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The refined similarity hypothesis is generalized so that the statistics of

similarity variable may have a slight scale-ratio dependence. This is more
natural because the scale ratio $\mathrm{r}/\mathrm{L}$ ( $\mathrm{L}$ : macroscale) is another independent

non-dimensional parameter than ${\rm Re}_{T}$ in the first hypothesis of Kolmogorov

(1962). A possible detailed form of $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ dependence is proposed based on a

recent multifractal model of intermittent energy dissipation and some
theoretical and experimental knowledges. Thus the modified hypothesis

makes it possible to predict a plausible value of Kolmogorov prefactor and

reasonable scalings of longitudinal as well as transverse velocity structure

functions in isotropic turbulence.

PACS numbers: 47. $27.\mathrm{A}\mathrm{k},$ $47.27.\mathrm{c}_{\mathrm{S}},$ $47.27.\mathrm{J}\mathrm{v}$

数理解析研究所講究録
1051巻 1998年 156-165 156



Recently, people have been directing $\mathrm{t}\hat{\mathrm{h}}$eir interest to fundamental
problems in isotropic fluid turbulence such as an asymptotic tendency of

Kolmogorov constant for high Reynolds numbers [1-4] and a non-trivial
difference between longitudinal and transeverse velocity structure

functions [5-8]. All these matters are closely related to the refined similarity

hypothesis (RSH) for isotropic turbulence that Kolmogorov [9] established in

1962. Here the author stresses the importance of prescribing the statistics of

similarity variable in RHS in a reasonable form, instead of keeping it

untouched as an unknown universal thing, in order to settle these

fundamental problems in a consistent way. Since we have an appreciable

knowledge of the statistics of similarity variable obtained from direct

numerical simulation (DNS) [10], we are now in a good position to do it.
By RSH [9], longitudinal velocity increment $\Delta \mathrm{u}_{\mathrm{r}}$ across distance $\mathrm{r}$ is

related with energy dissipation rate $\epsilon_{\mathrm{r}}$ averaged over a domain of scale $\mathrm{r}$ in

isotropic turbulence, as follows;
$\Delta \mathrm{u}_{\mathrm{r}}=\mathrm{v}(\mathrm{r}\epsilon_{\mathrm{r}})^{1/}3$. (1)

Here the similarity variable $\mathrm{v}$ was assumed to be independent of $\mathrm{r},$ $\epsilon_{\mathrm{r}}$ , and ${\rm Re}_{\mathrm{r}}$

. $\mathrm{r}(\mathrm{r}\epsilon_{\mathrm{r}})^{1/3}/\mathrm{V}$ in the inertial range of scale $\mathrm{r}$ by Kolmogorov ( $\mathrm{v}$ : kinematic

viscodity). According to our investigation [10], this assumption is partly
unrealistic; the statistics of $\mathrm{v}$ slightly depends on $\mathrm{r}$ while it does hardly on $\epsilon_{\mathrm{r}}$ .

This fact is rationalized by reconsidering the RSH and recognizing that

another independent parameter $\mathrm{r}/\mathrm{L}$ ( $\mathrm{L}$: macroscale) should be introduced to

govem the statistics of $\mathrm{v}$ . Since Kolmogorov acknowledged in 1962 the non-
dimensional parameter $\mathrm{r}/\mathrm{L}$ to come into RSH for the purpose of explaining
the intermittency of $\epsilon_{\mathrm{r}}$ in the form: $<\epsilon_{\mathrm{r}}/\epsilon_{\mathrm{L}}>\mathrm{q}=(\mathrm{r}/\mathrm{L})^{\mu(\mathrm{q}})$ where the angular

bracket denotes ensemble average and $\mu(\mathrm{q})$ is called intermittency

exponents, it must be the most general that the statistics of $\mathrm{v}$ depends on ${\rm Re}_{\mathrm{r}}$

as well as $\mathrm{r}/\mathrm{L}$. While the statistics of $\mathrm{v}$ is assumed to be indifferent to ${\rm Re}_{\mathrm{r}}$ in

the inertial range of $\mathrm{r}$ , it may always remain dependent on $\mathrm{r}/\mathrm{L}$ as it is kept

finite with the intermittency exponent $\mu(\mathrm{q})$ . If so, our conventional view for

the scaling of velocity structure function (such as described in [11]) can be

basically changed because the moments of $\mathrm{v}$ may bring forth non-trivial
additional scalings with the parameter $\mathrm{r}/\mathrm{L}$. We call this ansatz the

generalized RSH (GRSH). How the probability density function (PDF) of $\mathrm{v}$ ,
$\mathrm{P}(\mathrm{v})$ , depends on $\mathrm{r}/\mathrm{L}$ is the next important problem.

We construct the PDF of $\Delta \mathrm{u}_{\mathrm{r}}$ on the basis of (1) as
$\mathrm{P}3(\Delta \mathrm{u}_{\mathrm{r}})=\mathrm{J}\mathrm{P}(\Delta \mathrm{u}\mathrm{r}/\mathrm{x})/\mathrm{x}\mathrm{p}2(\mathrm{x};\mathrm{r})\mathrm{d}\mathrm{X}$ , (4)

where $\mathrm{P}2(\mathrm{x};\mathrm{r})$ is the PDF of $\mathrm{x}$ . $(\mathrm{r}\epsilon_{\mathrm{r}})1/3[12]$ . Here and hereafter $\mathrm{r}$ is

normalized by $\mathrm{L},$
$\epsilon_{\mathrm{r}}$ by $\epsilon_{\mathrm{L}}$ and $\Delta \mathrm{u}_{\mathrm{r}}$ by $(\mathrm{L}\epsilon \mathrm{L})^{1}/3$ , unless stated otherwise. $\mathrm{P}2(\mathrm{x}$ ;
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r) is the PDF of $\mathrm{x}$ which should be associated with a particular intermittency
model for $\epsilon_{\mathrm{r}}$ . For the case of the $3\mathrm{D}$ binomial Cantor set model [13] it is
explicitly given as

$\mathrm{P}2(\mathrm{x};\mathrm{r})=3\mathrm{x}^{23}/\mathrm{r}2-\Omega 2_{\mathrm{k}}=0^{\Omega}\Omega \mathrm{C}\mathrm{k}^{6\langle \mathrm{C})}\mathrm{x}/\mathrm{r}-\mathrm{B}^{\Omega- \mathrm{k}\mathrm{k}}$ , (5)

where $\Omega=-\ln \mathrm{r}/\ln \mathrm{A},$ $\mathrm{A}=2^{1/3},$ $\mathrm{B}=1.2175$ and $\mathrm{C}=0.7825$ . Other values of $\mathrm{A},$
$\mathrm{B}$

and $\mathrm{C}$ may provide other binomial Cantor sets, including the $\mathrm{p}$ model [14]. Let
us assume $\mathrm{P}(\mathrm{v})$ is a modified Gaussian with variance $\mathrm{o}(\mathrm{r})^{2}$ , skewness $\mathrm{S}(\mathrm{r})$ and
kurtosis $\mathrm{K}(\mathrm{r})$ (in the Gram-Charlier form). Then we have straightforwardly

$<\Delta \mathrm{u}_{\mathrm{r}^{3_{>}}}/<\Delta \mathrm{u}\mathrm{r}^{2}>^{3/}2=\mathrm{s}(\mathrm{r})\mathrm{r}\langle 3/2$) $\mu \mathrm{t}2/3$ ) $=\mathrm{s}\mathrm{t}\mathrm{r}$) r-0.0346 (6)
$<\Delta \mathrm{u}_{\mathrm{r}^{4_{>/\mathrm{K}}}}<\Delta \mathrm{u}_{\mathrm{r}^{2_{>=}}}2\mathrm{t}\mathrm{r})\mathrm{r}^{-}\mu \mathrm{t}4/3)+2\mu \mathrm{t}2/3)_{=}\mathrm{K}(\mathrm{r})$ r-0.0917 (7)

where an angular bracket denotes the ensemble average with the PDF given
by (4), and $\mu(\mathrm{q})$ given in this case as

$\mu(\mathrm{q})=\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{A}[\mathrm{l}\mathrm{B}\mathrm{q}+\mathrm{C}\mathrm{q})/2]$ . (8)

To determine the forms of $\mathrm{S}(\mathrm{r})$ and $\mathrm{K}(\mathrm{r})$ , we need some theoretical and
experimental knowledges. If we assume that the kurtosis of longitudinal
velocity gradient is equal to $<\Delta \mathrm{u}_{\eta^{4_{>/<\Delta \mathrm{u}_{\eta}>}}}22$ (where $\eta$ is the normalized (by

L) Kolmogorov length) and take into account Pullin and $\mathrm{S}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{m}\mathrm{a}\mathrm{n}^{l}\mathrm{S}[15]$

theoretical prediction based on Lundgren’s dynamical model for turbulence
[16] that the kurtosis is in proportion to $\mathrm{R}_{\lambda^{1/4}}\{\mathrm{R}_{\lambda}$: the Taylor-scale Reynolds
number), we may set up the following formula:

$\mathrm{l}\mathrm{o}\mathrm{g}10(<\Delta \mathrm{W}>/4\Delta \mathrm{u}>)<=\mathrm{a}+\mathrm{o}.25\log\eta^{22}10\mathrm{R}_{\lambda}$ . (9)

Here we take $\mathrm{a}=0.25$ which is reasonable in comparison with Van Atta and
Antonia’s [17] experimental plots of the kurtosis of longitudinal velocity
gradient against $\mathrm{R}_{\lambda}$ . Since the data points in the figure are much scattered
particularly for high $\mathrm{R}_{\lambda}$ , we avoid here ’

$\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}$ fitting’ in the figure. Thus (9)

is rewritten by the relation: $\eta=153/4\mathrm{R}\mathrm{x}^{-3/}2$ (For example, see [18].) as
$<\Delta \mathrm{u}_{\eta^{4}}>/<\Delta \mathrm{u}_{\eta}22_{=}2>.515\eta-0.1667$ . (10)

Taking account of the 3/8 rule: ISI $\sim \mathrm{K}^{3/8}$ (For example, see [19].) and again
matching the constant factor with their plots of the skewness against $\mathrm{R}_{\lambda}$ , we
have

$<\Delta \mathrm{u}_{\eta^{3_{>/}}}<\Delta \mathrm{u}_{\eta}2>^{3/}=-20.321\eta^{-0.062}5$. (11)

If we assume the inertial range extends down to Kolmogorov scale, (6) and
(7) are the conditions to decide the asymptotic behaviors of $\mathrm{K}$ and S. On the
other hand, we observe that $\mathrm{P}(\mathrm{v})$ becomes Gaussian for $\mathrm{r}$ larger than some
scale, $\mathrm{r}_{\mathrm{C}}$ , which belongs to the pre-inertial range. $\mathrm{r}_{\mathrm{C}}=1/23$ looks reasonable
from observation of energy spectrum $[20,21]$ . Therefore, we propose:

$\mathrm{K}\langle \mathrm{r}$) $=2.515_{\mathrm{I}}arrow 00750$ (1+0.1647 r). (12)
$\mathrm{S}(\mathrm{r})=- 0.321T0.0279(1- 2^{3}\mathrm{r})$ (13)

for $\mathrm{r}\leq \mathrm{r}_{\mathrm{C}}$ so that they continuously reduce to $\mathrm{K}\langle \mathrm{r}$) $=3$ and $\mathrm{S}(\mathrm{r})=0$ for $\mathrm{r}\geq \mathrm{r}_{\mathrm{c}}$ .
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Reality may be more complex in detail but this assumption is the simplest and
useful enough to give an essential sketch of the $\mathrm{v}$ statistics, as is known from
the fact that $\mathrm{P}3(\Delta \mathrm{u}_{\mathrm{r}})$ hence calculated in (4) for many $\mathrm{r}$ are very well
comparable with the corresponding experiments [12].

It is known from [22] that predicting the main body of $\mathrm{P}3(\Delta \mathrm{u}_{\mathrm{r}})$ except
for rarely happening events is not so sensitive to the choice of a model for
$\mathrm{P}2(\mathrm{x};\mathrm{r})$ (among the binomial Cantor set, the $\mathrm{p}$ and the lognormal model), but
crucially affected by the form of $\mathrm{P}(\mathrm{v})$ ; particularly the proper r-dependent
value of skewness is essential.

From the well-known Kolmogorov relation:
$<\Delta \mathrm{u}\mathrm{r}^{3_{>-}}=4/5\mathrm{r}\epsilon \mathrm{L}$ (14)

and the third-order moment of (1), we have the relation
$<\mathrm{v}^{3}>=- 4/5=\mathrm{s}\mathrm{t}\mathrm{r})\mathrm{o}(\mathrm{r})^{3}$ , (15)

which gives variance $\mathrm{o}(\mathrm{r})^{2}$ explicitly in the inertial range from the
knowledge of $\mathrm{S}(\mathrm{r})$ . Thus we can formulate the unnormalized second-order
structure function as

$<\Delta \mathrm{u}_{\mathrm{r}^{2}}>=$ A(r/L) $(\mathrm{r}/\mathrm{L})\beta \mathrm{r}2/3_{\epsilon}\mathrm{L}^{2/3}$, (16)

where
A(r/L) $=[(4/5)/\mathrm{o}.321]^{2}/3/_{\mathrm{t}1}-8\mathrm{r}/\mathrm{L})^{2}/3_{=1.8}38/(1- 8\mathrm{r}/\mathrm{L})^{2/}3$ , (17)

$\beta=0.0279\mathrm{x}(2/3)-\mu \mathrm{t}2/3)=0.0417$ , (18)

with $\mu(2/3)=$ -0.02310. Hence we know the Kolmogorov prefactor depends
basically on scale-ratio $\mathrm{r}/\mathrm{L}$ rather than Reynolds number, even if a proper
average of A(r/L) over the inertial range may bring forth a systematic
dependence on $\mathrm{R}_{\lambda}$ . The only absolute constant prefactor in (16) is $\mathrm{A}(\mathrm{O})$

$=1.838$ , that is somewhat lower than the value $(4.02 \mathrm{x} 0.52=)2.09$

recommended by Sreenivasan [2] but looks still good as the Kolmogorov
constant (to be expected for $\mathrm{R}_{\lambda}=\infty$). But we rather surprise that our simple

phenomenological approach gives such a plausible result. The enhanced
scaling index in (16), $\beta+2/3\cdot\zeta \mathrm{L}(2)$ , is very close to 0.71 of the DNS [8] and
0.70 of the experiment [9]. [Further we note that (15) breaks down before $\mathrm{r}/\mathrm{L}$

reaches 1/8 because the neglected term, $6\mathrm{v}\mathrm{d}/\mathrm{d}\mathrm{r}<\Delta \mathrm{u}_{\mathrm{r}}2>$ , becomes non-
negligible there, so that (17) is valid for $\mathrm{r}/\mathrm{L}$ much less than 1/8. (16) is
restricted also by the condition: $<\Delta \mathrm{u}_{\mathrm{L}^{2}}>=2\mathrm{U}^{2}$ where $\mathrm{U}\mathrm{r}(\mathrm{L}\epsilon_{\mathrm{L})^{1/}}3$ , so that the
real A(r/L) cannot overpass the expected prefactor value for $\mathrm{r}/\mathrm{L}=1$ which
can not be very far from 2.]

Now we are interested in the scaling indices $\zeta \mathrm{L}(\mathrm{n})$ of longitudinal
velocity structure functions for $\mathrm{n}>3$ . To calculate those, however, the Gram-
Charlier form of $\mathrm{P}(\mathrm{v})$ is not suitable because $\mathrm{S}$ and $\mathrm{K}$ make a trouble as $\mathrm{r}$ $($

normailzed $\mathrm{a}\mathrm{g}\mathrm{a}\mathrm{i}\mathrm{n}$) $arrow \mathrm{O}$ . The better form to keep the same quality as the
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Gram-Charlier form for small values of $\mathrm{S}$ and $\mathrm{K}$, is given by the cumulant
expansion form of characteristic function:

$\phi(\mathrm{y})=\exp[-(_{0}\mathrm{y})^{22\mathrm{i}}/-(_{0}\mathrm{y})3\mathrm{S}/3!+\mathrm{t}\circ \mathrm{y})3_{(\mathrm{K}}- 3)/4!- \mathrm{C}\mathrm{l}\mathrm{o}\mathrm{y})6/6!]$ (19)

where $\mathrm{c}=5(\mathrm{K}- 3)^{2}/8$ . The last term is the minimum necessary to guarantee

that $\mathrm{I}\phi(\mathrm{y})1\leq 1$ . It was verified [12] that this approach is practically useful for
predicting $\mathrm{P}3(\Delta \mathrm{u}_{\mathrm{r}})$ for various $\mathrm{r}$, however small $\mathrm{r}$ may be. The true cumulant
expansion may need other higher-order terms but here we avoid getting in
such a complication, expecting the present truncation to be efficient enough
to embody, at least, the main character of the $\mathrm{v}$ statistics. Hence the
characteristic function of $\mathrm{P}3(\Delta \mathrm{u}_{\mathrm{r}})$ is easily written in terms of $\phi(\mathrm{y})$ and all
moments of $\Delta \mathrm{u}_{\mathrm{r}}$ are calculated by differentiation of it. The scaling indices
$\zeta \mathrm{L}(\mathrm{n})$ are determined by those of the most dominant terms in the derivatives
as $\mathrm{r}arrow \mathrm{O}$, which are in proportion to $\mathrm{o}^{\mathrm{n}}\mathrm{K}^{\kappa}\langle \mathrm{n}$) for $\mathrm{n}$ even and $\mathrm{o}^{\mathrm{n}- 3}\mathrm{K}^{\kappa}\mathrm{t}\mathrm{n}- 3$ ) for $\mathrm{n}$

$(\geq 3)$ odd where
$\kappa(\mathrm{n})=2[\mathrm{n}/6]+[(\mathrm{n}- 6[\mathrm{n}/6])/4]$ . (20)

(Note $\mathrm{o}^{3}\mathrm{S}$ has no scaling as (11) dictates.) Here the square brackets $\mathrm{i}\mathrm{m}\dot{\mathrm{p}}$ ly
Gauss brackets. Thus we obtain

$\zeta_{\mathrm{L}}(\mathrm{n})=0.0093\mathrm{n}- \mathrm{o}.0750\kappa \mathrm{t}\mathrm{n})+\mathrm{n}/3-\mu(\mathrm{n}/3)$ (21)

for $\mathrm{n}$ even and
$=0.0093(\mathrm{n}- 3)-\mathrm{o}.0750\kappa \mathrm{t}\mathrm{n}-3)+\mathrm{n}/3-\mu(\mathrm{n}/3)$ (22)

for $\mathrm{n}$ odd.
The first two terms in (21) and (22) correct the conventional formula

originated with Kolmogorov: $\zeta \mathrm{L}(\mathrm{n})=\mathrm{n}/3-\mu(\mathrm{n}/3)$ appreciably. Fig. 1 shows
the corrected $\zeta\iota(\mathrm{n})$ (upper dots) in comparison with the conventional ones
by the $3\mathrm{D}$ binomial Cantor set model (solid line) and by She-Leveque’s model
(dotted line) [23]. Our values are $\zeta \mathrm{L}(2)=0.708,$ $\zeta_{\mathrm{L}}14)=1.250,$ $\zeta_{\mathrm{L}(6})=1.706$ , and
$\zeta \mathrm{L}(8)=2.159$ , which are comparable with the corresponding values of Chen et
al. $[7,24]$ , 0.695 $\mathrm{f}$ 0.003, 1.279 $\mathrm{f}$ 0.004, 1.772 $\mathrm{f}$ 0.015, and 2.188 $\mathrm{f}$ 0.027,
respectively. The experimental values of Dhruva et al. [8] are not far from
those. But $\zeta \mathrm{L}(\mathrm{n})$ for odd $\mathrm{n}$ cannot be compared with their data, since both
Chen et al. and Dhruva et al. treated the structure functions of the absolute
magnitude of velocity increment, instead of velocity increment itself. But it
is a well-known property that the $\zeta \mathrm{L}(\mathrm{n})$ of the latter for odd $\mathrm{n}$ is slightly
larger than that of the former, as is seen in Fig. 1.

The above-described approach may be applicable to transverse velocity
structure functions, if the same GRSH holds for this case but with a different
PDF of similarity variable; which we denote as $\mathrm{P}’(\mathrm{v}’)$ to avoid confusion.
Then we may write
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$\Delta \mathrm{v}\mathrm{r}=\mathrm{v}’(\mathrm{r}\epsilon \mathrm{r})^{1/}3$. (23)

where $\Delta \mathrm{v}_{\mathrm{r}}$ is transverse velocity increment. Obviously $\mathrm{P}’(\mathrm{v}’)$ has no
skewness (because of reflective symmetry) but would have different
variance $0’(\mathrm{r})^{2}$ and kurtosis $\mathrm{K}’(\mathrm{r})$ . $0’(\mathrm{r})^{2}$ can be exactly related to $\mathrm{o}(\mathrm{r})^{2}$ by
virtue of the kinematics of $<\Delta \mathrm{u}_{\mathrm{r}^{2}}>\mathrm{a}\mathrm{n}\mathrm{d}<\Delta \mathrm{v}_{\mathrm{r}^{2}}>[19]$. In our case, the ratio of
the latter to the former is 4/3+0.0209 as $\mathrm{r}arrow 0$ , and so is $0’(\mathrm{r})^{2}/\mathrm{o}(\mathrm{r})2$ . Hence,
(1) and (23) lead naturally to $\zeta_{\mathrm{L}}(2)=\zeta_{\mathrm{T}}(2)$ , where $\zeta_{\mathrm{T}}(\mathrm{n})$ is the scaling indices
of transverse structure functions. On the other hand, we may estimate
$\mathrm{K}’(\mathrm{r})/\mathrm{K}(\mathrm{r})\sim \mathrm{r}^{-0}\cdot 07$ from the experimental data for $\mathrm{R}_{\lambda}=10000-15\mathrm{o}\mathrm{o}\mathrm{o}$ by

Dhruva et al. [8] with (1) and (23) in mind. If we assume $\mathrm{K}^{\mathrm{I}}(\mathrm{r})$ becomes
Gaussian for $\mathrm{r}\geq \mathrm{r}_{\mathrm{C}}$, we may have

$\mathrm{K}’(\mathrm{r})/\mathrm{K}(\mathrm{r})=0.8645\mathrm{r}^{0.07}-$ . (24)

Therefore, by substitution of (8), we obtain for $\mathrm{r}\leq \mathrm{r}_{\mathrm{c}}$

$\mathrm{K}’(\mathrm{r}\rangle$ $=2.174\mathrm{r}^{-}01450$ (1+0.1647 r), (25)

which means that $\Delta \mathrm{v}_{\mathrm{r}}$ must be more intermittent than $\Delta \mathrm{u}_{\Gamma}$, as $\mathrm{r}arrow 0$.
[Hosokawa et al. [25] proposed another ratio $\mathrm{K}’(\mathrm{r})/\mathrm{K}(\mathrm{r})=0.7935\mathrm{r}^{-0.1112}$ from
the DNS data for a lower $\mathrm{R}_{\lambda}$ . But (24), using (4), (5) and (19), gives a slightly
better prediction of p3 $(\Delta \mathrm{v}_{\mathrm{r}})$ for $\mathrm{r}=$ 0.00415 as compared with the
corresponding PDF of Vincent and Meneguzzi [26] for $\mathrm{R}_{\lambda}\approx 150.$ ] In this case,

it is easy to formulate
$\zeta_{\mathrm{T}}\langle \mathrm{n}$ ) $=0.0093$ n-0.1450 $\kappa(\mathrm{n})+\mathrm{n}/3-\mu(\mathrm{n}/3)$ (26)

for $\mathrm{n}$ even and $\zeta_{\mathrm{I}}’\langle \mathrm{n}$ ) $=0$ for $\mathrm{n}$ odd, in place of (21) and (22).

This result is plotted in Fig. 1 by lower dots. It is likely to be a result of
low-order truncation in the cumulant expansion of the PDF that the dots for
$\mathrm{n}$ even does not step up smoothly with $\mathrm{n}$ . [This actually stems from Gauss
brackets in (20). A smoother step-up would be made up by considering
proper scale-ratio dependences of higher-order cumulant terms. The same
situation exists more or less for $\zeta_{\mathrm{L}}(\mathrm{n})$ , too.] But the main feature of the
scaling indices looks well grasped by the present approach. In fact, our
results of $\zeta_{\mathrm{T}}\langle \mathrm{n}$) are well comparable with those of the recent DNS [7] and
experiement [8]. That is, $\zeta_{\mathrm{T}}\langle 2$ ) $=0.708,$ $\zeta \mathrm{T}\mathrm{t}4$ ) $=1.180,$ $\zeta_{\mathrm{T}}\langle 6$) $=1.566$, and $\zeta_{\mathrm{T}}\langle 8)=$

2.019 in our case, while 0.71 $\mathrm{f}0.04,1.25_{\mathrm{f}}$ 0.067, 1.63 $\mathrm{f}$ 0.079, and 1.87 $\mathrm{f}$ 0.078,
respectively, in Chen et al.’s case [7] and the corresponding experimental
values [8] are not far from those. Particularly we note that our approach
corrects the consideration of Chen et al. [8] (based on the 1962 Kolmogorov
concept) on the scaling of both structure functions by 0.0093 n-0.0750 $\kappa(\mathrm{n})$

and0.0093 n-0.1450 $\kappa(\mathrm{n})$ , respectively, as a result of the scaling behaviors of
similarity variables. The latter values compensate the deficency of $\zeta_{\mathrm{T}}\langle \mathrm{n}$ ) -

$\mu(\mathrm{n}/3)$ from $\mathrm{n}/3$ considerably well, while the former values tend to
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overcorrect it only slightly. See Fig. 4 in [7]. These facts seem to sign $||\mathrm{n}\mathrm{o}$

$\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}}\mathrm{m}^{1}$
’ in the use of ERSH to longitudinal as well as transverse velocity

increments, if similarity variables $\mathrm{v}$ and $\mathrm{v}$

’ properly behave. lt is to be noted
that both variables are not quite independent b.ut have a cross kurtosis since
$<\Delta \mathrm{u}\mathrm{r}^{22}\Delta \mathrm{v}_{\mathrm{r}}>\mathrm{i}\mathrm{s}$ not trivial.

Chen et al. [7] who had not consider the scaling of similarity variable,
however, proposed the RSH tranverse (RSHT) that implies

$\Delta \mathrm{v}_{\mathrm{r}}=\mathrm{V}^{\mathrm{I}}[\mathrm{r}(\mathrm{v}(0^{2})\mathrm{r}]^{1/}\mathrm{s}$ (27)

where $\mathrm{t}\mathit{0}$ is the magnitude of vorticity and the suffix $\mathrm{r}$ means the average of
the braced quantity over a domain of scale $\mathrm{r}$ . They presumed that the
possible scale-similarity [27] of ($\mathrm{v}(0)_{\mathrm{r}}2$ is different from that of $\epsilon_{\mathrm{r}}$ in order to
explain the gap of $\zeta_{\mathrm{L}}\langle \mathrm{n}$) and $\zeta \mathrm{T}(\mathrm{n})$ . Fig. 4 in [7] seems to verify this
presumption pretty well, only if similarity variable has no such scaling as
discussed above. However, it should be pointed out that $(\mathrm{v}\mathrm{o})2_{)_{\mathrm{r}}}$ and $\epsilon_{\mathrm{r}}$ are not

so independent of each other in reality; according to our DNS [10], the
correlation coefficient of the two quantities ranges from 0.9987 to 0.9579 in
the inertial range and drops to 0.8466, 0.6468 and 0.4835 for about 4, 2 and 1
times Kolmogorov scale. At the present stage, it might be hard to say which
is better, RSHT or GRSH. But judging from the success of GRSH for
longitudinal velocity increment [12], neglecting the scale-ratio dependence
of the statistics of similarity variables seems to be too restrictive.

In summary, the scale-ratio dependent statistics of similarity variable $\mathrm{v}$

in isotropic turbulence has been investigated based on the GRSH ansatz and
the $3\mathrm{D}$ binomial Cantor set model for dissipation measure. In this
investigation Pullin and Saffman’s theory [15] and the 3/8 rule [19] play the
largest role. As a result, plausible values of the Kolmogorov prefactor and
scaling indices of longitudinal velocity structure functions have been
obtained. In a similar way, scaling indices of transverse velocity structure
functions have been evaluated. These are well comparable with those from
the recent DNS by Chen et al. and experiment by Dhruva et al. Although it
has semi-empirical factors, the present consideration reveals a new
conceptual possibility in the expected universal structure of isotropic
turbulence. This is the first trial on the ansatz and so there would be room
for improvement of the whole process as precise knowledges increase.
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Figure Caption

Fig. 1 Scaling indices of velocity structure functions. Those based on
the 3D binomial Cantor set model and She-Leveque model are indicated by the

solid line and dotted line, respectively. Upper and lower dots show those for

longitudinal velocity structure functions (17,18) and transverse velocity

structure functions (20), respectively, obtained by the present method.
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Fig.1
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