 \mathfrak{g} のコンパクト実形 \mathfrak{g} をとる。 \mathfrak{g} に \mathfrak{I} Int(\mathfrak{g}) 不変内積を定めておく。 \mathfrak{g} 内の極大可換部分環 \mathfrak{t} をとり、 \mathfrak{t} に関する $\mathfrak{l}=\mathfrak{g}^{\mathbf{C}}$ のルート空間分解を

$$\mathfrak{l}=\mathfrak{t}^{\mathbf{C}}+\sum_{\pmb{lpha}\in\Delta(\mathfrak{g})}\mathfrak{g}_{\pmb{lpha}}$$

とする。このとき、次の条件を満たす $\{X_{\alpha} \mid \alpha \in \Delta(\mathfrak{g})\}$ をとることができる。

- 1. 各 $\alpha \in \Delta(\mathfrak{g})$ に対して $X_{\alpha} \in \mathfrak{g}_{\alpha}$ であって、 $[X_{\alpha}, X_{-\alpha}] = \sqrt{-1}\alpha$ を満たす。
- 2. $\alpha, \beta, \alpha + \beta \in \Delta(\mathfrak{g})$ を満たす α, β に対して、 $[X_{\alpha}, X_{\beta}] = N_{\alpha,\beta} X_{\alpha+\beta}$ となり、 $N_{\alpha,\beta}$ は $N_{\alpha,\beta} = -N_{-\alpha,-\beta}$ を満たす実定数である。
- 3. 各 $\alpha \in \Delta(\mathfrak{g})$ に対して、 $X_{\alpha} X_{-\alpha}, \sqrt{-1}(X_{\alpha} + X_{-\alpha}) \in \mathfrak{g}$ が成り立つ。

そこで、

$$\mathfrak{g}_n = \sum_{\alpha \in \Delta(\mathfrak{g})} \mathbf{R} \sqrt{-1} \alpha + \sum_{\alpha \in \Delta(\mathfrak{g})} \mathbf{R} X_{\alpha}$$

とおくと、 g_n はlの実形になる。すなわち、 g_n はlの実Lie部分環になり、

$$\mathfrak{l}=\mathfrak{g}_n+\sqrt{-1}\mathfrak{g}_n$$

が実ベクトル空間の直和になる。 \mathfrak{g}_n に関する複素共役写像 \mathfrak{e}_{τ} で表すと、 τ は \mathfrak{g}_n を不変にし、

$$\mathfrak{k}_{m{n}}=\mathfrak{g}_{m{n}}\cap\mathfrak{g},\qquad \mathfrak{p}_{m{n}}=\mathfrak{g}_{m{n}}\cap(\sqrt{-1}\mathfrak{g})$$

とおくと、

$$\mathfrak{g}_n = \mathfrak{k}_n + \mathfrak{p}_n$$

は g_n の Cartan 分解になる。 \mathfrak{t} は \mathfrak{g} の極大可換部分環だから、 $\sqrt{-1}\mathfrak{t}$ は \mathfrak{g}_n の極大可換部分環になり、 \mathfrak{p}_n の定め方より、 $\sqrt{-1}\mathfrak{t} \subset \mathfrak{p}_n$ となる。したがって、 \mathfrak{g}_n は \mathfrak{l} の正規実形になる。

一意性の証明は省略する。

一般のコンパクト型対称空間についてのいくつかの概念を準備する。Gをコンパクト連結半単純 Lie 群とし、 θ を G の対合的自己同型写像とする。

$$G_{\theta} = \{ g \in G \mid \theta(g) = g \}$$

とおく。 G_{θ} の単位連結成分を G_{θ}^{0} で表し、G の閉 Lie 部分群 Kを G_{θ}^{0} \subset K \subset G_{θ} となるようにとると、(G,K) はコンパクト対称対になる。G 上に θ 不変でかつ両側不変な Riemann 計量 \langle , \rangle をとると、 \langle , \rangle は自然に等質空間 M=G/K上に G 不変 Riemann 計量を誘導する。この G 不変 Riemann 計量も \langle , \rangle で表すことにする。このとき、Mは Riemann 計量 \langle , \rangle によってコンパクト半単純 Riemann 対称空間になる。逆に任意のコンパクト半単純 Riemann 対称空間は、このようにして得られることが知られている。

コンパクト半単純 Riemann 対称空間 M=G/Kに対して $\pi:G\to M$ で自然な射影を表わす。 $g\in G$ に対して $[g]=\pi(g)$ とおく。

 \mathfrak{g} と \mathfrak{k} をそれぞれ G と Kの Lie 環とする。G の対合的自己同型写像 θ は、 \mathfrak{g} の対合的自己同型写像を誘導する。それも θ で表すことにする。G の Riemann 計量 $\langle \ , \ \rangle$ は、 \mathfrak{g} の内積 $\langle \ , \ \rangle$ を誘導し、 $\langle \ , \ \rangle$ は θ 不変かつ $\mathrm{Ad}(G)$ 不変になる。 G^0_θ \subset K \subset G_θ より、

$$\mathfrak{k} = \{ X \in \mathfrak{g} \mid \theta(X) = X \}$$

が成り立つ。

$$\mathfrak{m} = \{ X \in \mathfrak{g} \mid \theta(X) = -X \}$$

とおく。θは等長的かつ対合的だから、直交直和分解

$$\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$$

を得る。

$$\mathfrak{g}^* = \mathfrak{k} + \sqrt{-1}\mathfrak{m} \subset \mathfrak{g}^{\mathbf{C}}$$

とおいて、 \mathfrak{g}^* が $\mathfrak{g}^{\mathbf{C}}$ の正規実形になるときに、M=G/Kを正規実形に対応するコンパクト対称空間と言う。正規実形の定義から、コンパクト対称空間 Mが正規実形に対応するための必要十分条件は、 $\mathrm{rank}M=\mathrm{rank}G$ となることである。正規実形に対応する二つのコンパクト対称空間が局所同型になるための必要十分条件は、それらの等長変換群の Lie 環が同型になることである。これは、定理 3.2の一意性からわかる。

定理 $3.3\ M=G/K$ を正規実形に対応するコンパクト対称空間とする。Gの極大最大階数 Lie 部分群 G'に対して、G'を共役なものに取り替えることにより、 $G'/(K\cap G')$ は M内の極大最大階数全測地的部分多様体になる。逆に M内の任意の極大最大階数全測地的部分多様体はこのようにして得られる。このような $G'/(K\cap G')$ は、正規実形に対応するコンパクト対称空間、または、正規実形に対応するコンパクト対称空間と S^1 の積に局所同型になる。

証明 \mathfrak{a} を \mathfrak{m} 内の極大可換部分空間とする。 \mathfrak{a} は \mathfrak{g} 内の極大可換部分環である。 $\mathfrak{t}=\mathfrak{a}$ と おき、定理 3.2の証明中の記号をそのまま使うことにする。

G'を G の極大最大階数 Lie 部分群とする。G'の Lie 環 \mathfrak{g}' は \mathfrak{g} の極大最大階数部分環になる。G'を共役なものに取り替えることにより \mathfrak{g}' は \mathfrak{a} を含むとしてよい。このとき、ある $D \subset \Delta_+(\mathfrak{g})$ が存在して

$$\mathfrak{g}' = (\mathfrak{a} + \sum_{\alpha \in D} \mathbf{R} \sqrt{-1} (X_{\alpha} + X_{-\alpha})) + \sum_{\alpha \in D} \mathbf{R} (X_{\alpha} - X_{-\alpha}).$$

したがって、g'は θ 不変である。このとき、 $G'/(K\cap G')$ はM内の最大階数全測地的部分多様体になる。 $G'/(K\cap G')$ の極大性はG'の極大性から従う。

逆に M内の極大最大階数全測地的部分多様体に対応する Lie triple system $\mathfrak s$ は $\mathfrak m$ の極大最大階数 Lie triple system である。したがって $\mathfrak g(\mathfrak s)=\mathfrak s+[\mathfrak s,\mathfrak s]$ は最大階数 Lie 部分環である。 $\mathfrak s$ は $\mathfrak a$ を含んでいるとしてよいので、ある $D\subset \Delta_+(\mathfrak g)$ が存在して

$$\mathfrak{g}(\mathfrak{s}) = (\mathfrak{a} + \sum_{\alpha \in D} \mathbf{R} \sqrt{-1} (X_{\alpha} + X_{-\alpha})) + \sum_{\alpha \in D} \mathbf{R} (X_{\alpha} - X_{-\alpha})$$

となる。この表示から $g(\mathfrak{s})$ の極大性が示される。 $g(\mathfrak{s})$ に対応する Lie 部分群 G'をとると G'は極大最大階数 Lie 部分群で、 $G'/(K\cap G')$ は Lie triple system \mathfrak{s} に対応する全測地的 部分多様体である。

 \mathfrak{g} の極大最大階数部分環 \mathfrak{g}' は Borel-Siebenthal の結果からコンパクト半単純となるかまたは、コンパクト半単純イデアル \mathfrak{g}_s と 1 次元中心 \mathfrak{g}_s との直和となる。後者が起きた場合を考察する。 \mathfrak{g}_s は θ 不変なので、 \mathfrak{g}_s は θ の+1 固有空間 $\mathfrak{g}'_{\mathfrak{g}}$ と-1 固有空間 $\mathfrak{g}'_{\mathfrak{m}}$ との直和になる。このとき、

$$\operatorname{rank} M = \operatorname{rank} \mathfrak{g} = \operatorname{rank} \mathfrak{g}' = \operatorname{rank} \mathfrak{g}_s + 1 \ge \operatorname{rank} \mathfrak{g}_{\mathfrak{m}}' + 1 = \operatorname{rank} M$$

となるので $\operatorname{rank} \mathfrak{g}_s = \operatorname{rank} \mathfrak{g}_m'$ となる。すなわち、 $G'/(K \cap G')$ は正規実形に対応するコンパクト対称空間と S^1 の積に局所同型になる。前者が起きた場合には、 $G'/(K \cap G')$ は正規実形に対応するコンパクト対称空間に局所同型になる。

注意 3.4 Mの任意の最大階数全測地的部分多様体 Nに対して、Mの最大階数全測地的部分多様体の列 $\{M_i\}$ が存在し、

$$M = M_0 \supset \cdots \supset M_k = N$$

となり、各 M_{i+1} は M_i 内の極大最大階数全測地的部分多様体になる。 M_i はトーラス Tと正規実形に対応するコンパクト対称空間 N_i の直積と局所同型であり、このとき、 M_{i+1} は Tと N_i のある極大最大階数全測地的部分多様体との直積と局所同型になる。

表 2は正規実形に対応する各コンパクト対称空間

$$\mathcal{A}_r = SU(r+1)/SO(r), \quad \mathcal{B}_r = SO(r+1)/S(O(r) \times O(r+1)),$$

$$\mathfrak{C}_r = Sp(r)/U(r), \quad \mathfrak{D}_r = SO(r)/S(O(r) \times O(r)),$$

 \mathcal{E}_6 : に付随 $(\mathfrak{e}_6,\mathfrak{sp}(4))$, \mathcal{E}_7 : $(\mathfrak{e}_7,\mathfrak{su}(8))$ に付随,

E8: (e8, so(16)) に付随,

 $\mathfrak{F}_4: (\mathfrak{f}_4,\mathfrak{sp}(3)+\mathfrak{su}(2))$ に付随,

 $\mathfrak{G}_2:(\mathfrak{g}_2,\mathfrak{su}(2)+\mathfrak{su}(2))$ に付随.

内の最大階数極大全測地的部分多様体を全て書き出したものである。 *M*が古典型の場合に極大最大階数全測地的部分多様体の入りかたを記しておく。

 $M = A_r$ の場合:

(G,K)=(SU(r+1),SO(r+1)) とおく。 $\theta:G\to G;g\mapsto {}^tg^{-1}=\bar{g}$ は回帰的自己同型で $G_\theta=K.$ $g=\mathfrak{k}+\mathfrak{m}$ と標準分解すると

$$\mathfrak{m} = \{\sqrt{-1}X | X \in \mathfrak{gl}(r+1, \mathbf{R}), \operatorname{tr}(X) = 0, {}^{t}X = X\}.$$

mの極大可換部分空間 aは

$$\mathfrak{a} = \{\sqrt{-1}\mathrm{diag}(x_1,\cdots,x_n) | \sum_{i=1}^n x_i = 0, x_i \in \mathbf{R}\}.$$

 $\alpha_{kl} \in \mathfrak{a}$ を次で定める。

$$\langle \alpha_{kl}, H \rangle = x_k - x_l \quad \text{for} \quad H = \sqrt{-1} \sum x_i E_{ii} \in \mathfrak{a}.$$

このとき、

$$[H, E_{kl}] = \sqrt{-1} \langle \alpha_{kl}, H \rangle E_{kl}$$

となるので $\mathfrak{g}^{\mathbf{C}} = \mathfrak{sl}(r+1,\mathbf{C})$ の $\mathfrak{a}^{\mathbf{C}}$ によるルート空間分解は

$$\mathfrak{g}^{\mathbf{C}} = \mathfrak{a}^{\mathbf{C}} + \sum_{k \neq l} \mathbf{C} E_{kl}$$

でルート全体 $\Delta(\mathfrak{g})$ は

$$\Delta(\mathfrak{g}) = \{lpha_{kl} | k
eq l \}$$

となる。

$$\Pi(\mathfrak{g}) = \{\alpha_{12}, \cdots, \alpha_{n-1,n}\}$$

は基本ルート系で、この基本ルート系に関する正ルートの全体 $\Delta_+(\mathfrak{g})$ は

$$\Delta_+(\mathfrak{g}) = \{lpha_{kl} | k < l \}$$

となる。最高ルート-α0は

$$-\alpha_0 = \alpha_{1n} = \alpha_{12} + \cdots + \alpha_{n-1,n}$$

である。

 $(II)H = \frac{H_1}{2}$ の場合:

$$f: S^{1} \times \mathcal{A}_{r-1} \to \mathcal{A}_{r};$$

$$(\exp(\sqrt{-1}\theta), [g]) \mapsto \left[\begin{pmatrix} \exp(-r\sqrt{-1}\theta) & 0\\ 0 & \exp(\sqrt{-1}\theta)g \end{pmatrix} \right],$$

M type H 全測地的部分多様体 A_r (II) $H_1/2$ $S^1 \times A_{r-1}$ $H_1/2$ $S^1 \times A_{i-1} \times A_{r-i}$ ($i = 2, \dots, [\frac{r+1}{2}]$) $H_1/2$ $S^1 \times A_{i-1} \times A_{r-i}$ ($i = 2, \dots, r-1$) $H_1/2$ $D_i \times B_{r-i}$ ($i = 3, \dots, r-1$) $H_r/2$ D_r (II) $H_1/2$ $S^1 \times B_{r-1}$ $H_1/2$ $S^1 \times A_{r-1}$ $H_2/2$ $A_1 \times A_1 \times D_{r-2}$ (II) $H_1/2$ $S^1 \times D_{r-1}$ $H_1/2$ $S^1 \times D_{r-1}$ $H_1/2$ $S^1 \times D_{r-1}$ $H_1/2$ $S^1 \times D_r$ $H_1/2$ </th <th></th> <th></th> <th></th> <th></th>				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M	type	H	全測地的部分多樣体
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_r	(II)	$H_1/2$	$S^1 imes \mathcal{A}_{r-1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$H_i/2$	$S^1 imes \mathcal{A}_{i-1} imes \mathcal{A}_{r-i} \ (i=2,\ldots,[rac{r+1}{2}])$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(I)	$H_2/2$	$\mathcal{A}_1 imes \mathcal{A}_1 imes \mathfrak{B}_{r-2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO.		$H_i/2$	$\mathcal{D}_i \times \mathcal{B}_{r-i} \ (i=3,\ldots,r-1)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_r		$H_{m r}/2$	\mathfrak{D}_r
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(II)	$H_1/2$	$S^1 \times \mathcal{B}_{r-1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	(I)	$H_i/2$	$\mathcal{C}_i imes \mathcal{C}_{r-i} \ (i=1,\ldots,[rac{r}{2}])$
$ \mathcal{D}_{r} = \begin{array}{ c c c c } \hline (I) & H_{i}/2 & \mathcal{D}_{i} \times \mathcal{D}_{r-i}(i=3,\ldots, [\frac{r}{2}]) \\ \hline (II) & H_{1}/2 & S^{1} \times \mathcal{D}_{r-1} \\ \hline H_{r-1}/2 & S^{1} \times \mathcal{A}_{r-1} \\ \hline \\ \mathcal{E}_{6} & (I) & H_{2}/2 & \mathcal{A}_{1} \times \mathcal{A}_{5} \\ \hline H_{4}/3 & \mathcal{A}_{2} \times \mathcal{A}_{2} \times \mathcal{A}_{2} \\ \hline (II) & H_{1}/2 & S^{1} \times \mathcal{D}_{5} \\ \hline \\ \mathcal{E}_{7} & (II) & H_{1}/2 & \mathcal{A}_{1} \times \mathcal{D}_{6} \\ \hline H_{3}/3 & \mathcal{A}_{2} \times \mathcal{A}_{5} \\ \hline H_{2}/2 & \mathcal{A}_{7} \\ \hline (II) & H_{7}/2 & S^{1} \times \mathcal{E}_{6} \\ \hline \\ \mathcal{E}_{8} & (I) & H_{5}/5 & \mathcal{A}_{4} \times \mathcal{A}_{4} \\ \hline H_{7}/3 & \mathcal{A}_{2} \times \mathcal{E}_{6} \\ \hline H_{8}/2 & \mathcal{A}_{1} \times \mathcal{E}_{7} \\ \hline \\ \mathcal{F}_{4} & (I) & H_{2}/3 & \mathcal{A}_{2} \times \mathcal{A}_{2} \\ \hline \\ \mathcal{F}_{6} & (II) & H_{1}/3 & \mathcal{A}_{2} \\ \hline \end{array} $	Cr	(II)	$H_{m{r}}/2$	$S^1 imes \mathcal{A}_{r-1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(I)	$H_2/2$	$\mathcal{A}_1 \times \mathcal{A}_1 \times \mathcal{D}_{r-2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n		$H_i/2$	$\mathcal{D}_i \times \mathcal{D}_{r-i} (i=3,\ldots, [\frac{r}{2}])$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	D_r	(II)	$H_1/2$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$H_{r-1}/2$	$S^1 \times \mathcal{A}_{r-1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(I)	$H_2/2$	$\mathcal{A}_1 imes \mathcal{A}_5$
\mathcal{E}_{7} (I) $H_{1}/2$ $H_{3}/3$ $A_{2} \times A_{5}$ $H_{2}/2$ A_{7} (II) $H_{7}/2$ $S^{1} \times \mathcal{E}_{6}$ $H_{2}/3$ A_{8} $H_{2}/3$ A_{8} $H_{2}/3$ $A_{1} \times \mathcal{D}_{2}$ $A_{2} \times \mathcal{E}_{3}$ $A_{3} \times \mathcal{E}_{4} \times \mathcal{E}_{5}$ $A_{4} \times \mathcal{E}_{7}$ $A_{5} \times \mathcal{E}_{7}$ $A_{7} \times \mathcal{E}_{7}$ $A_{8} \times \mathcal{E}_{7}$ $A_{1} \times \mathcal{E}_{7}$ $A_{1} \times \mathcal{E}_{7}$ $A_{2} \times \mathcal{E}_{6}$ $A_{1} \times \mathcal{E}_{7}$ $A_{2} \times \mathcal{E}_{6}$ $A_{3} \times \mathcal{E}_{7}$ $A_{4} \times \mathcal{E}_{7}$ $A_{5} \times \mathcal{E}_{7}$ $A_{5} \times \mathcal{E}_{7}$ $A_{6} \times \mathcal{E}_{7}$ $A_{7} \times \mathcal{E}_{7}$ $A_{1} \times \mathcal{E}_{7}$ $A_{1} \times \mathcal{E}_{7}$ $A_{2} \times \mathcal{E}_{8}$ $A_{2} \times \mathcal{E}_{8}$ $A_{3} \times \mathcal{E}_{8}$ $A_{4} \times \mathcal{E}_{8}$ $A_{5} \times \mathcal{E}_{8}$ $A_{7} \times \mathcal{E}_{8}$ $A_{8} \times \mathcal{E}_{8}$ $A_{1} \times \mathcal{E}_{7}$ $A_{1} \times \mathcal{E}_{7}$ $A_{2} \times \mathcal{E}_{8}$ $A_{3} \times \mathcal{E}_{8}$ $A_{4} \times \mathcal{E}_{8}$ $A_{5} \times \mathcal{E}_{8}$ $A_{7} \times \mathcal{E}_{8}$ $A_{8} \times \mathcal{E}_{8}$	\mathcal{E}_6		$H_4/3$	$\mathcal{A}_2 imes \mathcal{A}_2 imes \mathcal{A}_2$
\mathcal{E}_{7} (I) $H_{3}/3$ $H_{2}/2$ A_{7} $H_{1}/2$ $S^{1} \times \mathcal{E}_{6}$ $H_{1}/2$ D_{8} $H_{2}/3$ A_{8} $H_{2}/3$ $A_{1} \times \mathcal{E}_{6}$ $H_{1}/3$ $A_{2} \times \mathcal{E}_{6}$ $H_{2}/3$ A_{3} $A_{4} \times A_{4}$ $A_{5}/5$ $A_{1} \times \mathcal{E}_{7}$ $H_{1}/2$ $A_{1} \times \mathcal{E}_{7}$ $H_{2}/3$ $A_{2} \times \mathcal{E}_{6}$ $H_{3}/2$ $A_{1} \times \mathcal{E}_{7}$ $A_{2} \times \mathcal{E}_{6}$ $A_{3} \times \mathcal{E}_{7}$ $A_{4} \times \mathcal{E}_{7}$ $A_{5}/2$ $A_{5}/2$ $A_{7}/2$ $A_{8}/2$ $A_{1}/2$ $A_{1}/2$ $A_{2}/2$ $A_{3}/2$ $A_{4}/2$ $A_{5}/2$ $A_{5}/$		(II)	$H_1/2$	$S^1 imes \mathcal{D}_5$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		(I)	$H_1/2$	$\mathcal{A}_1 imes \mathfrak{D}_6$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	C		$H_3/3$	$\mathcal{A}_2 imes \mathcal{A}_5$
\mathcal{E}_{8} (I) $egin{array}{c ccccccccccccccccccccccccccccccccccc$	C7		$H_2/2$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(II)	$H_7/2$	$S^1 imes \mathcal{E}_6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(I)	$H_1/2$	\mathcal{D}_8
$egin{array}{c ccccccccccccccccccccccccccccccccccc$			$H_2/3$	\mathcal{A}_8
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathcal{E}_8		$H_{5}/5$	$\mathcal{A}_4 imes \mathcal{A}_4$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$			$H_7/3$	
$egin{array}{c cccc} \mathcal{F}_4 & (I) & H_2/3 & \mathcal{A}_2 imes \mathcal{A}_2 \ \hline H_4/2 & \mathcal{B}_4 \ \hline \mathcal{G}_0 & (I) & H_1/3 & \mathcal{A}_2 \ \hline \end{array}$				
$H_4/2$ B_4 $H_1/3$ A_2	\mathfrak{F}_4	(I)		
G_0 (I) $H_1/3$ A_2				and the state of t
Y ₀				
$H_2/2 H_2/2 A_1 \times A_1$	g_2	(I)		
			$H_2/2$	$A_1 \times A_1$

表 2: 正規実形に対応する compact 型対称空間内の最大階数極大全測地的部分多様体

ここで既に述べた通り $[g] = \pi(g)$ である。 $f^{-1}(SO(r+1))$ は次の集合になる。

$$\left\{ \left(\exp\left(rac{2\pi\sqrt{-1}}{r}m
ight), \left[\exp\left(-rac{2\pi\sqrt{-1}}{r}m
ight) E_r
ight]
ight) \middle| m=0,1,\ldots,r-1
ight\}.$$

 $H=\frac{H_i}{2}$ の場合:

$$f: \mathcal{A}_{i-1} \times \mathcal{A}_{r-i} \times S^1 \to \mathcal{A}_r;$$

$$([x], [y], \exp(\sqrt{-1}\theta)) \mapsto \begin{bmatrix} \exp(-(n-i)\sqrt{-1}\theta)x & 0\\ 0 & \exp(\sqrt{-1}i\theta)y \end{bmatrix}$$

 $f^{-1}(SO(r+1))$ は m が $0 \le m \le i(r+1-i)-1$ なる整数を動くとき

$$\left(\left[\exp\left(\frac{2\pi m}{i}\sqrt{-1}\right)\right], \left[\exp\left(-\frac{2\pi m}{n-i}\sqrt{-1}\right)\right], \exp\left(\frac{2\pi m\sqrt{-1}}{i(n-i)}\right)\right)$$

となる元の全体に一致する。

 $M = \mathcal{C}_r$ の場合:

$$G=Sp(r)=\{g\in U(2r)|^tgJ_ng=J_n\}$$
 但し $J_n=\left(egin{array}{cc} E_r \ -E_r \end{array}
ight)$

とおく。

$$\theta: G \to G; g \mapsto \bar{g} (= J_n g J_n^{-1})$$

とおくと βは回帰的自己同型で

$$G_{ heta} = \left\{ \left(egin{array}{cc} a & b \ -b & a \end{array}
ight) \in O(2r)
ight\} \ = \left\{ \left(egin{array}{cc} a & b \ -b & a \end{array}
ight) \middle| {}^taa + {}^tbb = E_r, {}^tba = {}^tab
ight\}$$

以下、 G_{θ} とU(r)とを次の対応で同一視する。

$$G_ heta \cong U(r); \left(egin{array}{cc} a & b \ -b & a \end{array}
ight) \leftrightarrow a + \sqrt{-1}b.$$

$$\begin{array}{lcl} \mathfrak{g} & = & \{X \in \mathfrak{u}(2r) | J_n X = -^t X J_n \} \\ & = & \left. \left\{ \left(\begin{array}{cc} X_{11} & X_{12} \\ -\overline{X}_{12} & -^t X_{11} \end{array} \right) \right| X_{11} \in \mathfrak{u}(r), X_{12} \in \mathfrak{gl}(r, \mathbf{R}), {}^t X_{12} = X_{12} \right\} \end{array}$$

となるので \mathfrak{g} の次元はn(2n+1)である。

$$\mathfrak{k} = \left\{ \left(egin{array}{c|c} X_{11} & X_{12} \ -X_{12} & X_{11} \end{array}
ight) \middle| X_{11} \in \mathfrak{o}(r), X_{12} \in \mathfrak{gl}(r,\mathbf{R}), {}^tX_{12} = X_{12}
ight\}$$

となるから

$$\mathfrak{k}\cong\mathfrak{u}(r);\left(egin{array}{cc} X_{11} & X_{12} \ -X_{12} & X_{11} \end{array}
ight)\leftrightarrow X_{11}+\sqrt{-1}X_{12}$$

となる。 $g = \ell + m$ と標準分解すると

$$\mathfrak{m} = \left\{ \sqrt{-1} \left(egin{array}{cc} A & B \ B & -A \end{array}
ight) \middle| {}^{t}A = A \in \mathfrak{gl}(r, \mathbf{R}), {}^{t}B = B \in \mathfrak{gl}(r, \mathbf{R})
ight\}$$

a の極大可換部分空間 a は

$$\mathfrak{a} = \left\{ \sum_{i=1}^{n} x_i (E_{ii} - E_{n+i,n+i}) \middle| x_i \in \mathbf{R} \right\}$$

である。gの複素化は

$$\mathfrak{g}^{\mathbf{C}} = \mathfrak{sp}(r, \mathbf{C}) = \mathfrak{a}^{\mathbf{C}} + \sum_{i \neq j} \mathbf{C}(E_{ij} - E_{n+j,n+i}) + \sum_{i \leq j} \mathbf{C}(E_{n+i,j} + E_{n+j,i}) + \sum_{i \leq j} \mathbf{C}(E_{i,n+j} + E_{j,n+i})$$

となる。 $\alpha_{ij}, \beta_{ij} \in \mathfrak{a}$ を次で定める。

$$\langle \alpha_{ij}, H \rangle = x_i + x_j, \ \langle \beta_{ij}, H \rangle = x_i - x_j \quad \text{for} \quad H = \sqrt{-1} \sum_{i=1}^n x_i (E_{ii} - E_{n+i,n+i}).$$

このとき、 $H = \sqrt{-1} \sum_{i=1}^{n} x_i (E_{ii} - E_{n+i,n+i})$ に対して

$$[H, E_{n+i,j} + E_{n+j,i}] = -\sqrt{-1} \langle \alpha_{ij}, H \rangle (E_{n+i,j} + E_{n+j,i}) \quad (i \leq j),$$

$$[H, E_{i,n+j} + E_{j,n+i}] = \sqrt{-1} \langle \alpha_{ij}, H \rangle (E_{i,n+j} + E_{j,n+i}) \quad (i \leq j),$$

$$[H, E_{ij} - E_{n+j,n+i}] = \sqrt{-1} \langle \beta_{ij}, H \rangle (E_{ij} - E_{n+j,n+i}) \quad (i \neq j)$$

となる。従って、ルート全部の集合は

$$\Delta(\mathfrak{g}) = \{ \pm \alpha_{ij} | 1 \le i \le j \le n \} \cup \{ \pm \beta_{ij} | 1 \le i < j \le n \}$$

である。

$$\Pi(\mathfrak{g}) = \{ \alpha_1 = \beta_{12}, \alpha_2 = \beta_{23}, \cdots, \alpha_{n-1} = \beta_{n-1,n}, \alpha_n = \alpha_{n,n} \}$$

は基本ルート系である。この基本ルート系に関する正ルート全部は

$$\Delta_+(\mathfrak{g}) = \{\alpha_{ij} | 1 \leq i \leq j \leq n\} \cup \{\beta_{ij} | 1 \leq i < j \leq n\}$$

となる。正ルートを基本ルート系の線形結合で表すと

$$\left\{ egin{array}{lll} lpha_{ij} &=& \displaystyle\sum_{i \leq k < j} lpha_k + 2 \displaystyle\sum_{j \leq k < n} lpha_k + lpha_n & (i
eq j), \ lpha_{ii} &=& \displaystyle2 \displaystyle\sum_{i \leq k < n} lpha_k + lpha_n, \ eta_{ij} &=& \displaystyle\sum_{i \leq k < j} lpha_k \end{array}
ight.$$

となる。最高ルート $-\alpha_0$ は

$$-lpha_0=lpha_{11}=2\sum_{1\leq k< n}lpha_k+lpha_n$$

である。

 $(I)H = \frac{H_i}{2}$ の場合:

この fは embedding である。

 $H=\frac{H_n}{2}$ の場合:

$$f: S^1 imes \mathcal{A}_{r-1} o \mathfrak{C}_r;$$
 $(\exp(\sqrt{-1}\theta), [g]) \mapsto \left[\left(\exp(\sqrt{-1}\theta)g \right) \exp(-\sqrt{-1}\theta)g \right],$ $f^{-1}(U(n)) = \left\{ \left(\exp\left(\frac{2\pi l}{r(r-1)}\sqrt{-1}\right), \left[\exp\left(\frac{2\pi l}{r}\sqrt{-1}\right)E_r\right] \right) \middle| l = 1, 2, \cdots, r(r-1) \right\}.$ $M = \mathcal{D}_r \mathcal{O}$ 場合: $(G, K) = (SO(2r), S(O(r) imes O(r)))$ とおく。 $\theta: G \to G; g \mapsto I_{r,r}gI_{r,r}, \quad I_{r,r} = \left(\begin{array}{c} -E_r \\ E_r \end{array} \right)$

とおくとhetaは回帰的自己同型で $G_ heta=K$. $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ と標準分解すると

$$\mathfrak{m} = \left\{ \left(egin{array}{cc} Z \ -^t Z \end{array}
ight) \middle| Z \in \mathfrak{gl}(r,\mathbf{R})
ight\}$$

m の極大可換部分空間 a は

$$\mathfrak{a} = \left\{ H(x_1, \dots x_r) = \sum_{i=1}^r x_i (E_{i,n+i} - E_{n+i,i}) \middle| x_i \in \mathbf{R} \right\}.$$

$$F_{ab} = E_{ab} - E_{ba} \quad (1 \le a, b \le b)$$

とおく。 $1 \leq i, j \leq n$ のとき、 $H = H(x_1, \cdots x_n)$ に対して

$$\begin{aligned}
&[H, (F_{ij} + F_{n+i,n+j}) \pm \sqrt{-1}(F_{i,n+j} + F_{j,n+i})] \\
&= \pm \sqrt{-1}(x_i - x_j) \{ (F_{ij} + F_{n+i,n+j}) \pm \sqrt{-1}(F_{i,n+j} + F_{j,n+i}) \}, \\
&[H, (F_{ij} - F_{n+i,n+j}) \pm \sqrt{-1}(F_{i,n+j} - F_{j,n+i})] \\
&= \pm \sqrt{-1}(x_i + x_j) \{ (F_{ij} - F_{n+i,n+j}) \pm \sqrt{-1}(F_{i,n+j} - F_{j,n+i}) \}
\end{aligned}$$

となる。従って

$$\langle \alpha_{ij}, H \rangle = x_i - x_j, \quad \langle \beta_{ij}, H \rangle = x_i + x_j$$

とおくと

$$\Delta(\mathfrak{g}) = \{\alpha_{ij} | 1 \le i \ne j \le n\} \cup \{\pm \beta_{ij} | 1 \le i < j \le n\}$$

となる。

$$\Pi(\mathfrak{g})=\{lpha_1=lpha_{12},lpha_2=lpha_{23},\cdots,lpha_{n-1}=lpha_{n-1,n},lpha_n=eta_{n-1,n}\}$$

は基本ルート系で、この基本ルート系に関する正ルート全体は

$$\Delta_{+}(\mathfrak{g}) = \{\alpha_{ij}, \beta_{ij} | 1 \le i < j \le n\}$$

となる。正ルート全部を基本ルート系の線形結合で表示すると

$$\begin{cases} \alpha_{ij} = \sum_{i \leq k < j} \alpha_k & (1 \leq i < j \leq n), \\ \beta_{in} = \alpha_i + \dots + \alpha_{n-2} + \alpha_n & (1 \leq i \leq n-1), \\ \beta_{ij} = \sum_{i \leq k < j} \alpha_k + 2 \sum_{j \leq k < n-1} \alpha_k + \alpha_{n-1} + \alpha_n & (1 \leq i < j \leq n) \end{cases}$$

となる。最高ルート $-\alpha_0$ は

$$-\alpha_0 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n = \beta_{12}$$

である。

 $(I)H = \frac{H_2}{2}$ の場合: まず、

$$S^2 = SU(2)/SO(2)$$

 $SO(2) = \left\{ \left(\begin{array}{c} a + b\sqrt{-1} \\ a - b\sqrt{-1} \end{array} \right) \middle| a^2 + b^2 = 1 \right\}$

とおく。

$$f: S^2 \times S^2 \times \mathcal{D}_{r-2} \to \mathcal{D}_r;$$

$$\left(\left[\left(\begin{array}{cc}z_1 & -w_1\\ \bar{w_1} & \bar{z_1}\end{array}\right)\right], \left[\left(\begin{array}{cc}z_2 & -w_2\\ \bar{w_2} & \bar{z_2}\end{array}\right)\right], \left[\left(\begin{array}{cc}\alpha & \beta\\ \gamma & \delta\end{array}\right)\right]\right) \mapsto \left[\left(\begin{array}{cc}A & B\\ & \alpha & \beta\\ C & D\\ & \gamma & \delta\end{array}\right)\right],$$

但し、

$$z_i = a_i + b_1 \sqrt{-1}, \ w_i = c_i + d_i \sqrt{-1} \quad (i = 1, 2),$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a_1 & -b_1 & -c_1 & -d_1 \\ b_1 & a_1 & -d_1 & c_1 \\ c_1 & d_1 & a_1 & -b_1 \\ d_1 & -c_1 & b_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 & c_2 & d_2 \\ -b_2 & a_2 & -d_2 & c_2 \\ -c_2 & d_2 & a_2 & -b_2 \\ -d_2 & -c_2 & b_2 & a_2 \end{pmatrix}.$$

 $f^{-1}(S(O(n) \times O(n)))$ は次の集合になる。

$$\left\{ \mbox{原点}, \left(\left[\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right], \left[\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right], S(O(n-2) \times O(n-2)) \right) \right\}.$$

 $H=rac{H_i}{2}$ の場合

$$f : \mathcal{D}_{i} \times \mathcal{D}_{r-i} \to \mathcal{D}_{r};$$

$$\left(\left[\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right], \left[\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \right] \right) \mapsto \left[\begin{pmatrix} a_{11} & a_{12} \\ & b_{11} & b_{12} \\ & a_{21} & a_{22} \\ & & b_{21} & b_{22} \end{pmatrix} \right].$$

この fは embedding である。

 $(II)H = \frac{H_1}{2}$ の場合:

$$f: S^1 \times \mathfrak{D}_{r-1} \to \mathfrak{D}_r;$$

$$\left(\exp(\sqrt{-1}\theta), \left[\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \right] \right) \mapsto \left[\begin{pmatrix} \cos\theta & -\sin\theta \\ & g_{11} & & g_{12} \\ \sin\theta & & \cos\theta \\ & g_{21} & & g_{22} \end{pmatrix} \right],$$

$$f^{-1}(S(O(n)\times O(n)))=\{(\pm 1,S(O(n-1)\times O(n-1)))\}.$$

 $H = \frac{H_{n-1}}{2}$ の場合:

$$f: S^1 \times \mathcal{A}_{r-1} \to \mathfrak{D}_r;$$

$$(\exp(\sqrt{-1}\theta), [g]) \mapsto \left[\left(\begin{array}{cc} \operatorname{Re}(g)\cos\theta - \operatorname{Im}(g)\sin\theta & -\operatorname{Im}(g)\cos\theta - \operatorname{Re}(g)\sin\theta \\ \operatorname{Re}(g)\sin\theta + \operatorname{Im}(g)\cos\theta & \operatorname{Re}(g)\cos\theta - \operatorname{Im}(g)\sin\theta \end{array} \right) \right].$$

 $f^{-1}(S(O(n) imes O(n)))$ はmが $m=0,1,\cdots,r-1$ を動くとき

$$\left(\exp\left(\frac{2\pi m\sqrt{-1}}{r}\right), \left[\exp\left(-\frac{2\pi m\sqrt{-1}}{r}\right)E_r\right]\right)$$

なる元全体と一致する。

 $M = \mathfrak{B}_r$ の場合:

$$(G,K)=(SO(2r),S(O(r) imes O(r+1)))$$
 とおく。

$$heta:G o G;g\mapsto I_{r,r+1}gI_{r,r},\quad I_{r,r}=\left(egin{array}{cc}-E_r&&&&&&E_{r+1}\end{array}
ight)$$

とおくとhetaは回帰的自己同型で $G_ heta=K$. $\mathtt{g}=\mathfrak{k}+\mathfrak{m}$ と標準分解すると

$$\mathfrak{m} = \left\{ \left(egin{array}{c} Z \ -^t Z \end{array}
ight) \middle| Z \in M(r,r+1;\mathbf{R})
ight\}.$$

m の極大可換部分空間 a は

$$\mathfrak{a}=\{H(x_1,\cdots x_n)=\sum_{i=1}^n x_i(E_{i,n+i}-E_{n+i,i})|x_i\in\mathbf{R}\}.$$
 $F_{ab}=E_{ab}-E_{ba}\quad (1\leq a,b\leq b)$

とおく。 $1 \leq i, j \leq n$ のとき、 $H = H(x_1, \cdots x_n)$ に対して

$$\begin{aligned}
& \left[H, (F_{ij} + F_{n+i,n+j}) \pm \sqrt{-1} (F_{i,n+j} + F_{j,n+i}) \right] \\
&= \pm \sqrt{-1} (x_i - x_j) \{ (F_{ij} + F_{n+i,n+j}) \pm \sqrt{-1} (F_{i,n+j} + F_{j,n+i}) \}, \\
& \left[H, (F_{ij} - F_{n+i,n+j}) \pm \sqrt{-1} (F_{i,n+j} - F_{j,n+i}) \right] \\
&= \pm \sqrt{-1} (x_i + x_j) \{ (F_{ij} - F_{n+i,n+j}) \pm \sqrt{-1} (F_{i,n+j} - F_{j,n+i}) \}
\end{aligned}$$

となる。 $1 \le i \le n$ のとき

$$[H, F_{i,2n+1} \pm \sqrt{-1}F_{n+i,2n+1}] = \pm \sqrt{-1}x_i(F_{i,2n+1} \pm \sqrt{-1}F_{n+i,2n+1})$$

となる。従って

$$\langle \alpha_{ij}, H \rangle = x_i - x_j, \quad \langle \beta_{ij}, H \rangle = x_i + x_j, \quad \langle \epsilon_i, H \rangle = x_i$$

とおくと

$$\Delta(\mathfrak{g}) = \{\alpha_{ij} | 1 \le i \ne j \le n\} \cup \{\pm \beta_{ij} | 1 \le i < j \le n\} \cup \{\pm \epsilon_i | 1 \le i \le n\}$$

となる。

$$\Pi(\mathfrak{g}) = \{ \alpha_1 = \alpha_{12}, \alpha_2 = \alpha_{23}, \cdots, \alpha_{n-1} = \alpha_{n-1,n}, \alpha_n = \epsilon_n \}$$

は基本ルート系で、この基本ルート系に関する正ルート全体は

$$\Delta_+(\mathfrak{g}) = \{\alpha_{ij}, \beta_{ij} | 1 \leq i < j \leq n\} \cup \{\epsilon_i | 1 \leq i \leq n\}$$

となる。正ルート全部を基本ルート系の線形結合で表示すると

$$\begin{cases} \alpha_{ij} &= \sum_{i \leq k < j} \alpha_k \quad (1 \leq i < j \leq n), \\ \beta_{ij} &= \sum_{i \leq k < j} \alpha_k + 2 \sum_{j \leq k \leq n} \alpha_k \quad (1 \leq i < j \leq n), \\ \epsilon_i &= \sum_{i \leq k \leq n} \alpha_k \quad (1 \leq i \leq n) \end{cases}$$

となる。最高ルート $-\alpha_0$ は

$$-\alpha_0 = \alpha_1 + 2(\alpha_2 + \alpha_3 + \dots + \alpha_n) = \beta_{12}$$

である。

 $(I)H = \frac{H_2}{2}$ の場合: まず、

$$S^2 = SU(2)/SO(2)$$

 $SO(2) = \left\{ \left(\begin{array}{cc} a + b\sqrt{-1} & \\ & a - b\sqrt{-1} \end{array} \right) \middle| a^2 + b^2 = 1 \right\}$

とおく。

$$\begin{split} &f: S^2 \times S^2 \times \mathfrak{B}_{r-2} \to \mathfrak{D}_r; \\ &\left(\left[\left(\begin{array}{cc} z_1 & -w_1 \\ \bar{w_1} & \bar{z_1} \end{array} \right) \right], \left[\left(\begin{array}{cc} z_2 & -w_2 \\ \bar{w_2} & \bar{z_2} \end{array} \right) \right], \left[\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \right] \right) \mapsto \begin{bmatrix} \left(\begin{array}{cc} A & B \\ & \alpha & \beta \\ & C & D \\ & \gamma & \delta \end{array} \right) \right], \end{split}$$

但し、

$$egin{aligned} z_i = a_i + b_1 \sqrt{-1}, \ w_i = c_i + d_i \sqrt{-1} \quad (i = 1, 2), \ & \left(egin{aligned} A & B \ C & D \end{aligned}
ight) = \left(egin{aligned} a_1 & -b_1 & -c_1 & -d_1 \ b_1 & a_1 & -d_1 & c_1 \ c_1 & d_1 & a_1 & -b_1 \ d_1 & -c_1 & b_1 & a_1 \end{array}
ight) \left(egin{aligned} a_2 & b_2 & c_2 & d_2 \ -b_2 & a_2 & -d_2 & c_2 \ -c_2 & d_2 & a_2 & -b_2 \ -d_2 & -c_2 & b_2 & a_2 \end{array}
ight). \end{aligned}$$

 $f^{-1}(S(O(n) \times O(n+1)))$ は次の集合になる。

$$\left\{ \mbox{原点}, \left(\left[\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right], \left[\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right], S(O(n-2) \times O(n-2)) \right) \right\}.$$

 $H=\frac{H_i}{2}$ の場合:

$$\begin{split} f &: \mathcal{D}_i \times \mathcal{B}_{r-i} \to \mathcal{B}_r; \\ & \left(\left[\left(\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \right], \left[\left(\begin{array}{ccc} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array} \right) \right] \right) \mapsto \left[\left(\begin{array}{ccc} a_{11} & a_{12} \\ & b_{11} & b_{12} \\ a_{21} & a_{22} \\ & b_{21} & b_{22} \end{array} \right) \right]. \end{aligned}$$

この fは embedding である。

 $H = \frac{H_n}{2}$ の場合:

$$f: SO(2n)/S(O(n) \times O(n)) \to SO(2n+1)/S(O(n) \times O(n+1));$$
 $[g] \mapsto \begin{bmatrix} g & \\ & 1 \end{bmatrix}.$

この fは embedding である。

 $(II)H = \frac{H_1}{2}$ の場合:

$$f: S^{1} \times \mathbb{B}_{r-1} \to \mathbb{B}_{r};$$

$$\left(\exp(\sqrt{-1}\theta), \left[\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \right] \right) \mapsto \left[\begin{pmatrix} \cos \theta & -\sin \theta \\ g_{11} & g_{12} \\ \sin \theta & \cos \theta \\ g_{21} & g_{22} \end{pmatrix} \right],$$

$$f^{-1}(S(O(n) \times O(n+1))) = \{(\pm 1, S(O(n-1) \times O(n)))\}.$$

共役類について

補題 3.5 $\mathfrak{s}_i = \mathfrak{a} + \sum_{\gamma \in \Delta_i} \mathfrak{m}_{\gamma} \ (i = 1, 2)$ を最大階数 Lie triple system とする。 \mathfrak{s}_1 と \mathfrak{s}_2 に対応 する全測地的部分多様体が G の元で移りあうための条件は、ある $\sigma \in \mathrm{Ad}(\Delta)$ が存在して $\sigma(\Delta_1) = \Delta_2$ となることである。

証明 ある $\sigma \in Ad(\Delta)$ が存在して $\sigma(\Delta_1) = \Delta_2$ と仮定する。 $\sigma = Ad(k)$ $(k \in K)$ と表示すると $Ad(k)\mathfrak{s}_1 = \mathfrak{s}_2$ となるので $k\mathrm{Exp}\mathfrak{s}_1 = \mathrm{Exp}\mathfrak{s}_2$ となる。

逆に、ある $g \in G$ が存在して gExp $\mathfrak{s}_1 = Exp\mathfrak{s}_2$ と仮定する。 $go, o \in Exp\mathfrak{s}_2$ なので、ある $g_0 \in G$ が存在して

$$g_0go = o$$
, $g_0\operatorname{Exp}\mathfrak{s}_2 = \operatorname{Exp}\mathfrak{s}_2$.

このとき、 $k_0 = g_0 g \in K$ とおくと $k_0 \text{Exp} \mathfrak{s}_1 = \text{Exp} \mathfrak{s}_2$ となるので $\mathfrak{s}_2 = \text{Ad}(k_0) \mathfrak{s}_1$. $\text{Ad}(k_0) \mathfrak{a}, \mathfrak{a} \subset \mathfrak{s}_2$ なので、ある $k_1 \in K$ が存在して

$$\mathrm{Ad}(k_1)\mathfrak{s}_2=\mathfrak{s}_2,\quad \mathrm{Ad}(k_1)\mathrm{Ad}(k_0)\mathfrak{a}=\mathfrak{a}.$$

 $k = k_1 k_0 \in K$ とおくと $\sigma = \mathrm{Ad}(k)$ が求めるものである。

4 コンパクト単純 Lie 群上の不変接続

L をコンパクト単純 Lie 群とする。 I で L の Lie 環を表す。 G をコンパクト Lie 群とし、 $\rho:L\to G$ を準同型とする。 $P(\rho)=(L\times L)\times_{\rho}G$ は L 上の $L\times L$ 不変主 G 束である。 逆に L 上の任意の $L\times L$ 不変主 G 束はこのようにして得られる。 Wang の定理 ([16] または [10]) から $P(\rho)$ 上の $L\times L$ 不変接続全体のなす空間は次の線型空間と同一視することが出来る。

$$\operatorname{Hom}_{\rho}(\mathfrak{l},\mathfrak{g}) = \{ \Lambda \in \operatorname{Hom}(\mathfrak{l},\mathfrak{g}) | \Lambda(\operatorname{Ad}(l)X) = \operatorname{Ad}(\rho(l))\Lambda(X) \quad \text{for} \quad l \in L, X \in \mathfrak{l} \},$$

ここで $\operatorname{Hom}(\mathfrak{l},\mathfrak{g})$ は \mathfrak{l} から \mathfrak{g} への線形写像全体のなすベクトル空間である。 $\operatorname{Hom}_{\rho}(\mathfrak{l},\mathfrak{g}) \supset \mathbf{R}_{\rho}$ となることに注意する。上の同一視のもとで不変接続 $\Lambda \in \operatorname{Hom}_{\rho}(\mathfrak{l},\mathfrak{g})$ の曲率形式 Ω は

$$2\Omega(X,Y) = [\Lambda(X), \Lambda(Y)] - \frac{1}{4}\rho([X,Y])$$
 for $X, Y \in \mathfrak{l}$

で与えられる。接続が平坦であるとはその曲率形式が 0 となる場合をいう。特に $\pm \frac{1}{2} \rho$ は不変平坦接続である。これらをそれぞれ (\pm) 接続という。 Λ が不変平坦接続なら $-\Lambda$ も不変平坦接続である。

Lie 準同型 $\rho:L\to G$ と $g\in G$ に対して $\rho'(x)=g\rho(x)g^{-1}$ $(x\in L)$ も L から G への準同型である。

$$Ad(g): Hom_{\rho}(\mathfrak{l},\mathfrak{g}) \to Hom_{\rho'}(\mathfrak{l},\mathfrak{g}); \Lambda \mapsto Ad(g)\Lambda$$

は線形同型写像で Λ の曲率形式のノルムと $\mathrm{Ad}(g)\Lambda$ の曲率形式のノルムとは一致する。以後、 ρ と ρ' を同一視する。

 $\rho = \rho_1 + \rho_2: \mathbb{I} \to \mathfrak{g} \, \text{が} \rho \mathcal{O}$ 分解であるとは i = 1, 2 に対して $\rho_i: \mathbb{I} \to \mathfrak{g}$ は準同型で $[\rho_1(\mathbb{I}), \rho_2(\mathbb{I})] = \{0\}$ となる場合を言う。 $\rho = 0 + \rho = \rho + 0$ を ρ の自明な分解と呼ぶ。不変平 坦接続 Λ に対して $\rho_1 = \frac{1}{2}\rho - \Lambda, \rho_2 = \frac{1}{2}\rho + \Lambda$ とおくと $\rho = \rho_1 + \rho_2$ は ρ の分解になる ([7])。

不変平坦接続 Λ に対して $\mathfrak{s}=\Lambda(\mathfrak{l})\subset\mathfrak{g}$ は Lie triple system となる。不変平坦接続 Λ と $-\Lambda$ は同じ Lie triple system を定める。

命題 4.1 $2\operatorname{rank}(L) > \operatorname{rank}(G)$ ならば、不変平坦接続は (\pm) 接続しかない。

不変平坦接続 Λ に対して $\mathfrak{s} = \Lambda(\mathfrak{l}) \subset \mathfrak{g}$ は Lie triple system である。

命題 4.2 Λ, Λ' を不変平坦接続とする。 $\Lambda(\mathfrak{l}) = \Lambda'(\mathfrak{l})$ ならば $\Lambda' = \pm \Lambda$ である。

次の定理中の用語:principal 3-dimensional subalgebra は Dynkin [4, Chap. III, §9, No. 29] によって定義された。

定理 4.3 G が単純で $\rho(\mathfrak{l})^{\mathbf{C}}$ が $\mathfrak{g}^{\mathbf{C}}$ の principal 3-dimensional subalgebra ならば

$$\operatorname{Hom}_{\rho}(\mathfrak{l},\mathfrak{g})=\mathbf{R}\rho.$$

証明 $\mathfrak{l}^{\mathbf{C}}$ の基底 $\{H, E_+, E_-\}$ を次を満たすようにとる。

$$[H,E_{\pm}]=\pm 2E_{\pm},\quad [E_{+},E_{-}]=H.$$

 \mathfrak{g} の内積 (,) を \mathfrak{g} の Cartan 部分環 \mathfrak{t} 上で、最高ルートのノルムの二乗が 2 となるように選ぶ (canonical inner product)。 \mathfrak{g} の基本形を $\Pi = \{\alpha_i\}_{i=1}^r$ と書く。 $\Lambda \in \operatorname{Hom}_{\rho}(\mathfrak{l},\mathfrak{g})$ を複素線形に拡張して $\Lambda \in \operatorname{Hom}_{\rho}(\mathfrak{l},\mathfrak{g})^{\mathbf{C}}$ とみなしておく。このとき、

$$(\rho(H), \alpha_i) = 2 \ (1 \le i \le r).$$

したがってho(H) は $\mathfrak t$ の正則元なので $\Lambda(H)\in \mathfrak t$. $[
ho(H),\Lambda(E_\pm)]=\pm 2\Lambda(E_\pm)$ より、

$$\Lambda(E_+) = \sum_{i=1}^{r} x_i E_{\alpha_i}, \quad \Lambda(E_-) = \sum_{i=1}^{r} y_i E_{-\alpha_i}.$$

 $(\alpha_i, [E_{\alpha_i}, E_{-\alpha_i}]) = (\alpha_i, \alpha_i)(E_{\alpha_i}, E_{-\alpha_i}) = ((E_{\alpha_i}, E_{-\alpha_i})\alpha_i, \alpha_i) \ \sharp \ \emptyset$

$$[E_{\alpha_i}, E_{-\alpha_i}] = (E_{\alpha_i}, E_{-\alpha_i})\alpha_i.$$

$$ho(E_+) = \sum_{i=1}^r p_i E_{lpha_i},
ho(E_-) = \sum_{i=1}^r q_i E_{-lpha_i}$$
と表現するとき、

$$ho(H) = [
ho(E_+),
ho(E_-)] = \sum_{i=1}^r p_i q_i(E_{lpha_i},E_{-lpha_i}) lpha_i.$$

$$-\sum_{i=1}^r p_i(\alpha_i, \Lambda(H)) E_{\alpha_i} = \sum_{i=1}^r p_i[E_{\alpha_i}, \Lambda(H)] = -2\sum_{i=1}^r x_i E_{\alpha_i}$$

となるので

$$x_i = rac{1}{2} p_i(lpha_i, \Lambda(H)), \quad \Lambda(E_+) = rac{1}{2} \sum_{i=1}^r p_i(lpha_i, \Lambda(H)) E_{lpha_i}.$$

$$\sum_{i=1}^r q_i(\alpha_i, \Lambda(H)) E_{-\alpha_i} = \sum_{i=1}^r q_i [E_{-\alpha_i}, \Lambda(H)] = 2 \sum_{i=1}^r y_i E_{-\alpha_i}$$

となるので

$$y_i = rac{1}{2}q_i(lpha_i, \Lambda(H)), \quad \Lambda(E_-) = rac{1}{2}\sum_{i=1}^r q_i(lpha_i, \Lambda(H))E_{-lpha_i}.$$

$$\Lambda(H) = \frac{1}{-2} \sum_{i=1}^r p_i q_i(\alpha_i, \Lambda(H)) [E_{\alpha_i}, E_{-\alpha_i}] = \frac{1}{2} \sum_{i=1}^r p_i q_i(\alpha_i, \Lambda(H)) (E_{\alpha_i}, E_{-\alpha_i}) \alpha_i$$

(この関係式は $[
ho(E_-), \Lambda(E_+)] = -\Lambda(H)$ からも得られる。)

$$0 = [\rho(E_{+}), \Lambda(E_{+})]$$

$$= \frac{1}{2} \sum_{i,j} p_{i} p_{j}(\alpha_{j}, \Lambda(H)) [E_{\alpha_{i}}, E_{\alpha_{j}}]$$

$$= \frac{1}{2} \sum_{i < j} p_{i} p_{j}(\alpha_{j}, \Lambda(H)) [E_{\alpha_{i}}, E_{\alpha_{j}}] + \frac{1}{2} \sum_{i > j} p_{i} p_{j}(\alpha_{j}, \Lambda(H)) [E_{\alpha_{i}}, F_{\gamma_{j}}]$$

$$= \frac{1}{2} \sum_{i < j} p_{i} p_{j} \{(\alpha_{j}, \Lambda(H)) - (\alpha_{i}, \Lambda(H))\} [E_{\alpha_{i}}, E_{\alpha_{j}}].$$

より、

$$\alpha_i + \alpha_j \in \Sigma \Rightarrow (\alpha_i, \Lambda(H)) = (\alpha_j, \Lambda(H)).$$

このこととGの単純性より、

$$(\alpha_i, \Lambda(H)) = \text{const.} = c.$$

したがって、

$$\Lambda(H) = rac{c}{2} \sum_{i=1}^{r} p_i q_i(E_{lpha_i}, E_{-lpha_i}) lpha_i = rac{c}{2}
ho(H)$$

となるので $\Lambda = \frac{c}{2}\rho$.

5 コンパクト Lie 群

G をコンパクト連結 Lie 群とし、その Lie 環を $\mathfrak g$ とする。G に両側不変 Riemann 計量を入れておく。

$$ilde{G} = G imes G, \quad ilde{\mathfrak{g}} = \mathfrak{g} + \mathfrak{g}$$

とおくとĜの Lie 環はĝである。

$$G^* = \{(g,g) \in \tilde{G}\}, \tilde{\mathfrak{k}} = \{(X,X)|X \in \mathfrak{g}\}, \tilde{\mathfrak{m}} = \{(X,-X)|X \in \mathfrak{g}\}$$

とおくと G^* の Lie 環は $\tilde{\mathfrak{g}}$ で、 $\tilde{\mathfrak{g}} = \tilde{\mathfrak{k}} + \tilde{\mathfrak{m}}$ (直和) となる。

$$\tilde{G}/G^* \to G; (a,b)G^* \mapsto ab^{-1}$$

は \tilde{G}/G^* とGとの間の等長同型写像となる。 \mathfrak{g} 内の Lie triple system 全体と $\tilde{\mathfrak{m}}$ 内の Lie triple sysytem 全体とは写像

$$\mathfrak{s} \mapsto \tilde{\mathfrak{s}} = \{(X, -X) | X \in \mathfrak{s}\}$$

によって1 対1 に対応する。 $\mathfrak g$ 内の Lie triple sysytem 全体に自然に $\mathrm{Ad}_G(G)$ が働き、 $\tilde{\mathfrak m}$ 内の Lie triple sysytem 全体に自然に $\mathrm{Ad}_{\tilde{G}}(G^*)$ が働く。このとき、

$$(\mathrm{Ad}_{G}(g)\mathfrak{s})\tilde{\ }=\mathrm{Ad}_{\tilde{G}}(g,g)\tilde{\mathfrak{s}}$$

となる。したがって、g 内の Lie triple sysytem の共役類の全体と**m**内の Lie triple sysytem の共役類の全体も 1 対 1 に対応する。g 内の Lie triple sysytem s に対して

$$\mathfrak{g}(\mathfrak{s})=\mathfrak{s}+[\mathfrak{s},\mathfrak{s}]$$

とおく。 $\mathfrak s$ が Lie triple sysytem だから $\mathfrak g(\mathfrak s)$ は $\mathfrak g$ の部分環である。さらに、 $\mathfrak s\cap [\mathfrak s,\mathfrak s]$ は $\mathfrak g(\mathfrak s)$ のイデアルとなる。 $\mathfrak g$ が単純のとき、 $\mathfrak g=\mathfrak g(\mathfrak s)$ となるための必要十分条件は $\mathfrak s$ が Cartan 埋め込みに対応する Lie triple sysytem となることである。 $\mathfrak s$ が既約のときは、 $\mathfrak s$ が部分環ならば、 $\mathfrak s$ は $\mathfrak I$ 型である (逆は成立しない)。

$$\tilde{\mathfrak{g}}(\tilde{\mathfrak{s}}) = \tilde{\mathfrak{s}} + [\tilde{\mathfrak{s}}, \tilde{\mathfrak{s}}]$$

とおく。g(s) の性質を調べることにより次が得られる。

命題 5.1 \mathfrak{g} をコンパクト単純 Lie 環とする。 $\mathfrak{s} \subset \mathfrak{g}$ を \mathfrak{g} と異なる Lie triple system とする。 \mathfrak{s} が極大 Lie triple system となるための必要十分条件は

- (1) sは(既約)I型で Cartan 埋め込みに対応する Lie triple system となるか、
- (2) 5 は極大部分環となることである。

定理 5.2 コンパクト単純 Lie 群内の全測地的部分多様体 Mが極大となるための必要十分 条件は Mが Cartan 埋め込みであるかまたは極大 Lie 部分群となることである。 系 5.3 コンパクト単純 Lie 群内の極大最大階数全測地的部分多様体は、正規実形に対応するコンパクト対称空間の Cartan 埋め込みかまたは、極大最大階数 Lie 部分群である。

定理 5.4 コンパクト単純 Lie 群 G 内の全測地的部分多様体は、既約 I 型のときは Caran 埋め込みと準同型の合成で表すことができる。既約 II 型のときは L を G 内の全測地的部分 多様体でコンパクト単純 Lie 群とし、対応する Lie triple system を $\mathfrak s$ とすると、L から G へのある準同型写像 ρ と $P(\rho)$ 上の不変平坦接続 Λ が存在して、 $\mathfrak s=\Lambda(\mathfrak l)$ となる。

証明 L を G 内の II 型の全測地的部分多様体とし、対応する Lie triple system を $\mathfrak s$ と表す。あるコンパクト単純リー環 $\mathfrak l$ が存在して

 $f: \mathfrak{l} \oplus \mathfrak{l} \cong \tilde{\mathfrak{s}} \oplus [\tilde{\mathfrak{s}}, \tilde{\mathfrak{s}}]$ (orthogonal symmetric Lie algebra の同型)

となる。この条件を更に詳しく書き直す。ある準同型写像 $ho: \mathfrak{l}
ightarrow [\mathfrak{s},\mathfrak{s}] \subset \mathfrak{g}$ が存在して

$$f(X,X) = (\rho(X), \rho(X)) \quad (X \in \mathfrak{l}).$$

ある線形同型写像Λ: [→ 5 が存在して

$$f(X, -X) = (2\Lambda(X), -2\Lambda(X)) \quad (X \in \mathfrak{l}).$$

条件

$$f([(X,X),(Y,-Y)]) = [f(X,X),f(Y,-Y)] \quad (X,Y \in \mathfrak{l})$$

より、

$$[\rho(X), \Lambda(Y)] = \Lambda([X, Y]) \quad (X, Y \in \mathfrak{l}),$$

即ち $\Lambda \in \text{Hom}_{\rho}(\mathfrak{l},\mathfrak{g})$ が得られる。条件

$$f([(X, -X), (Y, -Y)]) = [f(X, -X), f(Y, -Y)] \quad (X, Y \in \mathfrak{l})$$

より

$$\rho([X,Y]) = 4[\Lambda(X), \Lambda(Y)] \quad (X, Y \in \mathfrak{l})$$

となるので Λ は平坦である。 $\mathfrak{s}=\Lambda(\mathfrak{l})$ となっているのでこの対応は前節で述べた対応の逆対応である。

命題 5.5 fがコンパクト単純 Lie 群 L から G への全測地的挿入で $2\operatorname{rank}(L) > \operatorname{rank}(G)$ かっ $f(e_L) = e_G$ ならば f(L) は G の Lie 部分群である。

命題 5.6 単連結コンパクト単純 Lie 群 L からコンパクト単純 Lie 群 G への全測地的挿入 f で $f(e_L)=e_G$ となるものに対して、ある二つの Lie 準同型写像 $\rho_1,\rho_2:L\to G$ が存在して $\rho_1(l_1)$ と $\rho_2(l_2)$ ($l_1,l_2\in L$) は可換かつ

$$f(x) = \rho_1(x)\rho_2(x)^{-1} \quad (x \in L)$$

となる。

参考文献

- [1] A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. **23** (1949), 200–221.
- [2] N. Bourbaki, Groupes et algebres de Lie, Hermann, Paris, 1975.
- [3] B. Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces I, Duke Math. J. 44 (1977), 745–755
- [4] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. **30** (1952), 349–462= Amer. Math. Soc. Translations Ser. 2,**6** (1960), 111–244
- [5] M. Goto and F. D. Grosshans, Semisimple Lie algebras, Marcel Dekker, New York, 1978.
- [6] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
- [7] S. Ihara, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan 19 (1967), 261–302
- [8] O. Ikawa, Yang-Mills homogeneous connections on compact Lie groups, Kodai Math. J. 19 (1996), 168–176.
- [9] O. Ikawa, Invariant connections on compact simple Lie groups, Algebras, Groups and Geometries 13 (1996), 93–104.
- [10] S. Kobayashi and K. Nomizu, Foundations of differential geometry I, Wiley, New York, 1963.
- [11] H. T. Laquer, Stability properties of the Yang-Mills functional near the canonical connection, Michigan Math. J. **31**(1984),139–159.
- [12] O. Loos, Symmetric spaces II:Compact spaces and classification, Benjamin, New York, 1969.
- [13] H. Naitoh, Symmetric submanifolds of compact symmetric spaces, Tsukuba J. Math. 10 (1986), 215–242
- [14] I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer.
 J. Math. 87 (1965), 425–461
- [15] H. Tasaki, Quaternionic submanifolds in quaternionic symmetric spaces, Tohoku Math. J. **38** (1986), 513–538

[16] H. C. Wang, On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958), 1–19.