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1 Introduction
In Boolean complexity theory, the circuit-size complexity and other types of complexity
are normally defined with respect to some complete basis such as the set of all 2-variable
functions or the set {AND, OR, NOT}. In other cases, C. P. Schnorr, A. A. Razborov
and many others have investigated Boolean complexity with respect to some incomplete
basis. $\mathrm{I}\mathrm{P}^{\mathrm{i}_{\mathrm{C}}1}\mathrm{a}1\mathrm{y}$, they have considered the complexity over the set {AND, OR}.

On the other hand, the concept of a clone has been known for decades in the field of
universal algebra and in multiple-valued logic. And, when the term clone is introduced
into the theory of Boolean complexity, those ”incomplete” bases as mentioned above nat-
urally turn out to be ”complete” bases for some suitable clones. In other words, one may
take up arbitrary clone and construct a complexity theory exclusively within that clone.
Thus, to each clone corresponds its own complexity theory.

In this context, one should be justified to call the $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\dot{\mathrm{d}}$, normal complexity theory
as the global complerity th.eory and the complexity theory over a clone as the local com-
plexity theory.

In this paper, we start with reviewing the definition of a clone and some basic facts
about clones and, then, develop a framework for the local complexity theory. We also
give ”global” bounds for the local complexity. Finally, as a typical example, a couple of
well-known results from monotone complexity are summarized &om the viewpoint of our
local complexity theory.

The reader should not expect to find any essentially new results in this paper. Instead,
the purpose of this paper is to prov.ide th..e reader with a framework for new perspective
in Boolean complexity theory.

2 Clone

In general, the term done is defined over arbitrary non-empty set in the following way.
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Let $A$ be a non-empty set and $\mathit{0}_{A}^{(n)}$ be the set of all functions $\mathrm{h}\mathrm{o}\mathrm{m}A^{n}$ into $A$ and

$O_{A}= \bigcup_{1n=}^{\infty}O^{\mathrm{t}\mathfrak{n})}A$

Let $J_{A}$ be the set of $\mathrm{a}\mathrm{U}$ projections $pr_{*}^{n}$. over $A$ where $\Psi^{n}.\cdot$ is defined as

$r_{i}^{n}(x_{1,i,n}\ldots, x\cdots,x)=xi$

for every $(x_{1}, \cdots, x_{n})\in A^{n}$ .

Deflnition 2. 1 A subset $C$ of $O_{A}$ is $a$ clone over $A$ if and only if
(1) $C$ contains $J_{A}$

and
(2) $C$ is closed under (functional) composition.

Definition 2. 2 The set of all clones over $A$ is called the lattice of clones over $A$, or
the space of clones over $A$, and is denoted by $\mathcal{L}_{A}$ .

Notation For a clone $C$ and $n>0$, we shall denote by $C^{(\mathfrak{n})}$ the subset of $\mathrm{a}\mathrm{U}$ n-variable
functions in $C,$ $i.e.,$ $C^{\mathrm{t}n)}=C\cap o_{A}\mathrm{t}n$).

So far, we have introduced the concept of a clone and the space of clones in the general
setting.

In this paper, we are interested only in the Boolean case, that is, the case where the set
$A$ contains only two elements, namely, $A=\{0,1\}$ . In this case, we shall denote $O_{A},$ $O_{A}^{(n)}$

and $\mathcal{L}_{A}$ by $\mathit{0}_{2},$
$O_{2}^{(n)}$ and $\mathcal{L}_{2}$ , respectively. Thus, the set $O_{2}$ is the set of all Boolean func-

tions and the space $\mathcal{L}_{2}$ is the space of $\mathrm{a}\mathrm{U}$ clones defined over Boolean functions. Up to now,
this space has been thoroughly studied. In particular, its lattice structure was completely

determined by E. L. $\mathrm{p}_{\mathrm{o}\mathrm{S}\mathrm{t}}[4]$ . $\mathcal{L}_{2}$ is often called the Post lauice. The diagram of the Post
lattice is given in the Appendix A.

There are several remarkable $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{t}_{1}^{\bullet}\mathrm{o}\mathrm{n}\mathrm{s}$ between $L_{2}$ and $\mathcal{L}_{A}$ for $|A|\geq 3$ . Most sig-
nificant is the cardinality: As one can see from the Appendix $\mathrm{A}$, the cardinality of $\mathcal{L}_{2}$

is countable, whereas $\mathcal{L}_{A}$ for each $A$ with $|A|\geq 3$ is known to have the cardinality of
continuum (This is due to Y. I. Yanov and A. A. Muchnik [11]). Another distinction,

which is related to the above distinction, is that every clone in $\mathcal{L}_{2}$ is finitely generated,
whereas there exist clones which have no basis, neither finite nor infimite, in each $\mathcal{L}_{A}$ with
$|A|\geq 3$ . The list of generators for every clone in $\mathcal{L}_{2}$ is shown in the Appendix B.

3 Local Complexity –Computational Complexity over a
Clone

In the following, we are only concerned with the Boolean case: $A=\{0,1\}$ . Also, the term
basis always means finite basis.

Normally, the circuit-size complexity of a Boolean function $f$ is defined as follows:
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Definition 3. 1 Let $\Omega_{0}$ be a basis for the set $O_{2}$ of all Boolean fiunctions, that is, $\Omega_{0}$ is
a complete basis in a usual sense. For an $n$-variable $fimcu_{\mathit{0}}nf$ in $\mathit{0}_{2}^{(n)}$ , the circuit-size
complexity of $f$ with respect to $\Omega_{0}\dot{u}$ defined to be the minimum of the numbe$r$ of
gates in a (combinatorid) circuit $C$ where $C$ ranges over $dl$ circuits that use functions in
$\Omega_{0}$ as gates and compute $f$ . This complexity is denoted by $\mathrm{C}_{\Omega 0}(f)$ .

The circuit-size complexity over arbitrary clone $C$ can be defined analogously:

Definition 3. 2 Let $C$ be $a$ done and $\Omega$ be a basis for C. For an $n$-variable function $f$ in
$C$, the circuit-size complexity of $f$ with respect to $\Omega$ is defined to be the minimum

of the number of gates in a (combinatorial) $ci_{\Gamma\alpha}AitC$ where $C$ ranges over all circuits that
use fimctions in $\Omega$ as gates and compute $f$ . This complexity is denoted by $\mathrm{C}_{\Omega}(f)$ .

In order to make clear distinction between the above two complexities, one may be
tempted to $\mathrm{c}\mathrm{a}\mathrm{U}$ the former (the circuit-size complexity with respect to some complete
basis) the global circuit-siz$e$ complexity and the latter (the circuit-size complexity over a
clone) a locd circuit-size complexity.

Deapth complexity and formula-size complexity for the local case can also be defined
similarly to the normal (global) case, but we shall not consider them here.

The following relation between the local and the global complexities is obvious.

Proposition 3. 1 Let $C$ be a done. Let $\Omega_{0}$ be a basis for the set $O_{2}$ of all Boolean

fiunctions and $\Omega$ be a bnis for C. Then, there nists a constant $m\geq 1$ which satisfies
$\mathrm{C}_{\Omega_{\mathrm{O}}}(f)\leq m\mathrm{C}\Omega(f)$

for any $f\in O_{2}^{(n)}$ .

Proof This follows from the fact that each function in $\Omega$ can be constructed by a fixed
number of gates in $\Omega_{0}$ . $\square$

Similar argument implies the following:

Proposition 3. 2 Let $C$ be $a$ done and $\Omega_{1}$ and $\Omega_{2}$ be two bases for C. Then, there enist
constants $m_{1},$ $m_{2}\geq 1$ which satisfy

$\mathrm{C}_{\Omega_{1}}(f)\leq m_{1}\mathrm{c}_{\Omega_{2}}(f)$ and $\mathrm{C}_{\Omega_{2}}(f)\leq m_{2}\mathrm{c}_{\Omega_{1}}(f)$

for any $f\in O_{2}^{(n)}$ .

Thus, the local complexity is, in a sense, characteristic to a clone and independent of
the choice of a basis in a clone.
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4 ”Global” Bound for Local Complexity

First, we shall consider the ”global” upper bound for the local complexity.

Proposition 4. 1 Let $C$ be $a$ done and $\Omega$ be a basis for C. For each $n>0$ and any
fimction $f$ in $C^{(n)}$ ,

$\mathrm{C}_{\Omega}(f)<|c\langle n)|$ .
Proof Consider a minimal computation sequence $S_{0}$ for $f$ with respect to $\Omega$ :

a : $x_{1},$ $x_{2,n}\ldots,$$X,$ $f1,$ $f2,$ $\cdots,$ $f_{r}-1,$ $fr(=f)$ .

Here, $f_{1},$ $f_{2},$ $\cdots,$ $f_{r-1}$ , and $f_{r}$ can be considered as $n$-variable functions in $C$, and these
functions are mutuaUy distinct to each other since a is nininal. Therefore,

$r\leq|c^{(n)}|-n<|c^{\mathrm{t}}n)|$ .
$\square$

In other words, we have, for example, the following upper bound.

Corollary 4. 1 Let $C$ be a clone and $\Omega$ be a bnis for C. Suppose $|C^{(n)}|\leq p(n)$ for some
polynomid $p(n)$ . Then, for any function $f$ in $C^{(n)}$ ,

$\mathrm{C}_{\Omega}(f)<p(n)$ .

Corollary 4. 2 Under the same situation as in the above corollary and for arbitrary
complete basis $\Omega_{0}$ (e.g., $\Omega_{0}=$ {AND, OR, NOT}), we have

$\mathrm{C}_{\Omega_{\mathrm{O}}}(f)<mp(n)$

for some constant $m$ .

Proof Clear ffom Proposition 3.1 and Corollary 4.1. $\square$

Now, we turn to the “global” lower bound for the local complexity.

Proposition 4. 2 Let $C$ be $a$ done and $\Omega$ be a basis for C. For sufficiently large $n>0$ ,
there $e\dot{u}sts$ a function $f$ in $C^{(n)}$ that satisfies

$\mathrm{C}_{\Omega}(f)\geq\frac{\log_{2}|c^{(}n)|}{n}$ .

The proof proceeds analogously to the proof for the global case, which is originally due
to C. E. $\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{n}[7]$ . (See, $e.g.$ , I. $\mathrm{W}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}[10].$ )

Proof Let $s$ be the number of functions in $\Omega$ and $t$ be the maximum arity of the finctions
in $\Omega$ .

It is the key observation that the number of $n$-variable functions computable by circuits
with at most $b$ functions (gates) in $\Omega$ does not exceed

$V(b,n)=(b+n-1)^{tb}S^{b}b/b$ !.
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Let $b$ be the maximum complexity of functions in $C^{\langle n)}$ with respect to $\Omega$ . Then, we

ha.ve
$V(b,n)\geq|c^{(n})|$ .

By the Stirling’s formula, which asserts

$b! \geq cb^{b}+\frac{1}{2}e^{-}b$

for some constant $c>0$ , the inequality

$\log_{2}V(b,n)\geq\log 2|c^{\mathrm{t}}n)|$

yields

$tb\log_{2(n}b+-1)+b\log_{2}S+\log_{2}b$

$- \log_{2^{C}}-(b+\frac{1}{2})\log 2b+b\log_{2}e$ $\geq$ $\log_{2}|C(n)|$ .

We may assume that $b\geq n-1$ and $(t-1)b \geq\frac{1}{2}$ , and then from the above inequality the
following inequality is obtained for some constants $k_{1},$ $k_{2}>0$ :

$k_{1}b\log_{2}b+k_{2}b\geq\log_{2}|C^{(\mathrm{n})}|$ .

$\mathrm{N}\mathrm{o}\mathrm{w}_{\wedge}$, suppose that
$b \leq\frac{\log_{2}|c(n)|}{n}$ .

This implies

$k_{1} \frac{\log_{2}|c^{(}n)|}{n}(\log 2\log_{2}|C^{(}n)|-\log_{2}n)+k_{2}\frac{\log_{2}|c(n)|}{n}\geq\log_{2}|C(\mathrm{n})|$,

which is false for sufficiently large $n$. Therefore, we have

$b> \frac{\log_{2}|c^{(n})|}{n}$

for sufficiently large $n$ . $\square$

The previous proposition implies the well-known ”global” lower bound for the global
complexity.

Corollary 4. 3 Let $\Omega_{0}$ be a complete basis for $O_{2}$ . For $suffi\dot{\alpha}ently$ large $n>0$ , there

enists a $fi_{4}ncti_{\mathit{0}}nf$ in $\mathit{0}_{2}^{(n)}$ that satisfies

$\mathrm{C}_{\Omega 0}(f)\geq\frac{2^{n}}{n}$ .

Proof It suffices to note that $|O_{2}^{(n)\mathfrak{n}}|=2^{2}$ $\square$
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5 Monotone Clone

The full list of clones in $\mathcal{L}_{2}$ , with sets of generators, is given in Appendix B. In the list,
$M_{1}$ is the clone generated by the set {AND, OR, $0,1$} and $M_{4}$ is the clone generated by
the set {AND, OR}. The clone $M_{1}$ is the set of all monotone functions and may be called
the monotone clone. The so-called monotone complexity is the local complexity over $M_{1}$

or over $M_{4}$ in our terminology.
Thanks to many researchers including N. J. Pippenger, C. P. Schnorr and A. A.

Razborov, we already have a relatively good amount of research on the local complex-
ity over the monotone clone. Mainly as an illustrative purpose, we $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ state some of
these results.

The global lower bound for the local complexity over the monotone clone is due to N.
J. $\mathrm{P}\mathrm{i}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}[2]$.

Lemma 5. 1 $|M_{4}|\geq 2{}_{n}\mathrm{C}_{\lfloor}n/2\mathrm{J}$ .

Proposition 5. 1 Let $C$ be the clone $M_{1}$ (or $M_{4}$) and $\Omega$ be a basis {AND, OR, $0,1$} (or
{AND, OR} $)$ . For sufficiently large $n>0$, there enists a flnction $f$ in $C^{(n)}$ that satisfies

$\mathrm{C}_{\Omega}(f)\geq C\frac{2^{n}}{n\sqrt{n}}$

for some constant $c>0$ .

Proof This follows from Proposition 4.2, Lemma 5.1 and the following inequality:

${}_{n}\mathrm{C}_{\lfloor n}/2\rfloor\geq c2nn^{-}1/2$

for some constant $c>0$ . $\square$

One of the fundamental problems in the local complexity theory is to determine the
difference in complexity between two clones, one ofwhich is a subclone of the other. Let $C_{1}$

and $C_{2}$ be two clones with $\Omega_{1}$ and $\Omega_{2}$ as basis, respectively, and suppose that $C_{1}\subseteq C_{2}$ . For
a function $f$ in $C_{1}$ , we have $\mathrm{C}_{\Omega_{2}}(f)\leq m\mathrm{C}_{\Omega_{1}}(f)$ for some constant $m$ (not depending on
$f)$ . Now, the question is how far this difference could be. The monotone clone provides an
example which shows that an extremal difference is achievable. This result is a well-known
result of E. $\mathrm{T}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{o}\mathrm{s}[91$, which is an improvement over A. A. $\mathrm{R}\mathrm{a}\mathrm{z}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{V}[6]$ .

Proposition 5. 2 Let $\Omega_{0}$ be a basis for the set $O_{2}$ and $\Omega$ be a basis for $M_{1}$ . There

enists a seqeuence offimctions $\{f^{(\mathfrak{n})}\}$ where $f^{(n)}\in M_{1}^{(n)}$ which satisfies that (1) $\mathrm{C}_{\Omega_{\mathrm{O}}}(f)$ is
polynomidly bounded and (2) $\mathrm{C}_{\Omega}(f)$ is ewonentid.

6 For the Future

There are numerous problems concerning this subject. We conclude this article by posing
the followng two problems:
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For a clone $C$ with a basis $\Omega$ and $n>0$ , let $\mu(C;n)$ be a function that $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}$ the
inequalities:

$\forall f\in C^{\mathrm{t}}n)\mu(C;n)\geq m_{1}\mathrm{c}_{\Omega}(f)$ ,
$\exists f\in C^{\{n)}\mu(C;n)\leq m_{2}\mathrm{c}_{\Omega}(f)$

where $m_{1},$ $m_{2}>0$ are constants.
Problem 1: For every clone $C$, determine $\mu(C;n)$ . (Note: It is well-known that

$\mu(C_{1;}n)=2^{n}/n$ (O. B. Lupanov and C. E. Shannon). For most of the small clones $C$

which sit near the bottom of the Post Lattice, $\mu(C;n)$ is easily obtained. )

The next question is to locate a sequence of fimctions corresponding to some combina-
torial problem in the Post Lattice. In particular, we ask:

Problem 2: For any $\mathrm{N}\mathrm{P}$-complete problem $A$, determine the minimal clone that con-
tains a sequence $\{f^{(n)}\}$ corresponding to A. (Note: From the lattice structure of $L_{2}$ , it is
easy to see that for any subset $S$ of $O_{2}$ there exists the $\mathrm{n}\dot{\mathrm{u}}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}$ clone among all clones
containing $S.$ )
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Appendix $\mathrm{B}$ : Generators for each clone in the Post Lattice

N.B. $d_{n}(x_{1}, x2, \ldots,xn)=x_{2}x_{3n}\ldots X\vee x_{1}x_{3n}\ldots X\ldots\vee x_{12-1}x\cdots X_{n}$
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