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1. INTRODUCTION AND KNOWN RESULTS

Throughout this paper, we will work in the smooth category.
Any immersion can be approximated by a self-transverse one. So we suppose that

all immersions are self-transverse.

We will study multiple points and cobordism classes of orientable 4m-manifolds
which are immersed into R*™+2,
Notation :
f: M¥=1) g5 R*" is an immersion of an oriented closed k(r — 1)-manifold in kr-
space.(r > 2) |
v is the normal bundle of f.
e is the Euler class of v.
~ w; is the ¢-th Stiefel-Whitney class of M.
W; is the ¢-th normal Stiefel-Whitney class of M.
P; is the i:-th Pontryagin class of M.
P; is the i-th normal Pontryagin class of M.
[MF=1] (resp.[M*(=1)],) is the fundamental homology class of M*r=1) with Z
(resp. Zj) coefficient.
©,(f) is the set of r-tuple points of f in RF™..
A(F) = FHO.()):
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For f is a self transverse immersion, ©,(f) and A,(f) are finite point sets.
If k is even, a sign can be attached to each point in ©,(f) by comparing the standard
orientation of R*" with that provided by the orientation of the r normal planes at

that point. We attach the same sign to each point p € A.(f) as f(p) € 0,(f)-

Definition 1.1. The algebraic number of r-tuple pbints of f is the number of O,
counted in a signed way. We write [©,(f)] for it. The algebraic number [A,(f)] is

defined in the same way.

We write [©,(f)]2 (resp. [A,(f)]2) for the mod 2 reduction of the number of 0.(f)
(resp. Ar(f)).

In case k is odd, however, we cannot attach a sign to an r-tuple point, and we do
not define the algebraic number of r-tuple points. In this case, the only [0,(f)],
and [A,(f)]; make sense.

In [7], Herbert proved the following;

- Theorem 1.2. -

(A2 = (@Y, (ML), (1.1)

In case k is even,
A = (—1) e, gy, (1.2)

(,) (resp. (,)2 ) is the Kronecker product with Z (resp. Z, ) coefficient.
These are very simple versions of his beautiful formulae.

By definition, it is easy to see that

N X (1.3)

So if r is even,

A (Dl =0. (1.4)
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In [6], Felali proved the following (cf.[4]);

Theorem 1.3. There ezist an orientable 2(r — 1)-manifold M*"=%) and an immer-
sion f: M¥™=1) o R? with [0,(f)] = d if and only if d can be divided by (r — 1)!.
2. MULTIPLE POINTS OF CODIMENSION 2 IMMERSIONS

In this section, we consider the case k = 2 and r is odd (r=2m+1).0ur aim

is to prove the following theorem;

Theorem 2.1. Let M*™ be a closed 4m-manifold and f : M*™ & R*™*2 be an
immersion. If M*™ is a spin manifold (i.e. M*™ is oriented and w, = 0), then the
algebraic number of (2m+1)-tuple points of the immersion [Oz,41(f)] can be divided
by 22™(2m)!. Moreover, if m is odd, then [92m+1(f)] can be divided by 2™ (2m)!

To prove Theorem2.1 we need two lemmas.

In [1], Atiyah and Hirzebruch proved the following lemma.

Lemma 2.2. If M*" is a spvz'n manifold ,then A(M*™) ( the A-genus of M*™) is
an integer. Moreover, if m is odd, then A(M"m) 1S an even integer. '
The total Pontryagin cléss of M*™ can be written in the form of
PM*™) =1+ P + P} +. -+ + P[" + elements of order 2, (2.1)
because
T(M*™) @ v = e*m+? (2.2

is the trivial (4m + 2)-bundle.
Therefore, A(M*™) can be represented by the PI" only.

The following lemma was proved in [2].
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Lemma 2.3. If M*™ can be immersed into R¥™t2, then

e = B ey, @)

Now we prove our main theorem.

Proof of Theorem?2.1.

The relation between e (the Euler class of v) and P; (the first normal Pontryagin

class of M 4’“)‘ is

By Theoreml.2 (in this case k£ = 2 and r = 2m + 1), we have
[Bama(H] = (&, () (25) -

= (—p;ﬂ, [jV[4m]>
(-, D),

I

By »(1.3)_ |
R [Bana(N] = @m+ 1)[O2mna() (26)
Thus the algebraic number of (2m + 1)-tuple points is

[©am (] =yl P, 7). (2.1

By Lemma2.2 and Lemma2.3, we can easily see that (P{*,[M*™]) can be divided
by 2™ (2m + 1)!. Together with (2.7), we obtain that [©zm+1(f)] can be divided by
22™(2m)!. In case m is odd, we can obtain the result in the same way.

This completes the proof of Theorem2.1. ul

3. CoBORDISM CLASSES OF CODIMENSION 2 IMMERSED MANIFOLDS

Theorem 3.1. Let f : M*™ 95 R¥+2 gnd g : N*™ 9 R*™+2 be immersions of
oriented closed 4m-manifolds. | E
Then M*™ and N*™ are oriented cobordant if and only if (@2m11(f)] = [O2m+1(9)] -
In particula;', M*™ is oriented cobordant to 0 if and only if [O2m41(f)] = 0.
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Proof of Theorem3.1. _
At first we want to show that M*™ and N*™ are unoriented cobordant to 0.

By (2.2), the total Stiefel-Whitney class of M*™ is
w(M*™) = 1+ w, + w2 + - - + W™ (3.1)

Thus the only non-trivial Stiefel-Whitney number of M*™ is (w2™, [M*™],),.
For 2m + 1 is odd,

, [Azm+1(F)lz = [O2m41(f)]2-
"By (1.1)

[Bzmir(f)]z = @57, [M*™]2),

= (w3™, [M*™]2)s.

Theoreml.3 implies that [92m+1( f)] is éven, 50

(w3, [M*™]2)2 = 0. - (32)
Therefore, M am is unoriented cobordant to 0. And so is N am v
By ('2.1), the only non trivial Pontryagin number of M*™ (resp. N*™)is (P, [M*™])
(resp. (P™,[N*™])). Thus we can see that M*™ and N*™ are oriented cobordant if
and only if (P, [M*™]) = (P, [N*™]). By (2.7), the latter condition is equivalent
to saying that the algebraic number of (2m + 1)-tuple points of f and g attain the
same value (i.€.[02m+1(f)] = [O2m+1(9)])-

In particular, M*™ is oriented cobordant to 0 if and only if [Ozm+1(f)] = 0. This

completes the proof of Theorem3.1. a

Remark 3.2. Stong [12] proved that if M™ is an oriented closed n-manifold im-
mersed in R**2, then M™ is unoriented cobordant to 0.
Moreover, he proved that if n Z 0 (mod 4), then M™ is oriented cobordant to 0.Here

we gave a proof to the first assertion for completeness.
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Corollary 3.3. M*™ is as in Theorem3.1.

If M*™ satisfies the following conditions (1) or (2), then M*™ is oriented cobordant
to 0. |

(1) M*™ can be immersed in R*™*2 with less than (2m)! (2m + 1)-tuple points.
(2) There'e:cists an integer 1 such that 0 < @ < 2m and Hy(M*™;Z) has no free
part.

Proof of Corollary3.3.
Case (1). [O2m+1(f)] is divided by (2m)!. Thus if the number of 2m + 1-tuple points
is less than (2m)!, then [@2y,11(f)] = 0. Therefore, M*™ is oriented cobordant to 0
by Theorem3.1. '

Case (2). If such an ¢ exists, then e*™ is a torsion element.

Thus

(Oamss()] = g™, (M)

must be 0.Therefore , M*™ is oriented cobordant to 0 by Theorem3.1. g

Remark 3.4. If M*™ is not oriented cobordant to 0, then the number of (2m +1)-

tuple points is more than or equal to (2m)!.
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