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Abstract

We introduce some natural criteria of a minimization programming problem
whose objective function is a set-valued map. For such criteria, we define some
semicontinuities and prove certain theorems with respect to existence of solutions of
the problem. Also, we investigate certain duality problem for the set-valued mini-
mization problem.

1. Natural Criteria of Set-Valued Optimization
First, we define our set-valued minimization problem $(\mathrm{S}\mathrm{P})$ . Let $X$ be a topological space,

$S$ a nonempty subset of $X,$ $(Y, \leq_{K})$ an ordered topological vector space with an ordering
convex cone $K$ , and $F$ a map from $X$ to $2^{Y}$ with $F(x)\neq\emptyset$ for each $x\in S$ . Our set-valued
minimization problem is the following:

$(\mathrm{S}\mathrm{P})$ Minimize $F(x)$

subject to $x\in S$ .

To define notions of solutions for our problem, we introduce some relations between
two nonempty sets which like the order relation in topological vector spaces; though the
number types of such relations is six, we treat two important relations of them, see [9].

Definition 1.1. (l-Inequality&u-Inequalities)
For nonempty subsets $A,$ $B$ of $Y$ ,

$A\leq^{l}B\Leftrightarrow \mathrm{c}1(A+K)\supset \mathrm{c}1(B+K)$ ;
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$A\leq^{u}B\Leftrightarrow \mathrm{c}1(A-K)\subset \mathrm{c}1(B-K)$ .

In these cases, $A$ is said to be smaller than $B$ with $l$-inequality(resp. $u$-inequality) if
$A\leq^{l}B(\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}. A\leq^{u}B)$ . Also, a subset $A$ of $Y$ is said to be a 1-closed( $\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}$ . $u$-closed) if
$A+K$(resp. $\mathrm{A}-K$ ) is closed set of $Y$ .

Note that $\mathrm{c}1(A+K)\supset \mathrm{c}1(B+K)$ is equivalent to $\mathrm{c}1(A+K)\supset B$ and also $\mathrm{c}1(A-K)\subset$

$\mathrm{c}1(B-K)$ is equivalent to $A\subset \mathrm{c}1(B-K)$ . When $A$ and $B$ are $l$-closed set, $A\leq^{l}B$ if and
only if $A+K\supset B$ , and $A\leq^{l}B$ and $B\leq^{l}$ $A$ implies that ${\rm Min} A={\rm Min} B$ . If $A$ and $B$

are $u$-closed set, $A\leq^{u}B$ if and only if $A\subset B-K$ , and $A\leq^{u}B$ and $B\leq^{u}$ $A$ implies that
${\rm Max} A={\rm Max} B$ .

By using the set relations above, we introduce two types criteria of minimal solutions.
In this paper, when we consider $l$-minimal solution, we assume that $F$ is $l$-closed map,
that is $F(x)$ is $l$-closed for each $x\in X$ for simple consideration. Also we assume similar
assumption when we consider $u$-minimal solution.

Definition 1.2. (Minimal Solutions)

$\bullet$ $x_{0}\in S$ is said to be $l$-minimal solution of $(\mathrm{S}\mathrm{P})$ if
$F(x)\leq^{l}F(x_{0})$ and $x\in S$ implies $F(x_{0})\leq^{l}F(x)$ ;

$\bullet$ $x_{0}\in S$ is said to be $u$-minimal solution of $(\mathrm{S}\mathrm{P})$ if
$F(x)\leq^{u}F(X\mathrm{o})$ and $x\in S$ implies $F(x\mathrm{o})\leq^{u}F(x)$ .

These concepts above are natural definitions for our set-valued optimization $(\mathrm{S}\mathrm{P})$ since the

criteria is based on comparisons between the objective set-values of $F$ .

Example. (Vector-Valued Game)

We consider a vector-valued two-person game; $A$ and $B$ are nonempty sets, $(Y, \leq_{K})$ is
an ordered vector space, and $f$ is a map from $A\cross B$ to $Y$ . Assume that player 1 chooses

first and player 2 chooses next. Player 1 chooses $a$ and player 2 chooses $b,$ $f(a, b)$ is the
loss for player 1. When player 2 is cooperative toward player 1, player 1 may choose a
$l$-minimal solution of the following set-valued optimization problem $(\mathrm{V}\mathrm{G})$ : .

$(\mathrm{V}\mathrm{G})$ Minimize $f(a, B)$

subject to $a\in A$ .

When player 2 is non-cooperative, to be exact, player 2 wills player l’s loss, then player 1

should choose a $u$-minimal solution of $(\mathrm{V}\mathrm{G})$ .

2. Natural Semicontinuity of Set-Valued Maps

To consider existence of solutions of $(\mathrm{S}\mathrm{P})$ for our solutions, remember classical results

with respect to existence of solution of some minimization problems:
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(i) Let $Z$ be a topological space, $D$ a compact set in $Z$ , and $f$ a lower semicontinuous
real-valued function on $D$ . Then, $f$ attains its minimum on $D$ .

(ii) Let $Z$ be a complete metric space, $f$ : $Zarrow \mathrm{R}\cup\{\infty\}$ a lower semicontinuous and
proper function which is bounded from below. Then there exists $z_{0}\in Z$ such that
$f(z)\geq f(z_{0})-\epsilon d(z, z_{0})$ for all $z\in Z$ . (Ekeland’s variational theorem, [1])

(iii) Let $Z$ be a Banach space, $C$ a closed convex cone in $Z,$ $C\subset\{z\in Z|\langle z, z^{*}\rangle+\epsilon||z||\geq 0\}$

for some $z^{*}\in Z^{*}$ , which is the topological dual space of $Z,$ $\epsilon>0$ , and $D$ a nonempty
closed subset of $Z$ such that $z^{*}$ is bounded from below on $D$ . Then, ${\rm Min} D\neq\emptyset$ .
(Phelps’ extreme theorem, [1])

We can find that some of theorems are cohcerned with concept of the lower semicontinuity
of real-valued functions. For set-valued maps, we know the usual lower semicontinuity; a
set-valued map $F$ from $X$ to $Y$ is said to be lower semicontinuous at $x_{0}$ if for any $y\in F(x_{0})$

and for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ , there exists a net of elements $y_{\lambda}\in F(x_{\lambda})$ converging
to $y$ . However, this notion is a generalization of the continuity of real-valued functions,
then it is not a generalization of the lower semicontinuity and not suitable for our purpose
to use this definition. Therefore, in this section, we define some lower semicontinuities
of set-valued maps which are generalizations of the lower semicontinuities of real-valued
functions and based on our natural criteria. Remember the lower semicontinuities of real-
valued functions; a real-valued function $f$ on a topological space $X$ is said to be lower
semicontinuous on a subset $S$ of $X$ if one of the following is satisfied:

(A) for each $x_{0}\in S$ and for any $\epsilon>0$ , there exists a neighborhood $U$ of the null vector
in $X$ such that $x\in x_{0}+U$ implies that $f(x_{0})-\epsilon<f(x)$ ;

(B) for each $x_{0}\in S$ , if a net $\{x_{\lambda}\}$ satisfies $x_{\lambda}arrow x_{0}$ then $f(X_{0})\leq\varliminf_{\lambda}f(X_{\lambda})$ ;

(C) for $\alpha\in \mathrm{R},$ $\mathcal{L}(\alpha)=\{x\in S|f(x)\leq\alpha\}$ is closed.

We introduce our lower semicontinuities as generalizations the above. To this end, we
define the upper limit and the lower limit of $\{A_{\lambda}\}$ , see [2].

Definition 2.1. (Lim $\inf_{\lambda}A_{\lambda}$ &Lim $\sup_{\lambda}A_{\lambda}$ )
For $\{A_{\lambda}\}\subset 2^{Y},$ $(\Lambda, <)$ : a directed set,

$\mathrm{L}\mathrm{i}\mathrm{m}_{\lambda}$ inf $A_{\lambda}=\mathrm{t}\mathrm{h}\mathrm{e}$ set of limit points of $\{a_{\lambda}\},$ $a_{\lambda}\in A_{\lambda;}$

$\mathrm{L}\mathrm{i}\mathrm{m}_{\lambda}\sup A_{\lambda}=\mathrm{t}\mathrm{h}\mathrm{e}$ set of cluster points of $\{a_{\lambda}\},$ $a_{\lambda}\in A_{\lambda}$ .

In general, Lim $\inf_{\lambda}A_{\lambda}\subset$ Lim $\sup_{\lambda}A_{\lambda}$ and if equality holds, it is said to be $\{A_{\lambda}\}$ con-
verges to the set. From the above notation, condition $f(X_{0})\leq\varliminf_{\lambda}f(X\lambda)$ is presented by
$\{f(x_{0})\}\leq^{l}$ Lim $\sup_{\lambda}(f(x_{\lambda})+\mathrm{R}_{+})$ or $\{f(x_{0})\}\leq^{u}$ Lim $\sup_{\lambda}(f(x\lambda)-\mathrm{R}_{+})$ . From this, to
define several kinds of lower semicontinuity, we use notion Lim sup.
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Definition 2.2. ( $l$-type Lower Semicontinuity)
A set-valued map $F$ is said to be

$\bullet$
$l$-type (A) lower semicontinuous at $x_{0}\in S$ if
for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ and for any open set $U$ with $U\leq^{l}F(X\mathrm{o})$ , there exists
$\hat{\lambda}$ such that $\hat{\lambda}<\lambda$ implies $U\leq^{l}F(X_{\lambda})$ ;

$\bullet$ $l$-type (B) lower semicontinuous at $x_{0}\in S$ if
for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0},$ $F(x_{0})\leq^{l}$ Lim $\sup_{\lambda}(F(X_{\lambda})+K)$ ;

$\bullet$
$l$ -type (C) lower semicontinuous on $S$ if
for any $l$-closed subset $A$ of $Y,$ $\mathcal{L}^{l}(A)=\{x\in S|F(x)\leq^{l}A\}$ is closed.

A set-valued map $F$ is said to be $l$-type (A) (resp. $(\mathrm{B})$ ) lower semicontinuous on $S$ if it is
$l$-type (A) (resp. $(\mathrm{B})$ ) lower semicontinuous at each point of $S$ .

These concepts are generalizations of lower semicontinuity of real-valued functions, how-
ever, the following concept is more weaker than the lower semicontinuity.

Definition 2.3. ( $l$-type Demi-Lower Semicontinuity)
A set-valued map $F$ is said to be $l$-type demi-lower semicontinuous at $x_{0}\in S$ if for each net
$\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ and $\lambda<\lambda’$ implies $F(x_{\lambda^{;}})\leq^{l}F(x_{\lambda}),$ $F(x_{0})\leq^{l}$ Lim $\sup_{\lambda}(F(X_{\lambda})+K)$ .
A set-valued map $F$ is said to be $l$-type demi-lower semicontinuous on $S$ if it is l-type

$-$

demi-lower semicontinuous at each point of $S$ .

Now we can see some characterization with respect to these lower semicontinuities.

Proposition 2.1. We have the following:

(i) $l$ -type (A) l.s.c. on $S\Rightarrow l$-type (B) l.s.c. on $S$ ;
(ii) $l$ -type (B) l.s.c. on $S\Rightarrow l$-type (C) l.s.c. on $S$ ;
(iii) $l$ -type (C) l.s.c. on $S\Rightarrow l$-type demi-l.s. $\mathrm{c}$ . on $S$ .

Also, if $Y$ is finite dimensional and $F$ is locally bounded then, $l$-type (A), (B), and (C)
lower semicontinuities are equivalent.

Now, we investigate $u$-type lower semicontinuity of set-valued maps.

Definition 2.4. ( $u$-type Lower Semicontinuity) A set-valued map $F$ is said to be

$\bullet$ $u$-type (A) lower semicontinuous at $x_{0}$ if
for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ and for any open set $U$ with $F(x_{0})\cap U\neq\emptyset$ , for any
$\lambda$ , there exists $\lambda’>\lambda$ such that $(F(x_{\lambda})-K)\cap U\neq\emptyset$ ;

$\bullet$ $u$-type (B) lower semicontinuous at $x_{0}$ if
for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0},$ $F(X_{0})\leq^{u}$ Lim $\sup_{\lambda}(F(X\lambda)-K)$ ;
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$\bullet$ $u$-type (C) lower semicontinuous on $S$ if
for any subset $A$ of $Y,$ $\mathcal{L}^{u}(A)=\{x|F(x)\leq^{u}A\}$ is closed.

A set-valued map $F$ is said to be $u$-type (A) (resp. $(\mathrm{B})$ ) lower semicontinuous on $S$ if it is
$u$-type (A) (resp. $(\mathrm{B})$ ) lower semicontinuous at each point of $S$ .

Definition 2.5. ( $u$-type Demi-Lower Semicontinuity) A set-valued map $F$ is said to
be $u$-type demi-lower semicontinuous at $x_{0}$ if for any net $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ and $\lambda<\lambda’$

implies $F(x_{\lambda};)\leq^{u}F(x_{\lambda}),$ $F(x_{0})\leq^{u}$ Lim $\sup_{\lambda}(F(X_{\lambda})-K)$ . A set-valued map $F$ is said
to be $u$-type demi-lower semicontinuous on $S$ if it is $u$-type demi-lower semicontinuous at
each point of $S$ .

Proposition 2.2. ( $u$-type Lower $\mathrm{S}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{y}$) $\mathrm{W}\mathrm{e}$ have the following:

(i) $u$-type (B) l.s.c. on $S\Rightarrow u$-type (C) l.s.c. on $S$ ;
(ii) $u$-type (C) l.s.c. on $S\Rightarrow u$-type demi-l.s. $\mathrm{c}$ . on $S$ .

Also, if $Y$ is finite dimensional and $F$ is locally bounded then, $u$-type (A), (B), and (C)
lower semicontinuities are equivalent.

3. Existence Theorems for Two Types Semicontinu-
ities of Set-Valued Maps

Theorem 3.1. (Existence of $l$-type Solutions 1)
Let $X$ be a topological space and $Y$ an ordered topological vector space. If $S$ is a nonempty
compact subset of $X$ and $F$ : $Sarrow 2^{Y}$ is a $l$-type demi-lower semicontinuous. set-valued
map, then there exists a $l$-minimal solution of $(\mathrm{S}\mathrm{P})$ .

In the rest of the paper, let $Y^{*}$ be the topological dual space of $Y,$ $K^{+}=\{y^{*}\in Y^{*}|\langle y^{*}, k\rangle\geq$

$0,$ $\forall k\in K\}$ , and $\theta^{*}$ the null vector of $Y^{*}$ .

Theorem 3.2. (Existence of $l$-type Solutions 2)
Let (X, $d$ ) be a complete metric space, $Y$ an ordered locally convex space with the cone

$K$ . Also, $F$ be a map from $X$ to $2^{Y}$ satisfying the following conditions:

$\bullet$ there exists $y^{*}\in K^{+}\backslash \{\theta^{*}\}$ such that

inf $\langle y^{*}, F(\cdot)\rangle$ : $Sarrow \mathrm{R}$

$F(x_{1})\leq^{l}F(X_{2}),$ $X1,$ $x_{2} \in S\Rightarrow\inf\langle y^{*}, F(x_{2})\rangle$ –inf $\langle y^{*}, F(x_{1})\rangle\geq d(x_{21}, x)$

$\bullet$ $F:Sarrow 2^{Y}$ is $l$-type (C) lower semicontinuous.

Then, there exists a $l$-minimal solution of $(\mathrm{S}\mathrm{P})$ .
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Theorem 3.3. (Existence of $u$-type Solutions 1)
Let $X$ be a topological space and $Y$ an ordered topological vector space. If $S$ is a nonempty
compact subset of $X$ and $F$ : $Sarrow 2^{Y}$ is a $u$-type demi-lower semicontinuous. set-valued
map, then there exists a $u$-minimal solution of $(\mathrm{S}\mathrm{P})$ .

Moreover, we can show the following theorem in similar way of Theorem 3.2..

Theorem 3.4. (Existence of $u$-type Solutions 2)
Let (X, $d$) be a complete metric space, $Y$ an ordered locally convex space with the cone
$K$ . Also, $F$ be a map from $X$ to $2^{Y}$ satisfying the following conditions:

$\bullet$ there exists $y^{*}\in K^{+}\backslash \{\theta^{*}\}$ such that

$\sup\langle y^{*}, F(\cdot)\rangle\wedge$. $Sarrow \mathrm{R}$

. $F(x_{1})\leq^{u}F(x_{2}),$ $X_{1},$
$x_{2} \in S\Rightarrow\sup\langle y^{*}, F(x_{2})\rangle-\sup\langle y^{*}, F(x_{1})\rangle\geq d(x_{2,1}x)$

$\bullet$ $F:Sarrow 2^{Y}$ is $u$-type (C) lower semicontinuous.

Then, there exists a $u$-minimal solution of $(\mathrm{S}\mathrm{P})$ .

4. Duality Problem for Set-Valued Optimization
In this section, we introduce a duality problem for our $l$-type set-valued minimization

problem $(\mathrm{S}\mathrm{P})$ with $S=\{x\in X|G(x)\leq\theta\}$ , and we show some properties between these
problems. First, we redefine our set-valued problem $(\mathrm{S}\mathrm{P})$ and its dual problem $(\mathrm{D}\mathrm{P})$ :

$(\mathrm{S}\mathrm{P})$
$l$-Minimize $F(x)$

subject to $G(x)\leq\theta$

$(\mathrm{S}\mathrm{D})$
$l$-Maximize $\Phi(T)$

subject to $T\in \mathcal{L}^{+}(Y, Z)$

where

$\bullet$ $X$ : a nonempty set,

$\bullet$ $(Y, \leq_{K}),$ $(Z, \leq_{L})$ : ordered vector spaces with an ordering cones $K,$ $L$ , respectively;

$\bullet F$ : $Xarrow 2^{Z},$ $G$ : $Xarrow 2^{Y}$ ;

$\bullet$ $\mathcal{L}(Y, Z)\equiv$ {$T:Yarrow Z|T$ is linear},
$\mathcal{L}^{+}(Y, Z)\equiv\{T\in \mathcal{L}(Y, z)|T(K)\subset L\}$;

$\bullet$
$\Phi$ : $\mathcal{L}(Y, Z)arrow 2^{Z}$ defined by
$\Phi(T)\equiv l-{\rm Min}\{F(X)+T(y)|(x, y)\in \mathrm{G}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}(c)\}$.
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Proposition 4.1. (Weak Duality) Let $x$ be a feasible solution of $(\mathrm{S}\mathrm{P}),$ $T$ a feasible
solution of $(\mathrm{S}\mathrm{D})$ , and $(x_{1}, y_{1})$ an element of Graph $(c)$ satisfying $F(x_{1})+T(y_{1})\in\Phi(T)$ .
Then,

$F(x)\leq^{l}F(x_{1})+T(y_{1})$ implies $\{$

$F(x_{1})\leq^{l}F(x)$

$T(y_{1})=\theta$ .

Corollary 4.1. Let $x$ be a feasible solution of $(\mathrm{S}\mathrm{P})$ and $T$ a feasible solution of $(\mathrm{S}\mathrm{D})$ .
Then $F(x)=F(x)+T(\theta)\in\Phi(T)$ .
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