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1 Introduction

Let $N$ be a symplectic manifold with the symplectic structure $\Omega$ , that is,
$\Omega$ is a nondegenerate closed 2-form on $N$ . For example, cotangent bundles
of manifolds, tangent bundles of Riemannian manifolds and almost K\"ahler

manifolds have canonical symplectic structures. For a function $f$ on $N$ ,
there exists a unique vector field $x_{f}$ on $N$ such that $i_{X_{f}}\Omega=df$ . This vector
field $X_{f}$ is called a Hamiltonian vector field associated to $f$ , and generates
a oneparameter group of (local) symplectomorphisms. A submanifold $M$

in N,is called Lagrangian if $\dim M=(1/2)\dim N$ and $\Omega|M=0$ .
Here we consider a variational problem for the volume of Lagrangian

submanifolds in almost K\"ahler manifolds, under deformations along Hamil-
tonian vector fields on the ambient spaces.

2 Preliminaries

Let $N$ be an almost K\"ahler manifold with the almost complex structure
$J$ and the Hermitian metric $g$ . The K\"ahler form $\Omega$ of $N$ is defined by
$\Omega(X, \mathrm{Y})=g(JX, \mathrm{Y})$ for $X,$ $\mathrm{Y}\in T_{x}N$ , which is a.symplectic structure on
$N$ . For a function $f$ on $N,$ $X_{f}=-J(\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(f))$ is the Hamiltonian vector
field associated to $f$ . Let $M$ be a Lagrangian submanifold in $N$ . Then $J$

becomes a bijection between $T_{x}M$ and $T_{x}^{\perp}M$ for $x\in M$ .
Let $i$ : $Marrow N$ be the inclusion map. A compactly supported defor-

mation $\phi_{t}$ : $Marrow N(-\epsilon<t<\epsilon, \phi 0=i)$ of $M$ is called a Hamiltonian
deformation if its variation vector field $V$ satisfies $V=J(\mathrm{g}\mathrm{r}\mathrm{a}\backslash \mathrm{d}(f))$ for some
compactly supported function $f$ on $M$ . We say that $M$ is Halniltonian
stationary if

$\frac{d}{dt}\mathrm{v}\mathrm{o}\mathrm{l}(\phi_{t}(M))|_{t=}0=0$

for all Hamiltonian deformations $\phi_{t}(\mathrm{c}\mathrm{f}.[4])$ . The Euler-Lagrange equation
is given as follows:
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PROPOSITION (cf. [4]). Let $N$ be an almost K\"ahler manifold with
the almost complex structure $J$. A Lagrangian submanifold $M$ in $N$ is
Hamiltonian stationary if and only if its mean curvature vector $H$ satisfies
$\mathrm{d}\mathrm{i}\mathrm{V}(JH)=0$ on $M$.

Locally, a Lagrangian submanifold in an almost K\"aMer manifold is
Hamiltonian stationary if and only if it is a critical point of the volume

functional for all deformations along Hamiltonian vector fields associated
to compactly supported functions on the ambient space.

REMARK 1. We should choose the deformations more carefully if we
consider the second variation (cf. [4]).

3 Problems

Of course, any minimal Lagrangian submanifold in an almost K\"ahler

manifold is Hamiltonian stationary. Fkom the proposition, we can also see
that a Lagrangian submanifold with parallel mean curvature in a K\"ahler

manifold is Hamiltonian stationary. So we have the following:

PROBLEM 1. Construct Hamiltonian stationary Lagrangian submani-

folds with non-parallel mean curvature in K\"ahler manifolds, and non-minimal
Hamiltonian stationary Lagrangian submanifolds in non-K\"ahler almost K\"ahler

manifolds.

On the other hand, let $M$ be a submanifold in a Riemannian manifold
$N$ . The normal bundle $T^{\perp}M$ of $M$ may be naturally included in the tan-
gent bundle $TN$ of $N$. We consider the almost K\"ahler structure on $TN$ ,
which is compatible with the canonical symplectic structure and the Sasaki
metric on $TN$ (cf. [8]). Then $T^{\perp}M$ is a Lagrangian submanifold in $TN$ .
So we have the following:

PROBLEM 2. Which submanifolds in Riemannian manifolds have Hamil-
tonian stationary normal bundles ?
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4 Results

First we solve Problem 2 in the case of surfaces in $R^{3}$ .

THEOREM 1 ([6]). Let $S$ be a surface in $R^{3}$ . Then $T^{\perp}S$ is Hamiltonian
stationary if and only if $S$ is either minimal, a part of a round sphere, or a

part of a cone with $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}\sim$ angle $\pi/2$ .

REMARK 2. (i) The normal bundles of a round sphere and a cone

with vertex angle $\pi/2$ in $R^{3}$ , are Hamiltonian $\mathrm{s}\mathrm{t}^{\backslash }\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y}$ Lagrangian sub-

manifolds with non-parallel mean curvature in $C^{3}$ , which are (noncompact)

solutions to Problem 1.
(ii) Harvey and Lawson determined submanifolds in $R^{n}$ with minimal

normal bundles (see [2, III, Th.3.11, Prop.2.17]). In particular, they showed

that a surface $S$ in $R^{n}$ has minimal normal bundle if and only if $S$ is minimal.

N,ext we give a result for Problem 2 in the case of curves in Riemannian
manifolds.

THEOREM 2 ([7]). Let $c$ be a regular curve in a Riemannian manifold
$N$ . Suppose that $N$ satisfies one of the following conditions:

(1) $N$ is 2-dimensional,
(2) $N$ has positive Ricci curvature,

(3) $N$ has negative Ricci curvature,

(4) $N$ has nonnegative sectional curvature,

(5) $N$ is a space of constant curvature.
Then $T^{\perp}c$ is Hamiltonian stationary if and only if $c$ is a geodesic.

REMARK 3. The normal bundle of a geodesic in a Riemannian mani-

fold is minimal.
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