## 三次元境界層の不安定に対する非平行性の影響

航技研 伊藤信毅 (Nobutake Itoh)

1. はじめに

三次元境界層の最も基本的な例はFalkner-Skan-Cooke流で ある。この相似流では、流れ場の変化する方向に空間座標 x を取るとき、それを境界層厚さるで無次元化したものは局所 レイノルズ数Rに一致する。流れの安定性を支配する線形攪 乱方程式はこの座標R=x /ると壁面に垂直な座標ζ=z /るに 関する偏微分方程式の形に表わされる。本論文では、レイノ ルズ数が独立変数の役割をするという性質を利用して、偏微 分攪乱方程式を常微分方程式列に帰着させる微小パラメター 展開法を提案する。

2. 基本流と線形攪乱方程式

一様流Q∞中に後退角Λで置かれた楔上の境界層を考え、壁面に沿って前縁に直角にx、前縁に平行にy、壁面に垂直に

| Z     | Ø             | 直              | 角              | 座               | 標        | を                  | 取          | る    | o         | 外   | 部   | 流   | Ø    | 流   | 速          | を             | U        | J <sub>E</sub> =            | × A x       | с <sup>т</sup> ,     | V          | ' <b>_</b> = | Q _ | s i      | . n /      | ١    |
|-------|---------------|----------------|----------------|-----------------|----------|--------------------|------------|------|-----------|-----|-----|-----|------|-----|------------|---------------|----------|-----------------------------|-------------|----------------------|------------|--------------|-----|----------|------------|------|
| Ł     | す             | る              | ٤              | き               | •        | 基                  | 本          | 流    | は         | Fa  | 1 k | n e | er - | Sk  | an         | - C           | 00       | o k e                       | 。<br>の      | 相                    | 似          | 解            |     |          |            |      |
|       | U *           | = U            | <sub>E</sub> F | ' (             | ζ        | ),                 | V          | /*=  | V         | G ( | ζ   | ),  | W    | * = | 1<br>      | <u>/</u> {} { | 1 +<br>2 | • m                         | F -         | 1 -<br>2             | • <b>m</b> | ζ            | F′  | }        | (1         | .)   |
| で     | 与             | え              | 5              | n               | る        | 0                  | δ          | ,= √ | Ľ         | X   | 70  | Е,  | ζ    | =   | z /        | δ             | ,        | 関                           | 数           | F                    | ٢          | G            | は   | 方        | 程          | 式    |
|       |               | F ‴            | ,<br>+         | 1               | + m<br>2 | F                  | F <b>"</b> | +    | m         | { 1 | - ( | F′  | ) 2  | } = | 0,         |               | G″       | +                           | 1           | . + II<br>2          | F          | 'G′          | = 0 | <b>9</b> |            |      |
|       |               |                | F (            | 0)              | = F      | ' (                | 0)         | = G  | ( 0       | ) = | 0,  |     | F′   | ( ∘ | o )        | = G           | ( •      | o )                         | = 1         |                      |            |              |     |          | ( 2        | )    |
| Ø     | 解             | で              | あ              | る               | o        | č                  | n          | に    | 重         | ね   | 6   | n   | た    | 攪   | 乱          | を             | v        | * =                         | ( u         | l <b>*</b> ,         | v*         | , W          | *)  | ,        | <b>p</b> * | ટ    |
| す     | る             | ٤              | き              |                 | 線        | 形                  | 攪          | 乱    | 方         | 程   | 式   | は   | っ    | ぎ   | Ø          | べ             | ク        | ۲                           | ル           | 形                    | に          | 表            | わ   | さ        | れ          | る。   |
| •     | 9             | v<br>t         | + (            | V               | •        | $\bigtriangledown$ | )          | ⊽*   | + (       | v   | •   | • 7 | 7)   | ¥   | = -        | gr            | a d      | $\frac{\mathbf{p}^*}{\rho}$ | + 1         | , ·                  | √²         | →<br>v       | * , |          |            |      |
| · · · | •             |                |                |                 |          |                    |            | di   | V         | v   | * = | 0.  |      |     | •          |               |          |                             |             |                      |            |              |     |          | (3         | )    |
| 基     | 本             | 流              | が              | 時               | 間        | t                  | ષ્ટ        | ス    | <u>ا%</u> | V   | 方   | 向   | 座    | 標   | у          | に             | 依        | 存                           | L           | な                    | い          | č            | ર   | を        | 利          | 用    |
| す     | る             | ٤              | •              | Ŀ               | 式        | か                  | 5          | 容    | 易         | に   | 圧   | カ   | p *  | ષ્ટ | ス          | 18            | Y        | 方                           | 向           | 速                    | 度          | v *          | を   | 消        | 去          | す    |
| る     | ٤             | ૮              | が              | 出               | 来        | τ                  | •          | u.*  | ર         | w * | に   | 関   | す    | る   | _          | 元             | 連        | 立                           | 方           | 程                    | 式          | が            | 得   | 5        | れ          | る。   |
| い     | ま             | •              | 攪              | 乱               | を        | 波                  | 動          | 型    | ٤         | 仮   | 定   | ι   | τ    | •   | 2          | ぎ             | Ø        | よ                           | う           | に                    | 表          | わ            | す   | 0        |            |      |
|       |               | , <sup>1</sup> | u *            | , W             | *)       | = (                | ū,         | w)   | еx        | p [ | i ( | α   | * X  | +   | β*         | у-            | ω        | * t                         | )]          | •                    |            | -<br>        |     |          | ( 4        | ), • |
| た     | だ             | L              | •              | ū Ł             | : w      | は                  | χζ         | ± z  | Ø         | 関   | 数   | •   | α    | * , | ß          | *<br>•        | ω        | *                           | は           | 定                    | 数          | で            | あ   | る        | 0          | さ    |
| 5     | に             | `              | 境              | 界               | 層        | 厚                  | さ          | δ    | ૮         | 外   | 部   | 流   | 速    | を   | 用          | い             | τ        | 諸                           | 量           | を                    | 無          | 次            | 元   | 化        | す          | る。   |
|       | <u>x</u><br>δ | = R            | 9              | - <u>Σ</u><br>δ | Z =      | ζ                  | 9          |      | δα        | •   | = 0 | κ,  |      | δ   | β <b>*</b> | =             | β        | 9                           | -<br>-<br>- | δω<br>U <sub>E</sub> | * =        | ω            | ,   |          |            |      |

$$\begin{split} \frac{U^*}{U_*} = U(\zeta), \quad \frac{U^*}{U_*} = V(\zeta, R), \quad \frac{W}{U_*} = \frac{W(\zeta)}{R}, \\ \frac{\bar{u}}{U_*} = u(\zeta, R), \quad \frac{\bar{w}}{V_*} = w(\zeta, R), \quad \frac{U_*}{U_*} = \tau(R). \end{split}$$
(5)  
以上を二元速立攪乱方程式に代入し、Lを2×2の微分作用  
素行列、q = [u,w]<sup>T</sup>を攪乱のベクトル表示として、方程式を  
L q = 0 (6)  
の形に表わす。作用素行列Lはレイノルズ数Rの運数とRに  
関する微分を含むので、つぎのように展開できる。  
L = (1,  $+\frac{1}{R}, +\frac{1}{R^2}, ...) + (m, +\frac{m}{R}, +\frac{m}{R^2}, ...) \frac{\partial}{\partial R}$   
 $+ (n, +\frac{n}{R}, +\frac{n}{R^2}, ...) \frac{\partial^2}{\partial R^2} + ... \qquad (7)$ 
係数行列はu<sup>\*</sup> - v<sup>\*</sup>方程式に(4)と(5)を代入し、その結果を上  
式と比較することによって得られるが、詳細は省略する。  
3. 偽装殺数展開法  
線形攪乱方程式L q = 0 において、作用素マトリックスL  
は未知ベラメターのを線形に、局所レイノルズ数Rを逆数の  
形で含む。そこで二つの微小ベラメターを通してRに依存するもの  
と考える。さらに、εとε,を独立と仮定して、解をε,のベ

| き      | 級   | 数     | に   | 展   | 開   | す   | る     | 0   | Ľ              | れ    | は                   | E          | 1 =        | 3   | ² (   | <b>ひ</b> 月 | 月(     | 系力          | bs e | 戊   | נ מ  | 1 -      | o z | \$   | R C | D  |
|--------|-----|-------|-----|-----|-----|-----|-------|-----|----------------|------|---------------------|------------|------------|-----|-------|------------|--------|-------------|------|-----|------|----------|-----|------|-----|----|
| 問      | 題   | ષ્ટ   | は   | 異   | な   | る   | 問     | 題   | を              | 扱    | う                   | Č          | ٤          | に   | な     | る          | Ø      | で           | •    | 偽   | 装    | 級        | 数   | 展    | 開   | 法  |
| દ      | 呼   | ぶ     | o   | 1)  |     |     |       |     |                |      |                     |            |            |     |       | ·          |        |             |      |     |      |          |     |      |     |    |
| ۰.     | ţì  | ま     |     | 級   | 数   |     |       |     |                |      |                     |            |            | •   |       |            |        |             |      |     |      |          |     |      |     |    |
|        | 1.  |       | a = | a d | o + | ε   | 1     | Q 1 | +              |      | •                   | +          | ει         | 1   | q "   | +          | •••    | •           | ,    |     |      |          |     | , tr |     |    |
|        |     |       | υ = | ω   | o + | 3   | 1 +   | ω   | 1              | ••   | •                   | +          | ε,'        | 1   | ωп    | +          | • •    | •           |      |     |      |          |     |      | ( 8 | ;) |
| Ł      | 作   | 用     | 素   | L   | Ø   | E   | 1.4   | こ月  | 目了             | する   | 5月                  | <b>医</b> 月 | <b>周</b> 开 |     |       |            |        |             |      |     |      |          |     |      |     |    |
|        |     |       |     | •   |     |     |       |     |                | 9    |                     |            |            |     |       |            |        |             |      |     |      |          |     |      |     |    |
|        |     | L     | =   | ( L | +   | ε   | ε ε 1 | M   | 0              | 36   | · )<br>1            |            |            | •.  |       |            |        |             |      |     |      |          |     |      |     |    |
|        |     |       | ÷   | 3   | 1 ( | L 1 | +     | ε1  | M <sub>1</sub> |      | θ<br>ε <sub>1</sub> | +          | ε,         | ² N | • 1   | ∂²<br>∂ε   | 2<br>1 | +           | ω1   | L.  | )    | +        | • • | •    | (9  | )  |
| を      | 攪   | 乱     | 方   | 程   | 式   | に   | 代     | 入   | ι              |      |                     | ε1         | Ø          | 各   | べ     | き          | Ø      | 係           | 数    | を   | 0    | に        | 等   | 置    | す   | る  |
| Ŀ      | っ   | ぎ     | Ø   | 方   | 程   | 式   | 列     | が   | 得              | ら    | n                   | る          | :          |     |       | •          |        |             |      |     |      |          |     |      |     |    |
|        | T   |       | a . | = 0 | 1   |     | (1    |     |                | М.   |                     | а.         | = -        | (Т  |       |            | . т    |             | a    | _   |      |          |     |      | -   |    |
|        |     | 4 0   | A 0 | - 0 | •   |     | Ϋ́́Γ  | .0. | C              | PI 0 | ,                   | ų i        | -          | ΥL  | · 1 · | w          | 1 L    | ιω <b>)</b> | ч    | 0,  |      |          |     |      |     |    |
|        | ( L | , o + | 28  | e M | [,) | q   | 2 =   | - ( | Lı             | + M  | [1+                 | ω          | 1 L        | ω)  | q     | 1 -        | ( L    | 2 +         | ω    | 2 L | •••) | <b>Q</b> | 0,  |      |     |    |
|        |     |       | ••  | •   | •   | •   |       |     |                |      |                     |            |            |     |       |            |        |             |      |     |      |          |     | (    | 10  | )  |
| 第      | 1   | 式     | は   | 同   | 次   | 常   | 微     | 分   | 方              | 程    | 式                   | で          | あ          | Ŋ   | •     | 同          | 次      | Ø           | 境    | 界   | 条    | 件        | Ł   | 共    | に   | 固  |
| 有      | 値   | 問     | 題   | を   | 形   | 成   | す     | る   | o              | そ    | n                   | を          | 解          | ٢   | ک     | •          | 複      | 素           | 振    | 動   | 数    | ω        | 0   | が    | α   | •  |
| β      | お   | よ     | び   | R   | Ø   | 関   | 数     | ષ્ટ | ι              | τ    |                     |            |            |     |       |            |        |             |      |     |      |          |     |      |     |    |
| . 1    |     |       | ω   | o = | Ω   | ( a | ¢,    | ß   | , F            | R )  |                     |            |            | •   |       |            |        |             |      |     |      |          |     | . (  | 11  | )  |
| о<br>О | よ   | う     | に   | 定   | ŧ   | る   | 0     |     |                |      |                     |            |            |     |       |            |        |             |      |     |      |          |     |      |     |    |

つぎの非同次方程式を解くには、左辺に含まれるεをε2 で置き換えた偽装問題 (L<sub>0</sub>+ε<sub>2</sub> M<sub>0</sub>) q<sub>1</sub> = - (L<sub>1</sub>+ω<sub>1</sub> L<sub>0</sub>) q<sub>0</sub> を導 入し、その解を ε2 に関するべき級数  $q_1 = q_{10} + \varepsilon_2 \quad q_{11} + \varepsilon_2^2 \quad q_{12} + \ldots ,$  $\omega_1 = \omega_{10} + \varepsilon_2 \quad \omega_{11} + \varepsilon_2^2 \quad \omega_{12} + \ldots$ (12) に置く。これらの級数の係数を支配する非同次方程式列  $L_0 q_{10} = -(L_1 + \omega_{10} L_{\omega}) q_0$ ,  $L_0 q_{11} = -(M_0 q_{10} + \omega_{11} L_{\omega} q_0)$ ,  $L_0 q_{12} = -(M_0 q_{11} + \omega_{12} L_{\omega} q_0), \ldots$ (13)は、固有値問題の同次方程式と同じ微分作用素を持つことに なり、右辺の強制項に含まれるパラメターω10、ω11等は方 程 式 の 可 解 条 件 か ら 順 次 定 ま る 。 以 下 同 様 の 手 続 き に 従 う こ と で 偽 装 問 題 の ε₁ と ε₂ に 関 す る 二 重 級 数 解 が 導 か れ る 。 こ の解において ε1 と ε2 をそれぞれ ε² とεに等しいと置くと 元 の 厳 密 方 程 式 の ε に 関 す る 級 数 解 が つ ぎ の 形 に 表 示 さ れ る。  $q = q_0 + \varepsilon^2 q_{10} + \varepsilon^3 q_{11} + \varepsilon^4 (q_{12} + q_{20}) + \ldots$  $\omega = \omega_0 + \varepsilon^2 \quad \omega_{10} + \varepsilon^3 \quad \omega_{11} + \varepsilon^4 \quad (\omega_{12} + \omega_{20}) + \ldots$ (14) このようにして得られた級数解の特徴は、係数が e=1/Rに 緩やかに依存すること、および初項を除く微小項が1/R<sup>2</sup>から 始 ま る こ と で あ る 。 し た が っ て 、 固 有 値 問 題 か ら 定 ま る 初 項 にはレイノルズ数の影響、すなわち流体の粘性と流れ場の非 平行性が十分に反映されているものと期待される。実際、最

低次近似方程式は元の厳密方程式に含まれるO(1/R)項を全て含むために、つぎのような複雑なものになる。  

$$\left\{\left(a^{2} + \beta^{2}\right)\left\{\frac{1}{R}\left(D^{2} - a^{2} - \beta^{2}\right) + i\left(\omega - aU - \beta V\right) - \frac{\dot{\Psi}}{R}D\right. - \frac{1}{R}\left(mU - \frac{1 - m}{2}\zeta U'\right)\right\} - \frac{1 - m}{R}\alpha\left(\omega - aU - \beta V\right)\zeta D\right]u$$
+
$$\left\{\left[-i\alpha\left\{\frac{1}{R}\left(D^{2} - a^{2} - \beta^{2}\right) + i\left(\omega - aU - \beta V\right) - \frac{\ddot{\Psi}}{R}D + \frac{1 - 3m}{2R}U + \frac{1 - m}{2R}\zeta U'\right)D\right. - \beta\left(\beta U' - \alpha V'\right) + i\frac{1 - m}{2R}\left(\omega - aU - \beta V\right)\left(1 + \zeta D\right)D\right. + i\beta\left(\beta U' - a V'\right) + i\frac{1 - m}{2R}\left(\omega - aU - \beta V\right)\left(1 + \zeta D\right)D\right. + i\beta\left(\frac{1 - m}{2R}\left(V' + \zeta V'\right)\right)w = 0.$$

$$\frac{2i}{R}\left[m\alpha\left(UD + U'\right) - \frac{1 - m}{2}\left\{\left(\alpha U' + \beta V'\right)\left(1 + \zeta D\right) + \zeta\left(\alpha U' + \beta V'\right)\right\}\right]u$$
+
$$\left[\left\{\frac{1}{R}\left(D^{2} - a^{2} - \beta^{2}\right) + i\left(\omega - aU - \beta V\right) - \frac{1}{R}\left(\dot{\Psi}D + \dot{\Psi}'\right) + \frac{1 - m}{2R}\left(U - \zeta U'\right)\right)\right\} \times \left(D^{2} - a^{2} - \beta^{2}\right) + i\left(\alpha U' + \beta V'\right) + \frac{m}{R}\left(U'D + U' + 2a^{2}U\right) + \frac{1 - m}{2R}\left\{2a\left(\omega - aU - \beta V\right)\zeta D - \left(U' + 2\zeta U''\right)D - 2U' - \zeta U''\right) - 2a\zeta\left(a U' + \beta V'\right) + 2\left(a^{2} + \beta^{2}\right)U\}\right]w = 0.$$
(15)
  
 $t t C U = d/d\zeta, \quad \dot{\Psi} = -\frac{1}{2}\left(1 + m\right)F(\zeta\right) \ t b = 0, \quad \mathcal{H} = 0.$ 

4.計算結果と考察

は じ め に 、 級 数 解 (14)に お い て 最 低 次 近 似 の 固 有 解 に 対 す る 高 次 微 小 項 の 影 響 が ど の 程 度 に な る か を 調 べ る 。 三 次 元 境 界 層 で は 、 T - S 不 安 定 の ほ か に 横 流 れ ( C - F ) 不 安 定 と 流 線 曲 率 ( S - C ) 不 安 定 が 発 生 す る 。 図 1 ~ 図 3 は 3 種 類 の 不 安 定 性 に 対 す る 結 果 を 示 し て い る 。 各







α と β を 実 数 の 範 囲 で 変 え て 時 間 増 幅 率 ωω の 最 大 値 を 算 出 し、対応する解のRに対する変化を描いた。実線は最低次近 似の固有解で、破線は固有解に補正量  $\Delta \omega = \varepsilon^2 \omega_{10} + \varepsilon^3 \omega_{11} + \varepsilon^3 = \omega_{11}$ ε'(ω12 + ω20)を加えたもの、点線は補正項の初項だけを加 えたものである。T-S不安定(図1)に対しては、点線と 破線は区別がっかないほど接近しており、 補正項の大部分が 初 項 に 起 因 す る こ と 、 お よ び 実 線 と 破 線 の 差 も 非 常 に 小 さ い ため、固有解が十分良い近似を与えることが判る。横流れ不 安 定 ( 図 2 ) に つ い て も 同 様 な 傾 向 が 見 ら れ る が 、 補 正 項 の 影響 は や や 強 く な っ て お り 、 流 線 曲 率 不 安 定 ( 図 3 ) の 増 幅 率 に お い て は 実 線 と 破 線 の 差 が 無 視 で き な い ほ ど 大 き く な っ ている。 補正項は、T-S攪乱の増幅率を増す方向に作用す るが、 C – F と S – C の 攪 乱 で は 増 幅 率 を 減 少 さ せ る よ う に 働く。安定性の定量的見積りに固有値問題の解を用いる場合 には、この傾向を考慮すべきである。 つ ぎ に 、 こ こ で 導 か れ た 非 平 行 理 論 の 最 低 次 近 似 固 有 解 と、 平 行 流 近 似 の オ ル ・ ゾ ン マ - フ ェ ル ト 方 程 式 お よ び 平 行 流 近 似に最も重要な曲率項を加えた準平行流近似<sup>2</sup>)の解を比較す る 。 図 4 は 外 部 流 線 の 角 度 を γ= 1.0に 選 び 、 3 種 類 の 不 安 定 性 の 臨 界 レ イ ノ ル ズ 数 を 圧 力 勾 配 係 数 m に 対 し て プ ロ ッ ト し た も の で 、 実 線 は 非 平 行 方 程 式 、 破 線 は 〇 - S 方 程 式 、 点 線

222

は 準 平 行 流 近 似 方 程 式 の 解 で あ る 。 T - S 臨 界 曲 線 で は 実 線 と 破 線 は か な り - 致 し て い る が 、 C - F と S - C 不 安 定 に 対 し て は 様 相 が 異 な る 。 O - S 方 程 式 は 、 流 線 曲 率 項 を 含 ま な い た め に S - C 不 安 定 を 記 述 で き な い 代 り に 、 m の 広 い 範 囲 で C - F 臨 界 曲 線 を 与 え る 。 こ れ に 対 し て 非 平 行 固 有 値 方 程 式 で は 、 S - C 不 安 定 が 非 常 に 低 い 臨 界 値 を 持 っ た め 、 C -F 臨 界 曲 線 は m の 大 き い 領 域 に だ け 現 わ れ る 。 S - C 臨 界 曲 線 に 対 し て は 、 実 線 と 点 線 の 差 が 大 き い の で 、 準 平 行 流 近 似 方 程 式 の 有 効 性 に は 問 題 が あ る も の と 思 わ れ る 。 こ れ ま で の 結 果 か ら 、 非 平 行 固 有 解 が T - S 不 安 定 に 対 し て は 非 常 に 良 い 近 似 を 与 え る こ とが 判 っ た の で 、 最 後 に 二 次



元 ブ ラ ジ ウ ス 流 の 中 立 安 定 曲 線 を 算 出 し た 。 図 5 は そ の 結 果 (実線)とO-S解(破線)および準平行流近似解(点線) を比較したものである。臨界レイノルズ数 Rc=260.1は平行流 近 似 の R c = 301.6に 比 べ て 約 14% 低 く な り 、 高 次 補 正 項 を 加 え ればこの値はさらに低くなる。 5. むすび 三次元相似境界層に対する厳密な線形攪乱方程式に偽装級 数 展 開 法 を 適 用 し 、 レ イ ノ ル ズ 数 の 逆 数 に 関 す る べ き 級 数 解 を 導 い た 。 級 数 解 の 初 項 で 表 わ さ れ る 最 低 次 近 似 解 は 流 れ 場 の非平行性、曲率、粘性効果等を含む常微分方程式の固有値 問題から定まる。級数解は1/R項を含まないので、高次微小 項 は 1 / R <sup>2</sup> か ら 始 ま り 、 各 係 数 は 非 同 次 常 微 分 方 程 式 の 境 界 値 問 題 の 解 と し て 定 ま る 。 最 低 次 近 似 解 と 高 次 補 正 項 に 対 す る 数 値 計 算 の 結 果 で は 、 ε<sup>2</sup> 次 項 は 小 数 点 以 下 第 3 桁 に 、 ε<sup>4</sup> 次 項 は 第 4 桁 に 影 響 す る 程 度 で あ り 、 し た が っ て 級 数 解 の 収 束 性 は か な り 良 い も の と 推 測 さ れ る 。 高 次 補 正 項 は 、 T - S 不 安 定 の 増 幅 率 を 増 加 さ せ 、 C - F と S - C 不 安 定 の 増 幅 率 を 減少させる方向に働く。

## 参考文献

- Itoh, N. (1998) Theoretical description of instability waves in the flow on a rotating disk, I. False-expansion method applied to linear stability equations. Trans. Japan Soc. Aero.Space Sci. 40, 262-279.
- 2) Itoh, N. (1996) Development of wedge-shaped disturbances originating from a point source in a threedimensional boundary layer. Fluid Dyn. Res. 18, 337-354.