回転球面上における減衰性2次元乱流の非線形発展

九大・総理工 崎 恵典(Yoshinori SAKI)

杉原裕司(Yuji SUGIHARA)

本地弘之(Hiroyuki HONJI)

1.はじめに

減衰性の平面2次元乱流の時間発展は、コヒーレントな渦の出現とそれらの融合およ び相互移流によって特徴づけられる。コヒーレント渦が乱流場を支配するステージにおい ては、系の運動エネルギーは保存し、渦に関係するその他の物理量(エンストロフィー、 渦の個数、渦の平均半径等)が代数的に時間発展する。Carnevale ら¹⁾はエネルギーEと渦 の中心渦度の平均値ωaを不変量として、これらの物理量のスケーリング則を導いた。そ の後岩山と岡本²⁾はCarnevaleらのスケーリング則を再考察し、Carnevaleらが不変量とし て用いたEという量は系の全エネルギーではなく、エネルギー密度の別の表式-ωψ/2を コヒーレント渦の領域で積分したものであり、それがコヒーレント渦と等価な渦糸系のハ ミルトニアンであることを指摘した。そして、スケーリングにハミルトニアンの不変性を 用いたことがCarnevaleらの理論の成功の理由であると結論づけた。

本研究の目的は、平面2次元乱流で得られたこれらの知見を球面上の減衰性2次元乱 流へ応用し、回転の効果が系の時間発展にどの様な影響を及ぼすかについて調べること である。回転球面2次元系では場の回転の効果がエネルギーの逆カスケードを抑制する ことが知られている³⁾が、本研究では特に渦領域で積分された諸量に注目することによっ て逆カスケードの抑制が効く特徴的な波数スケールのロスビー数依存性について検討する。

2. コヒーレント渦系における Carnevale らのスケーリング則

減衰性の平面2次元乱流において、コヒーレント渦が系を支配するステージを考える。 Carnevaleらはこれらの渦を特徴づける物理量を用いて次元解析を行い、それらの時間発 展のスケーリング則を導いている。彼らの理論によれば、系の全運動エネルギーは次式の ように与えられる^{1),2)}。

$$E \sim N \omega_a^2 R_a^4$$

(1)

ここで、Nは渦の個数、 ω_a は渦の中心渦度の平均値、 R_a は渦の平均半径である。 $E \ge \omega_a$ が保存量であることを考慮すると、渦の個数が

$$N(t) \sim N(t_0) (t/t_0)^{-\xi}$$

に従って振る舞う場合、渦の平均半径R_aの時間発展として

$$R_a(t) \sim R_a(t_0) (t/t_0)^{\xi/4}$$

が導かれる。全エンストロフィーに関しても、同様に

$$Z \sim N \omega_a^2 R_a^2$$

$$Z(t) \sim Z(t_0) (t/t_0)^{-\xi/2}$$

が導かれる。スケーリング指数 ξ は多くの研究から $\xi = 0.7 \sim 0.75$ であることが知られて いる。岩山と岡本は、(1)式は系の全エネルギーではなくエネルギーの別の表式 $-\omega\psi/2$ を 渦領域において積分した量

$$H \equiv -\int \int_{D_v} \frac{\omega \psi}{2} dx dy \tag{2}$$

であるとし、Hがコヒーレント渦と等価な渦糸系のハミルトニアンに相当すると指摘した。

3. 数値モデルと解析方法

経度 λ 、緯度 ϕ 、 $\mu = \sin \phi$ の球面座標系 (λ, μ) において、渦度 $\omega(\lambda, \mu)$ は次のようなバロトロピック渦度方程式に支配される。

$$\frac{\partial}{\partial t}\omega + \frac{1}{a^2}J[\psi,\omega] + \frac{2\Omega}{a^2}\frac{\partial\psi}{\partial\lambda} = (-1)^{p+1}\nu'_{2p}\{\Delta^p + (\frac{-2}{a^2})^p\}\omega$$
(3)

ここで、 $\psi(\lambda,\mu)$ は流れ関数、aは惑星半径、 Ω は惑星自転の角速度である。また右辺は超 粘性による散逸を表現しており、 ν'_{2p} は超粘性係数、pは超粘性指数を示す。レイリー型の 項は、角運動量の保存を考慮する際に必要となる項である。また、 $\Delta(\sim \nabla^2)$ は球面上の ラプラシアン、J(A, B)は球面上のヤコビアンである。数値実験では、惑星半径aと代表 速度スケールUを用いて基礎方程式を規格化し、超粘性指数としてp = 2を用いた。以 下、諸量は全て無次元量を示す。球面調和関数展開に基づいたスペクトル法³⁾により数値 積分を行った。切断波数85の三角切断を採用し、経度方向に256個、緯度方向に128個の 格子点を用いた。超粘性係数 ν_4 を選定するために予備的に計算を行った。20 無次元時間後 に切断波数85 付近でエネルギーが大きく蓄積しないような最大の ν_4 を調べた結果、Yoden and Yamada³⁾が用いた $\nu_4 = 1.0 \times 10^{-6}$ が妥当であったので本実験でもその値を用いた。

本研究では回転系の乱流場において初期に存在するコヒーレントな渦に着目し、それら の渦内で積分された統計量の振る舞いを調べることから、乱流場の中から精度良く渦領域 を特定することが非常に重要な問題である。Weiss⁴⁾は2次元の運動方程式から渦度勾配 $\nabla \omega e \overline{z}$ 配する方程式を導き、ある仮定のもとで $\nabla \omega$ の挙動はストレステンソル*A*の行列 式の正負によって双曲型と楕円型とに分けられることを示した。平面2次元場の $\nabla \omega$ は以 下の方程式によって支配される^{4),5)}。

$$\frac{d\nabla\omega}{dt} = -A \cdot \nabla\omega,$$

$$A = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} -\frac{\partial^2 \psi}{\partial x \partial y} & \frac{\partial^2 \psi}{\partial x^2} \\ -\frac{\partial^2 \psi}{\partial y^2} & \frac{\partial^2 \psi}{\partial x \partial y} \end{bmatrix}$$

Aの固有値λは、

$$det(A - \lambda I) = -\left(\frac{\partial^2 \psi}{\partial x \partial y}\right)^2 + \frac{\partial^2 \psi}{\partial x^2} \frac{\partial^2 \psi}{\partial y^2} + \lambda^2 = 0,$$
$$\lambda = \pm \left\{ \left(\frac{\partial^2 \psi}{\partial x \partial y}\right)^2 - \frac{\partial^2 \psi}{\partial x^2} \frac{\partial^2 \psi}{\partial y^2} \right\}^{1/2} = \pm (-detA)^{1/2}$$

のように表される。いま、流体粒子の運動に沿うストレステンソルAの時間変化は、渦度 勾配∇ωの時間変化に対して無視し得るほど小さいと仮定する。この仮定の下で, (4)式 は次のような解を持つ。

 $\nabla \omega \sim Cexp\{\pm (-detA)^{1/2}t\}$

従って流体粒子の運動に沿う $\nabla \omega$ の挙動は、1)detA > 0の場合に振動し、2)detA < 0の時 に指数関数的に変動する。またこのことは、-detAが流線関数 ψ のGaussian 曲率と等し く、Gaussian 曲率が負であるような領域では粒子の軌道が安定であることからもわかる。 回転球面上に先述のWeissの方法を適用する。Weissの方法では、非回転系の場合には渦 度保存則から渦度シアーについての式を導き、その式に現れるストレステンソルの行列式 の正負で安定領域を判定した。回転系の場合にも絶対渦度の保存則から絶対渦度シアーに ついての式を導けば同じストレステンソルが現れ、非回転系の場合と同様その行列式の正

(4)

負で安定な渦領域を判定することが可能である。絶対渦度 ω_A の勾配ベクトル $\nabla \omega_A$ は次の 方程式に支配される。

$$\frac{d\nabla\omega_A}{dt} = -A \cdot \nabla\omega_A,$$

$$A = \begin{bmatrix}
-\frac{\partial^2\psi}{\partial\lambda\partial\mu} - \frac{\tan\phi}{\cos\phi}\frac{\partial\psi}{\partial\lambda} & \frac{1}{\cos^2\phi}\frac{\partial^2\psi}{\partial\lambda^2} - \sin\phi\frac{\partial\psi}{\partial\mu} \\
-\cos^2\phi\frac{\partial^2\psi}{\partial\mu^2} + \sin\phi\frac{\partial\psi}{\partial\mu} & \frac{\partial^2\psi}{\partial\lambda\partial\mu} + \frac{\tan\phi}{\cos\phi}\frac{\partial\psi}{\partial\lambda}
\end{bmatrix}$$
(5)

平面2次元場での議論と同様の仮定のもとで、渦領域と乱流領域を峻別するパラメータとして det A を用いる:

$$det A = -(\frac{\partial^2 \psi}{\partial \lambda \partial \mu} + \frac{tan\phi}{\cos\phi} \frac{\partial \psi}{\partial \lambda})^2 - (\cos^2 \phi \frac{\partial^2 \psi}{\partial \mu^2} - \sin\phi \frac{\partial \psi}{\partial \mu}) \times (-\frac{1}{\cos^2 \phi} \frac{\partial^2 \psi}{\partial \lambda^2} + \sin\phi \frac{\partial \psi}{\partial \mu})$$

本研究ではWeissの方法に基づいて、detA > 0の領域をコヒーレント渦領域と定義する。 単位面積当たりの全運動エネルギーEおよび全エンストロフィーZは次式で表される。

$$E(t) = \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} \frac{1}{2} |\nabla \psi|^2 d\lambda d\mu, \qquad (6)$$

$$Z(t) = \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} \frac{1}{2} |\Delta \psi|^{2} d\lambda d\mu.$$
(7)

コヒーレント渦領域内で積分された統計量については、上式の積分領域に*detA*>0の制 約条件を加えた式により定義する。

初期条件として与えるエネルギースペクトル、総積分時間、ロスビー数R($\equiv U/(2a\Omega)$) を変化させて、表1に示す条件の実験を行った。初期流線関数の展開係数が表中のエネル ギースペクトルを満たしながら、ランダムな大きさと位相を持つように設定した。回転球 面上では緯度によって回転の効果が異なるため物理量の時間発展は初期条件に大きく依存 すると考えられるので、3つの独立な初期流線関数波形を用い、得られた物理量のアンサ ンブル平均をとって議論することにした。パラメータを変更してもそれら3つの初期波形 については同一のものを用いた。

4. 数値実験結果および考察

非回転系においては、球面2次元系に対してもCarnevaleらのスケーリング理論がそのまま適用できることが期待される。彼らの理論によれば、渦の個数が

 $N(t) \sim N(t_0) (t/t_0)^{-\xi}$

に従って減少していくとき、渦領域の平均面積 $A_a(t)$ および渦領域内エンストロフィー Z_a は次式のように振る舞う。

$$A_a(t) \sim A_a(t_0) (t/t_0)^{\xi/2}$$

 $Z_a(t) \sim Z_a(t_0) (t/t_0)^{-\xi/2}$

上式より、渦領域の総面積 $A(\sim NA_a)$ と領域内エンストロフィー Z_a の時間変化率を規定す るべき指数は等しく、すなわち $A \ge Z_a$ の比は不変でなければならない。図1に、L40INF の実験結果にWeissの方法を適用した場合の $Z_a \ge A$ の比の時間発展を示す。渦の融合が 活発である $t = 5 \sim 20$ にかけてその比が不変に保たれていることがわかる。このことに より、非回転の球面上での2次元乱流はCarnevaleらのスケーリング則に従って振る舞う ことがわかる。

図2に、回転系の実験(L20R.1)においてWeissの方法により渦領域積分した物理量 の時間発展を示す。 E_a は渦領域内運動エネルギー、 Z_a は渦領域内エンストロフィーであ り、諸量は単位面積当たりのものであることに注意する。非回転の場合との大きな違いは E_a の減少の割合が小さくなっていることである。渦同士が融合する際、渦が強く引き延 ばされて周辺部の運動エネルギーの大きい部分が渦領域から除外されるものと考えられ るので、領域内運動エネルギーの減少の抑制は、回転の効果が渦同士の融合を制限するこ とを示唆する。また、非回転系の場合にCarnevaleらのスケーリング則の不変量として重 要な役割を果たした— $\frac{\omega\psi}{2}$ は、回転系の場合でも不変量となることがわかる。しかしなが ら回転系の場合には、渦中心の平均渦度 ω_a が不変という前提が成り立たないため、同様の スケーリング則を導くことはできない。

渦領域についての各物理量の時間変化がロスビー数にどのように依存するかを図3 ~ 5に示す。渦領域面積(図3)および渦領域内運動エネルギー(図4)は、ロスビー数の減少と共に変化が緩やかになることがわかる。これは、回転数が増してロスビー数が減少するとこれらの渦の活発な融合、すなわち逆カスケードが抑制されるためである。図5に示すように、 $-\frac{\omega\psi}{2}$ についてはロスビー数に依存せずほぼ保存量とみなせる。渦領域内だけで定義できる物理量の内、このような性質を示すのは $-\frac{\omega\psi}{2}$ だけであり、回転系での渦の挙動を考える上で重要であると思われる。

物理空間においてコヒーレント渦領域内で積分して求めた各種の物理量は、時間発展 において非回転時の挙動からドラスティックに乖離する。乖離する時刻に系で卓越してい る波数スケールはその回転系を特徴づけるスケールであると考えられる。そこで、数値実 験によって得られたこのスケールとRhinesスケールとを比較検討する。回転の効果が効 く臨界的な波数スケールを次式のようにエネルギーピーク波数として定義する。

$$n_c \equiv \frac{\sum_n n E(n)}{\sum_n E(n)}$$

渦領域面積*A*および非回転系でのスケーリング則成立の目安であった*Z_a/A*の2つの指標 を用いて、それぞれ非回転の挙動から乖離した時刻を推定してエネルギーピーク波数を算 定した。前者は渦の活発な融合の指標であり、後者は回転の効果によるスケーリング則か らの乖離の指標である。以下の議論では両者の平均値を使用した。

ロスビー数Rに対する乖離時のピーク波数の平均値 n_c と Rhinesの波数スケール n_β との比較を図6に示す。Rhinesスケールとはロスビー波の位相速度と流体粒子の速度とが同程度の大きさになるようなスケールと定義され、球面上では次式で表される。

$$\frac{U}{a\cos\phi} = \frac{2\Omega}{n_{\beta}(n_{\beta}+1)}$$
$$n_{\beta} = \frac{1}{2}\left(\sqrt{\frac{4\cos\phi}{R}+1}-1\right)$$

ただし、比較には $\phi = 0^{\circ}$ でのRhinesスケールを用いている。この図より、乱流場の時間 発展が非回転の挙動から乖離し始める特徴的な全波数スケールはRhinesスケールよりも 大きな値をとり、そのロスビー数依存性は概ねRhinesスケールのそれと同じであること がわかる。

5.おわりに

回転球面上の減衰性2次元乱流において、コヒーレント渦領域内で積分された物理量の 時間発展を調べ、そのロスビー数依存性を検討した。また、回転の効果によってCarnevale らのスケーリング則が破綻する臨界的な波数スケールを調べた。その波数スケールのロス ビー数依存性は、Rhinesスケールのそれによって概ね説明できる。

参考文献

1) G.F. Carnevale, J.C. McWilliams, Y. Pomeau, J.B. Weiss and W.R. Young:

Evolution of Vortex Statistics in Two-Dimensional Turbulence, Phys.Rev.Lett., Vol.66, 2735 (1991).

- 2) 岩山隆寛 · 岡本壽夫: 2次元減衰性乱流におけるスケーリング理論の再考察と数値 シミュレーション, Mem. Fac. Sci. Kochi Univ.(Inform Sci.), Vol.17, 20 (1996).
- 3) S. Yoden and M. Yamada: A Numerical Experiment on Two-Dimensional Decaying Turbulence on a Rotating Sphere, J. Atmos. Sci., Vol.50, No.4, 631 (1993).
- 4) J. Weiss: The Dynamics of Enstrophy Transfer in Two-Dimensional Hydrodynamics, Physica, D48, 273 (1991).
- C. Basdevant and T. Philipovitch: On the Validity of the "Weiss Criterion" in Two-Dimensional Turbulence, Physica, D73, 17 (1994).

CASE	ロスビー数 R	エネルギースペクトル	総積分時間
L40INF	∞	$F(n) \propto n^5 e^{-n/2}$	10
L40R.25	0.25	$E(n) \propto n e$	40
L20INF	∞		· · · ·
L20R2	2		
L20R1	1		
L20R.5	0.5	$E(n) \propto n^5 e^{-n/2}$	20
L20R.25	0.25		
L20R.1	0.1		
L20R.025	0.025		
H20INF	∞		
H20R.25	0.25	$ig] \qquad E(n) \propto n^7 e^{-n/2}$	20
H20R.1	0.1		

表1 回転球面上における数値実験のパラメータ

図2 回転系における渦領域内で積分された物理量の時間発展(L20R.1)

図3 渦領域面積の時間発展のロスビー数依存性

8

図5 渦領域で積分された-ωψ/2の時間発展のロスビー数依存性

