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1 Introduction
Classically, there are many connections between differential operators and the theory of elliptic
modular forms and many interesting results have been explored. In particular, it has been
known for some time how to obtain an elliptic modular form from the derivatives of $N$ elliptic
modular forms. The case $N=1$ has already been studied in detail by R. Rankin in 1956
[9]. For $N=2$ H.Cohen has constructed certain covariant bilinear operators which he used
to obtain modular forms with interesting Fourier coefficients [6]. Later, these operators were
called Rankin-Cohen operators by D. Zagier who studied their algebraic relations [10].
In this talk, we show how to obtain a Jacobi form from $\mathrm{N}$ Jacobi forms using heat operators.
In particular, we introduce the results which relate Rankin-Cohen type bilinear operators of
elliptic modular forms of half integral weight using theta-series expansion of a Jacobi form.
In particular, we give an explicit description of covariant bilinear operators for Jacobi forms.
Moreover, we intoruduce the results which relate Rankin-Cohen type bilinear operators on the
Jacobi forms to those of half-integral weight elliptic modular forms.

2 Jacobi Forms
We first give the definition of Jacobi forms and the heat operator (as a general reference for
Jacobi forms we refer to [8] $)$ . Denote by $\mathcal{H}$ the complex upper half plane and define, for
holomorphic functions $f$ : $\mathcal{H}\cross \mathbb{C}arrow \mathbb{C}$ and intege.rs $k$ and $m$ , the slash operators

$(f|_{k,m}M)(\tau, Z)$ $=$ $(c \tau+d)-k2\pi ie\frac{-cz^{2}}{c\tau+d})fm((\frac{a\tau+b}{c\tau+d}, \frac{z}{c\tau+d})$ ,

$(f|_{m}Y)(\tau, Z)$ $=$ $e^{2\pi im}(\lambda^{2}\mathcal{T}+2\lambda z)f(_{\mathcal{T},Z}+\lambda\tau+\nu)$
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where $\tau\in \mathcal{H},$ $z\in \mathbb{C},$ $M=\in\Gamma\subset \mathrm{S}\mathrm{L}(2, \mathbb{Z})$ and $\mathrm{Y}=(\lambda, \nu)\in \mathbb{Z}^{2}$ . Here $\Gamma$ is a subgroup

of $SL(2, \mathbb{Z})$ with finite index.
Using these slash actions the definition of Jacobi forms is as follows.

Definition 2.1 A Jacobi form of $w$

.
eight $k$ and index $m(k, m\in \mathrm{N})$ is a holomorphic function

$f$ : $\prime H\cross \mathbb{C}arrow \mathbb{C}$ satisfying

$(f|_{k,m}M)(\tau, Z)=f(\tau, z)$ , $(f|_{m}Y)(\mathcal{T}, Z)=f(\tau, Z)$

for all $M\in SL(2, \mathbb{Z})$ and $\mathrm{Y}\in \mathbb{Z}^{2}$ and such that it has a Fourier expansion of the form

$f(\tau, z)=$
$\sum\infty$

$c(n, r)q^{n}\zeta^{r}$ ,
$n=0$

$r\in \mathbb{Z},$ $r^{2}\leq 4nm$

where $q=e^{2\pi i\tau}$ and $\zeta=e^{2\pi iz}$ . If $f$ has a Fourier expansion of the same form but with
$r^{2}<4nm$ then $f$ is called a Jacobi cusp form of weight $k$ and index $m$ .

We denote by $J_{k,m}$ the (finite dimensional) vector space of all Jacobi forms of weight $k$ and
index $m$ and by $J_{k,m}^{cuS}p$ the vector space of all Jacobi cusp forms of weight $k$ and index $m$ .
Our main result (Theorem 3.5) involves the heat operator which has already been studied
in [8] to connect Jacobi forms and elliptic modular forms and in ref. $[2, 3]$ in the context of
bilinear differential operators.

Definition 2.2 Let $f(\tau, z)$ be a differentiable function from $\mathcal{H}\cross \mathbb{C}$ to $\mathbb{C}$ with $H$ the complex
upper half plane. Then, for any complex number $m$ , define a differential operator $L_{m}$ by

$L_{m}(f)=(8\pi\dot{i}m\partial_{\tau}-\partial_{z}^{2})(f)$ .

3 Covariant Differential Operators
In this section we show how to construct a Jacobi form from $N$ Jacobi forms using heat
operators. We first state the following result which shows how to.,$\mathrm{c}$onstruct a Jacobi fo.r$\mathrm{m}$

from a certain formal power se.ries.
Theorem 3:1 [3] Let $\tilde{f}(\tau,$ $z;^{x)}=\Sigma_{l=0}^{\infty}\chi_{\ell},m(\mathcal{T}, Z)Xl$ be a formal power series in $X$ satisfying

$\tilde{f}(M\tau, \frac{z}{c\tau+d};\frac{X}{(c\tau+d)^{2}})=(c\tau+d)ke^{2}\frac{cz^{2}}{c\tau+d}e\frac{cX}{cr+d}\tilde{f}\pi im8\pi im(\mathcal{T}, Z;x)$ ,

for any $M=\in\Gamma$ . Furthermore, assume that $\chi_{l,m}$ is holomorphic in $\mathcal{H}\cross \mathbb{C}$, satisfies
$(\chi_{\ell,m}|_{(m)}Y)(\mathcal{T}, z)=\chi\ell(\tau, Z)$ for all $\mathrm{Y}\in Z^{2}$ ,
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and has a Fourier expansion of the form

$x_{\ell,m}(_{\mathcal{T},Z})=n,r \in \mathrm{Z},\gamma^{2}\sum_{4\leq mn}c(n, r)e^{2\pi}in\mathcal{T}2\pi irze$
.

Then $\xi_{\ell}$ , defined as

$\xi_{\ell}(\mathcal{T}, z)=\sum_{j=0}^{\ell}\frac{(-1)^{j}(\alpha+\mathit{2}\ell-j-\mathit{2})!}{j!(\alpha+\mathit{2}\ell-\mathit{2})!}L^{j}m(x\ell-j)$,

is a Jacobi form of weight $k+2P$ and index $m$ . Here, $\alpha=k-\frac{1}{2},$ $x!=\Gamma(x+1)$ .
(Proof) See [3].

Remark 3.2 Originally, Eicher-Zagier has shown how to construct modular forms from Ja-
cobi $f_{orm}S[\mathit{8}]$. Theorem3.1 is generalizing the idea of Eichler-Zagier given in [ $[\mathit{8}],$ \S I.3.
pp.28-35], replacing modular forms that occur there by Jacobi forms. As a result, we introduce
$\tilde{f}$, a function of three variables, in place of the two variable $\tilde{f}$ occurring in $[[\mathit{8}]_{f}Theorem\mathfrak{Z}.\mathit{3}$,
p.35]. This leads us how to construct Jacobi forms using the heat operator.

Corollary 3.3 [3] For $f\in J_{k,m}$ , consider a formal power series

$\tilde{f}(_{\mathcal{T}}, z;X)=\ell\geq 0\sum\frac{L_{m}^{\ell}(f)}{\ell!(\alpha+\ell-1)!}X^{\ell},$ $\alpha=k-\frac{1}{2}$ .

Then, $\tilde{f}$ satisfies a functional equation, for any $M–\in\Gamma$ ,

$\tilde{f}(M_{\mathcal{T}}, \frac{z}{c\tau+d};\frac{X}{(c\tau+d)^{2}})=(c\tau+d)ke^{2}\frac{cz^{2}}{c\tau+d}e\pi im8\pi im\frac{cX}{c\tau+d}\tilde{f}(\mathcal{T}, Z;x)$ .

(Proof) See [3].

We now state the main result which shows how to construct a Jacobi form from $\mathrm{N}$ Jacobi
forms using the heat operator.

Theorem 3.4 Take any $y_{i}\in \mathbb{C},$ $1\leq\dot{i}\leq q-1$ , and any nonnegative integer $\nu$ . Define a map
$[]_{(y1y_{2},..,y_{q}1},-),\nu$ : $J_{k_{1m_{1}}},\cross\ldots \mathrm{x}J_{k_{q},m_{q}}arrow \mathbb{C}$ as

$[f_{1}, f_{2}, \ldots f_{q}](y1,y_{2\cdot.y_{q-}})1),\nu=$

$\sum$ $c_{r_{1r_{q},p}},..,(k1, .., k_{q})D_{r_{1r_{q},u_{1},..,u}q},..,(m1, ..m;y_{1,..,y_{q}}q-1)$

$\Sigma_{1\leq j\leq}q+r_{\mathrm{j}}p=\mathrm{L}^{\nu}\Sigma_{t=}^{q}1-2\mathrm{L}v/2u_{l}=v\tau_{\mathrm{J}}^{\rfloor}$

$L_{m}^{p}(L_{m_{1}}^{r_{1}}(\partial u_{1}fZ1)L_{m^{2}}r(\partial u2f_{2})2z\cdots m_{q}^{q}(L^{r}\partial_{z^{q}}uf_{q}))$ ,
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where $C_{r_{1},..,r_{q},p}(k1, .., k_{q})= \frac{(-1)^{p}(\gamma+2v-p-2)!}{p!(\beta+2\gamma-2)\overline{!}}\Pi_{j=1}^{q}\frac{1}{r_{j}!(\alpha_{j}+rj^{-1)!}}$ ,
$D_{r_{1},..,r_{q},u_{1},..,uq}(m1, ..m;qy_{1,..,y_{q}}-1)$

$= \Pi_{j=1}^{q}(-\Sigma_{i=1}^{j-1}m_{i}+\sum^{q}i=j+1m_{i})^{u_{j}}(1-\Sigma_{i=1}^{j-1}m_{i}y_{i}+\sum_{i}^{q}=j+1miyj)r_{j}$ ,
$\gamma=(.\Sigma_{j=1}^{q}k_{j})-\frac{1}{2},$ $\alpha_{j}=k_{j}-\frac{1}{2},$ $m= \sum_{j}^{q}=1mj$ , and $1\leq j\leq q$ .
Then $[f_{1}, f_{2}, \ldots f_{q}](y1,..,yq-1),\nu\in J_{k_{1}}+\ldots+k_{q},m_{1}+m_{2}+\ldots+m1^{\cdot}$

(Proof of Theorem3.4) Let, for $f_{j}\in J_{k_{j},m_{j}},$ $1\leq j\leq q$ ,

$\tilde{f}_{j}(\mathcal{T}, z;x)=\ell\geq\sum_{0}\frac{L_{m_{j}}^{t}(fj)}{p!(\alpha_{j}+p_{-}1)!}X^{\ell}$ .

One can see, from Corollary3.3, that

$h(\tau, z;x)$ $= \prod_{j=1}^{q}\tilde{f}j(\tau, z;(1-\sum_{=1}j-1imiyi+i=j+\sum_{1}qmiyj)X)$

$=$ $\ell=\sum_{0}^{\infty}(_{r_{1}+r_{2+}}\sum_{=+r_{q-}}..\prod_{1\ell j=}q\frac{L_{m_{j}}^{r_{j}}(f_{j})(1-\sum ij-1m1iy_{i}+=\sum iqmj+1iyj)=r_{j}}{r_{j}!(\alpha_{j}+r_{j}-1)!}\mathrm{I}X^{\ell}$

satisfies a functional equation

$h(M \tau, \frac{z}{c\tau+d};\frac{X}{(c\tau+d)^{2}})=(c\tau+d)kee\frac{cX}{\mathrm{c}\tau+d}h2\pi im\frac{cz^{2}}{c\tau+d}8\pi im(\mathcal{T}, Z;X)$,

for any $M=\in\Gamma,$ $k= \sum_{j=1j}^{q}k,$ $m= \sum_{j=1}^{q}m_{j}$ and any $y_{j}\in \mathbb{C}$. Now, by applying
Theorem3.1 to the above function $h(\tau, z;x)$ and from the fact $(L_{m}f)|(m)\mathrm{Y}=Lm(f|(m)\mathrm{Y}),$ $\forall \mathrm{Y}\in$

$\mathbb{Z}^{2}$ . We conclude the above main result for the case when $\nu$ is even. When $\nu$ is odd, using the
fact that

$( \partial_{z}h)(_{\mathcal{T},z;X})=(_{C}\tau+d)^{-k}e^{\frac{-2\pi imz^{2}}{c\tau+d}8}e^{-}\pi im\frac{cX}{c\tau+d}(-\mathit{2}\pi\dot{i}m_{j}zh+\frac{1}{c\tau+d}\partial zh)(M\tau, \frac{z}{c\tau+d};\frac{X}{(c\tau+d)^{2}})$ ,

Theorem follows.

As a special case, when $q=\mathit{2}$ , the brackets $[, ]_{X,\nu}$ are, up to constant factor, the Rankin-Cohen
type bilinear differential operators on the space of Jacobi forms which were already studied in
[4].

Theorem 3.5 [4] Let $f$ and $f’$ be Jacobi forms of weight and index $k_{f}m$ and $k’,$ $m’$ , respec-
tively. For any $X\in \mathbb{C}$ and any non-negative integer $v$ define

$[f, f’]_{x_{v}\sum C_{r,S}},=r+S+p=v’ p(k, k’)D_{r,s,i,j(m,m^{J}},$ $X)L_{m+m’}^{p}(L_{m}r(f)L_{m}^{S}’(f’))$
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where

$D_{r,s}(m, m’, X)$ $=$ $(1+mX)^{S}(1-mX’)r$ ,

$C_{r,s,p}(k, k’)$ $=$ $\frac{(\alpha+v-1)_{S}+p}{r!}$ . $\frac{(\beta+v-1)_{r+p}}{s!}\cdot\frac{(-(\gamma+v-1))r+s}{p!}$

$(\alpha=k-1/2, \beta=k’-1/2, \gamma=k+k’-1/2+(v-\mathit{2}\lfloor v/\mathit{2}\rfloor))$ ,

where $(x)_{m}=\Pi_{0\leq i\leq m-}1(x-\dot{i})$ . Then $[f, f’]_{x_{v}}$, is a Jacobi form of $.w$eight $k+k’+v$ and index
$m+m’$ and, even more, a Jacobi cusp form for $v>1$ .

Futhermore, let us mention a result by B\"ocherer [1].

Theorem 3.6 For fixed $v$ and $k,$ $m,$ $k’,$ $m’$ large enough the vector space of all covariant bilin-
ear $d\dot{i}fferent\dot{i.}al$ operators mapping $J_{k,m}\cross J_{k’,m}$, to $J_{k+k’+m+}v,m’$ has dimension $\lfloor v/2\rfloor+1$ .

Remark 3.7 We note that the Theorem3.5 describes a basis of this space explicitly. For
fixed $v$ and $k,$ $m$ and $k’,$ $m’$ large enough the operators $[\cdot, \cdot]_{X,v}(X\in \mathbb{C})$ span a vector space of
dimension $\mathrm{L}\frac{v}{2}\rfloor+1$ This shows that the space of such Rankin-Cohen operators is, in general, $at$

least $\mathrm{L}\frac{v}{2}\rfloor+1$ dimensional. A result of $B_{\ddot{O}C}herer[\mathit{1}]$, obtained by using $Maa\beta$ operators, shows
that this dimension actually equals $\mathrm{L}\frac{v}{2}\rfloor+1$ in general (cf. Theorem3.6).

4 Connection with elliptic modular forms of half inte-
gral weight

In this section, as a special case, we consider the Rankin-Cohen type bilinear differential
operator which has a connection with that of elliptic modular forms. One bilinear operator
for each even $v$ has already been constructed in [2]:
More explicitley,

Theorem 4.1 [2] Let $f_{i}\in J_{k_{i}},m_{i}$ with $i=1$ or 2. For given any nonnegative integer $\nu$ ,
consider a linear map $[[, ]]_{\nu}$ ; $J_{k_{1}},m_{1}\cross J_{k_{1}},m_{1}arrow \mathbb{C}$ defined by .$\cdot$.$\cdot$.

$[[f_{1}, f_{2}]]_{\nu}= \ell=\sum_{0}^{\nu}(-1)lm_{1}^{\nu-}m_{2m_{1}}^{l\mathit{1}}L(\ell f_{1})L\nu-l(m2f_{2})$ (1)

Here, $\alpha_{i}=k_{i}-\frac{1}{2}$ and $x!=\Gamma(x+1)$ .
Then, $[[f_{1}, f_{2}]]_{\nu}$ is a Jacobi form of weight $k_{1}+k_{2}+2\nu$ and index $m_{1}+m_{2}$ .

Remark 4.2 The bilinear differential operator $[^{\mathrm{r}}\lfloor, ]]_{\nu}$ is equal to

$\frac{(\alpha_{1}+\nu-1)!(\alpha 2+\nu-1)!}{\nu!}(\frac{d}{dX})^{v/2}[f, f’]_{x},\nu$ $(v\in 2\mathbb{N}=\{0,\mathit{2}\ldots\})$ .

This operator $[[, ]]_{\nu}$ was the first found Rankin-Cohen type differential operators on the space
of Jacobi forms
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To find a relation between bilinear differential operators of Jacobi forms and those of elliptic
modular forms, we recall that any Jacobi form of weight $k$ and index $m$ has an expansion

$\mu\sum_{(\mathrm{m}\mathrm{o}\mathrm{d} 2m)}h_{\mu}(\tau)\theta_{m,\mu}(_{\mathcal{T}z},)$

in terms of standard theta-series

$\theta_{m,\mu}(\tau, z)=$

$\sum_{r\in Z}$

$q^{\frac{r^{2}}{4m}}\zeta^{r}$ ,

$r\equiv\mu$ (mod $\mathit{2}m$)

where the $h_{\mu}$ are modular forms of weight $k- \frac{1}{2}$ (see [8]). The following results state the theta-
expansion in this sense of $[[f_{1}, f_{2}]]\mathcal{U}’ f_{i}\in J_{k_{i}},m_{i}$ . This gives the relation between the ordinary
Rankin-Cohen brackets for the half-integral weight elliptic modular forms studied given in [10]
and those for the Jacobi forms.

Theorem 4.3 For each of $f_{i}\in J_{k_{i}},m_{i}’\dot{i}=1,2$ , let $f_{i}( \tau, z)=\sum_{\mu_{i}}(\mathrm{m}\mathrm{o}\mathrm{d} 2m_{i})h_{\mu}i\theta_{m\mu_{i}}i$, be the
theta-expansion for $f_{i}$ . Then,

1.

$[[f_{1}, f2]]_{\nu}=(\mathit{8}\pi\dot{i}m_{1}m2)^{\nu}\mu_{1}$ $\sum_{(\mathrm{m}\mathrm{o}\mathrm{d} 2m_{1})}..[h_{\mu_{1}}, h_{\mu_{2}}]_{\nu m_{1,\mu}}\theta\theta_{m,\mu_{2}}12$
’

$\mu_{2}$ (mod 2$m_{2}$ )

where $[h_{\mu_{1}}, h_{\mu_{2}}]_{\nu}$ is the ordinary Rankin-Cohen bracket for the half-integral weight elliptic
modular forms $h_{\mu_{i}}$ $[\mathit{1}\mathit{0}],\cdot$

$[h_{\mu_{1}}, h_{\mu_{2}}] \nu=\sum_{l=0}^{\nu}(-1)^{p}D_{r}^{f},(h_{\mu_{1}})D_{\mathcal{T}}^{\nu}-l(h_{\mu})2$

Here, $\alpha_{i}=k_{i}-\frac{1}{2},\dot{i}=1,\mathit{2}$, and $D_{\tau}= \frac{d}{d_{\Gamma}},\cdot$

2.

$\theta_{m_{1},\mu_{1}}(\mathcal{T},$ $Z)\theta m2,\mu_{2}(\mathcal{T},$ $Z)=$ $\sum$ $_{\mu;\mu 1,\mu_{2}}(\tau)\theta_{m,\mu}(\mathcal{T},$ $Z)$ ,
$\mu$ (mod $2m$)

where $m=m_{1}+m_{2}$ and

$_{\mu;\mu 1,\mu}(2\tau)=$ $\sum$
$q^{\frac{s^{2}}{4mm_{1}m_{2}}}$ .

$s\in Z$

$s=m_{1}\mu-m\mu_{1}$ (mod $2mm_{1}$ )
$s=m\mu_{2}-m_{2}\mu$ (mod $2mm_{2}$ )
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3. The theta expansion of $[[f_{1}, f_{2}]]_{\nu}$ is given as

$[[f_{1}, f_{2}]]_{\nu}(. \tau, Z)=(8\pi im1m2)^{\nu}\mu(\mathrm{m}\mathrm{o}\mathrm{d} 2m\sum_{)}h_{\mu}(\mathcal{T})\theta_{m},(\mu\tau, Z)$ ,

where $m=m_{1}+m_{2}$ , and

$h_{\mu}(\tau)=\mu_{1}$ $\sum_{(\mathrm{m}\mathrm{o}\mathrm{d} \mathit{2}m1\mathrm{I}}_{\mu;\mu_{1},\mu}(_{\mathcal{T})[}2h, h]\mu 1\mu_{2}\nu$

$\mu_{2}$ (mod $2m_{2}$ )

(Proof of Theorem) See [2].
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