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1 Introduction

It is important to clarify the properties of Boolean functions in various fields of computer
science. Prime implicant is a very important concept on the theory of Boolean functions.
Each prime implicant of a positive Boolean function is essential. Thus, every positive
Boolean function is uniquely represented by an irredundant DNF and each term of the
irredundant DNF corresponds to a minimum true point.

A shellable Boolean function is a positive Boolean function whose irredundant DNF
representation satisfies that, for any $k$ , first $k$ product terms become orthogonal by adding
negative literals to each term. The notion of shellablility was originally used in the theory
of simplicial complexes and polytopes (for example, in [6, 7]). More recently, it is studied
for its importance on reliability theory (for example, in [1, 2, 8]).

Various subclasses of shellable Boolean functions have been proposed, e.g. lexico-
exchange function [2], aligned functions [4]. Both of them have some good properties
when their product terms are ordered lexicographically.

In this paper, we define a tree-shellable function and an ordered tree-shellable function
as restricted shellable Boolean functions. A tree-shellable function is a Boolean function
such that the number of prime implicants equals the number of paths from the root to a
leaf node in a binary decision tree (BDT) representation of it. An ordered tree-shellable
function has the similar relation with an ordered BDT, which is a BDT such that, on all
the 1-paths, variables appear according to a total order of variables.

A tree-shellable function has the following good properties. If a Boolean function is
shellable, one can easily solve the following problem.
[Union of Product Problem] ([2])
Input: $Pr[x_{i}=1](1\leq i\leq n),$ $f(x_{1}, \ldots, x_{n})$

Output: $Pr[f(X_{1}, \ldots, X_{n})=1]$

where $Pr[A]$ represents the probability of event $A$ . This is the problem of computing the
reliability of some kind of systems. Each variable represents the state of a $\mathrm{s}\mathrm{u}\mathrm{b}\dot{\mathrm{s}}$ystem. A
subsystem is operative if the variable has value 1. If a Boolean function $f$ is shellable, one
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can easily compute the exact value of $Pr[f=1]$ using the orthogonal DNF representation
of $f$ .

Second, if a Boolean function $f$ is tree-shellable, it is easy to compute the dual of $f$ .
The dual of a Boolean function $f(x_{1,\ldots,n}x)$ is defined by $f^{d}=\overline{f(\overline{x_{1,\ldots,n}}\overline{x})}$. The idea of
the duality plays an important role in mathematical programming. In general, it seems
to take exponential time to compute the DNF representation of the dual $f^{d}$ from the
DNF representation of $f$ . However, if $f$ is tree-shellable, it is possible to compute the
irredundant DNF representation of $f^{d}$ in.. polynomial time from a DNF representation of
$f$ . If the BDT representation of a Boolean fun,ction $f$ is given, it is possible to compute
the BDT representation of $f^{d}$ only by exchanging a 1-edge and a $0$-edge for every variable
node and exchanging label 1 and label $0$ for every leaf node.

In this paper, we first define tree-shellable and ordered tree-shellable functions and
show some basic properties of them. Next, we clarify relations among various shellable
functions. We show that the implications between shellable and tree-shellable functions,
tree-shellable and ordered tree-shellable functions, ordered tree-shellable and aligned func-
tions are proper. We also show that ordered tree-shellability is equivalent to the lexico-
exchange property. At last, we discuss on the shelling variable order of ordered tree-
shellabile quadratic functions.

2 Preliminaries

2.1 Basic Notations

Let $B=\{0,1\},$ $n$ be a natural number, and $[n]=\{1,2, \ldots, n\}$ . Let $[0]=\emptyset$ . Let $\pi$ be a
permutation on $[n]$ . $\pi$ represents a total order of integers. Let $\pi(i)$ be the i-th element of
$\pi$ . If $s$ appears before $t$ with respect to $\pi$ , we denote $s\prec_{\pi}t$ . For $S\subseteq[n],$ $\min_{\pi}(s)$ and
$\max_{\pi}(S)$ for order $\pi$ is defined as follows.

$\{$

$\min_{\pi}(S)=h$ if $h\in S$ and $h\prec_{\pi}i$ for all $i\in S\backslash \{h\}$

$\max_{\pi}(S)=h$ if $h\in S$ and $i\prec_{\pi}h$ for all $i\in S\backslash \{h\}$

If $\pi$ is clear from the context, we can simply write $s\prec t,$ $\min(S)$ or $\max(S)$ .
Let $I_{s},$ $I_{t}$ be distinct subsets of $[n]$ and $\pi$ be a permu’tation on $[n]$ . If $I_{s}\cap\{\pi(1),$

$\ldots,$
$\pi(i-$

$1)\}=I_{t}\cap\{\pi(1), \ldots, \pi(i-1)\},$ $\pi(i)\in I_{s}$ and $\pi(i)\not\in I_{t}$ hold for some $i\in[n]$ , we denote
$I_{s}\prec_{L}I_{t}$ . The order $\prec_{L}$ is called lexicographical order.

2.2 Disjunctive Normal Form Boolean Formula

Let $f(x_{1,\ldots,n}x)$ be a Boolean function. We denote $f\geq g$ if $f(x)=1$ for any assignment
$x\in\{0,1\}^{n}$ which makes $g(x)–1$ . An implicant of $f$ is a product term

$\bigwedge_{i\in I}X_{i^{\bigwedge_{\in}X_{j}}}jJ$
which
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satisfy
$\bigwedge_{i\in I}xi^{\bigwedge_{\in}X_{j}}jJ\leq f$

, where $I,$ $J\subseteq[n]$ . An implicant which satisfies
$\bigwedge_{i\in I-\{_{S\}}}xi^{\wedge x}j\epsilon jj\not\leq f$

for any $s\in I$ and
$\bigwedge_{i\in I}x_{i}\wedge j\in J-\{t\}Xj\not\leq f$

for any $t\in J$ is called a prime implicant of $f$ .

An expression of the form $f=k= \vee(\bigwedge_{i\in I_{k}}$ x$m_{1}$ .$\cdot\bigwedge_{J\in k}\overline{x_{j)}}$
is called a disjunctive normal form

Boolean formula (DNF), where $I_{k},$ $J_{k}\subseteq[n]$ and $I_{k}\cap J_{k}=\emptyset$ for $k=1,$ $\ldots,$
$m$ . $T_{k}=$

$\bigwedge_{i\in I_{k}}X:\wedge\overline{X}j\in J_{k}j$
is called a term of $f$ .

A DNF is called an orthogonal DNF (ODNF), if $(I_{k}\cap J_{l})\cup(I_{l}\cap J_{k})\neq\emptyset$ for every

pair of terms $T_{k},$ $T_{l}(k\neq l)$ . If $f$ is represented as an ODNF, at most one term of $f$ has

value 1 for any assignment. If $f$ is a positive Boolean function, $f$ can be represented as

a positive DNF (PDNF). A PDNF is a DNF such that $J_{k}=\emptyset$ for all $k$ . For simplicity,

we call that $I_{k}$ is a term of a positive function. A PDNF is called irredundant if $I_{k}\subseteq I_{l}$

is not satisfied for any $k,$ $l(1\leq k, l\underline{<}m, k\neq l)$ . For an irredundant PDNF, let $PI(f)$

be the set of all $I_{k}$ . $PI(f)$ represents the prime implicants of $f$ . In the following of this

paper, we consider only $\mathrm{P}_{m}^{\mathrm{o}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}}$ functions and we assume that a function is given as an

irredu.ndant PDNF $f=\wedge Xk=1i\in I_{k}i$
.

2.3 Binary Decision Tree

A Binary $Deci_{\mathit{8}}ion$ Tree (BDT) is a labeled tree that represents a Boolean function. The

leaf nodes of a BDT are labeled by $0$ or 1 and the other nodes are labeled by variables.

Each node except leaf nodes has two outgoing edges, which are called a $\mathit{0}$-edge and a

l-edge. The value of the function is given by traversing from the root node to a leaf

node. At a node, one of the outgoing edges is selected according to the assignment for

th..e variable. The value,of the function is $0$ if the label of the leaf is $0$ , and 1 if the label

is 1.
A path from the root node to a leaf node labeled 1 is called a 1-path. A path $P$ of

an OBDT is represented by a sequence of literals. If the k-th edge on a 1-path $P$ is the

1-edge ( $0$-edge, resp.) from the node labeled by $x_{i}$ , positive literal $x_{i}$ (negative literal $\overline{x\dot{.}}$,

resp.) is the k-th element of $P$ . For simplicity, we denote $\tilde{x}_{i}\in P$ when $\tilde{x}_{i}$ is included in

the sequence representing $P$ , where $\tilde{x}_{i}$ is either $x_{i}$ or $\overline{x_{i}}$. Let $P^{k},$ $P^{(k)}$ denote the k-th

element of $P$ and the prefix of $P$ with length $k$ , respectively. Note that, on every l-path,

each variable appears at most once.
When the $0$-edge and the 1-edge of node $v$ point the same node, $v$ is called to be a

redundant node. An OBDD which has no redundant node is called a reduced OBDT. In

the following of this paper, a BDT means a reduced BDT. If there is a total order of

variables $\pi$ which is consistent with the order of variables in any path of a BDT, it is

called an ordered BDT (OBDT). The total order of variables for an OBDT is called the

56



variable order. Let $S(P)$ be the set of variables that appear in path $P$ . An OBDT which
satisfy $S(P)=[ \max_{\pi}S(P)]$ for every path $P$ is called a leveled BDT.

3 Shellable Boolean Functions

3.1 Shellable Function

Definition Let $f$ be a positive Boolean function represented by a PDNF $f=m= \in\bigwedge_{k^{\vee}1iI_{k}}xi$

and $\pi_{T}$ be an order of terms of $f$ . $f$ is $shella\dot{b}le$ with respect to $\pi_{T}$ if there exist $J_{1},$
$\ldots,$

$J_{m}(\subseteq$

$[n])$ which satisfy the following conditions.

1. For any $l(1 \leq l\leq m),\vee^{l}\wedge x\cdot=k=1i\in I_{\pi_{T}}(k)k\mathrm{v}|(\bigwedge_{k\pi T()}x_{i}\wedge\overline{x_{j)}}=1li\in Ij\in J\pi_{T(k}\rangle$ .

2. For any $s,$ $t$ such that $1\leq s<t\leq m,$ $(I_{S}\cap J_{t})\cup(I_{t}\cap J_{s})\neq\emptyset$ .

$f$ is shellable if there exists $\pi_{T}$ such that $f$ is shellable with respect to $\pi_{T}$ . $\pi_{T}$ is called
the term order of $f$ .

3.2 $\mathrm{L}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{C}\mathrm{O}-\mathrm{E}\mathrm{x}\mathrm{c}1_{1\mathrm{a}\mathrm{n}}\mathrm{g}\mathrm{e}$ Function

Definition [2] Let $f$ be a positive Boolean function represented by a PDNF and $\pi$

be an order of variables of $f$ . $f$ is lexico-exchange with respect to $\pi$ , if, for every pair
$I_{i},$ $I_{j}$ such that $I_{i}\prec_{L}I_{j}$ , there exists $I_{l}$ which satisfies $I_{l}\prec_{L}I_{j}$ and $I_{l}\backslash I_{j}=\{h\}$ , where
$h= \min(I_{i}\backslash I_{j})$ . $f$ is lexico-exchange if there exists $\pi$ such that $f$ is lexico-exchange with
respect to $\pi$ .

It is proved in [5] that it is $\mathrm{N}\mathrm{P}$-hard to check if a PDNF is lexico-exchange.

4 Tree-Shellable Boolean Functions

4.1 Tree-Shellable Function

Definition A positive Boolean function $f$ is tree-shellable when it can be represented by

a BDT with exactly $|PI(f)|$ l-paths.

Proposition 1 If $f=k=1i\in I\wedge xmki$ is tree-shellable, there exists a BDT $T$ representing $f$

which satisfy the following conditions.

$\bullet$ $T$ has $m1$-paths $P_{1},$
$\ldots,$

$P_{m}$ .

$\bullet$ Each $P_{k}$ corresponds to a term $I_{k}$ by the rule that $i\in I_{k}$ iff $x_{i}\in P_{k}$ .
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Proof We have only to prove that the second condition holds. Let $P_{1},$
$\ldots,$

$P_{m}$ be the

paths of a BDT representing $f$ which has $m1$-paths. Let $pos(P_{k})$ ( $neg(P_{k})$ , resp.) be

the set of indices of variables whose positive (negative, resp.) literals are in $P_{k}$ . Then $P_{k}$

represents the product term $\wedge$ $x_{i}$ A $\overline{x_{i}}$.
$i\in p_{\mathit{0}}s(P_{k})$ $.\cdot\in neg\langle P_{k})$

If $pos(P_{k})\subset\vee I_{l}$ for some $k,$ $l,$ minterm. $\wedge$ $x_{i}$
$\wedge$ $\overline{x_{i}}$, which must be $0$ , becomes

$i\in pos\mathrm{t}P_{k})$ $i\not\in pos\mathrm{t}P_{k}\rangle$

1 by $P_{k}$ . Thus, for any $k,$ $pos(Pk)\supseteq I_{l}$ must hold for some $l$ . We can assume w.l.o.g.

that $p_{\mathit{0}\mathit{8}}(P_{k})\supseteq I_{k}$ . If $pos(Pk)_{\vee}\supset I_{k}$ , minterm $\wedge x_{i}\wedge\overline{x_{i}}$, which is a minimum true point
$:\in I_{k}$ $i\not\in I_{k}$

corresponding to $I_{k}$ , cannot be 1 by $P_{k}$ . Clearly, no other $\mathrm{p}\mathrm{a}\mathrm{t}\dot{\mathrm{h}}$ makes it 1. Therefore,

$pos(P_{k})=I_{k}$ holds for any $k(1\leq k\leq m)$ . $\square$

The next theorem shows that tree-shellability is a kind of shellability as its name
shows.
Definition For a BDT $T$ , let $\pi_{T}$ be an order of 1-paths such that $i\prec_{\pi_{T}}j$ iff $P_{i}^{(k-1)}=$

$P_{j}\langle k-1$ ), $P_{i}k$ is a positive literal and $P_{j}^{k}$ is a negative literal. Let $f=k^{\vee\bigwedge_{=1iI}}m\in kx_{i}$ be tree-

shellable and a BDT $T$ representing $f$ have $m$ paths. Then we call that $f$ is tree-shellable
with respect to $\pi_{T}$ and $\pi_{T}$ is the shelling term order of $f$ .

Theorem 2 Let a positive Boolean function $f=k=1i \in\bigwedge_{k}XmIi$ be tree-shellable with respect

to $\pi_{T}$ , and $P_{k}$ be the 1-path of the BDT representing $f$ that corresponds to $I_{k}$ . Then

$k=1 \mathrm{v}^{\iota}i\in I\wedge Xi=\pi_{T(}k)k=1l(i\in p\circ S(P)\wedge xi\bigwedge_{(\pi\tau(k)j\in negP_{\pi}k)\tau()}\overline{x_{j}})$ for any $l(1\leq l\leq m)$ .

Proof For simplicity, we assume w.l.o.g. that $\pi_{T}(k)=k$ for any $k$ .
Let $J_{l}=\{i|\overline{x_{i}}\in P_{l}\}$ . As

$i \in I\bigwedge_{l}X_{i}=(\bigwedge_{l}x_{i}i\in Ij\in J_{l}\wedge\overline{Xj})(\mathrm{v}\wedge x_{i})j\in J\iota i\in I\mathrm{t}\cup\{j\}$ ’ we have to show

that $\wedge$

$x_{i}\leq l-1\vee$ $( \wedge x_{i} \wedge \overline{x_{j}})$ for any $j\in J_{l}$ .
$i\in I_{l^{\cup}}\{j\}$ $k=1i\in pos\langle P_{k})$ $j\in neg(P_{k})$

Let $x$

.
be an arbitrary assignment which makes

$\bigwedge_{i\in I_{l}\cup\{j\}}X_{i}$

true. That is, $x_{j}=x_{i}=$

$1(\forall i\in I_{l})$ in $x$ . As $f(x)=1$ , there must be a 1-path $P_{s}$ that is traversed by $x$ . As
$x$ satisfies $x_{i}=1$ for any $i\in I_{l},$ $l\prec_{\pi_{T}}s$ never holds. That is, the assignment $x$ makes

$l\overline{\vee}^{1}$ $( \wedge x_{i} \wedge \overline{x_{j}})$ true. Therefore, any assignment which makes $\vee$ $\wedge$ $x_{i}$ true
$k=1i\in pos(P_{k})$ $j\in neg(P_{k})$ $j\in J_{l}i\in I_{\mathrm{t}}\cup \mathrm{t}j\}$

also makes $l-1$ ( $\wedge$
$x_{i}$ A $\overline{x_{j}}$) true. $\square$

$k=1i\in pos(Pk)$ $j\in ne_{\mathit{9}(}Pk\rangle$

If a BDT $\mathrm{T}$ represents $f=k=1i \in\bigwedge_{k}XmIi$ and has exactly $m$ paths, $T$ proves that $f$ is

tree-shellable. The next corollary holds for $f$ and T.
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Corollary 3 For any 1-path $P_{k}$ of $T$ and any $\overline{x_{s}}\in P_{k}$ , there exists $I_{l}$ which satisfy
$P_{k}^{(t-1)}=P_{l}^{\mathrm{t}^{t}-1)},$ $P_{k}^{t}=\overline{x_{s}},$ $P_{l}^{t}=x_{s}$ and $I_{k}\cup\{s\}\supset I_{l}$ for some $t$ . .

Proof $z=$ $\wedge$
$x_{i}$ A $\overline{x_{j}}$ is a true minterm of $f$ . However, it is not an implicant

$:\in I_{k}\cup\{s\}$ $j\not\in I_{k}\cup \mathrm{f}s\}$ ..
of

$i \in I_{k}\wedge x_{*}\bigwedge_{j\in J_{k}}\overline{x_{j}}$
because

$P_{k}\mathrm{i}.\mathrm{n}\mathrm{c}\mathrm{l}\mathrm{u}\backslash \cdot \mathrm{d}\mathrm{e}\mathrm{S}\overline{X_{s}}$
. Thus, there must exist a path $P_{z}$ which make $z$

true. $P_{z}$ is on $P_{k}$ until the node labeled by $x_{s}$ . Therefore, $P_{k}^{(t-1)}=P_{z}^{(t-1}$ ), $P_{k}^{t}=\overline{x_{s}}$ and
$P_{z}^{t}=x_{s}$ hold.

Assume that $I_{z}\not\subset I_{k}\cup\{s\}$ , where $I_{z}=\{i|x_{i}\in P_{z}\}$ . Then, as $P_{z}$ includes a positive
literal which is not included in $I_{k}\cap\{s\},$ $P_{z}$ cannot make $z$ true. It is a contradiction.
That is, $I_{z}\subset I_{k}\cup\{s\}$ . $\square$

4.2 Ordered Tree-Shellable Function

Definition A positive Boolean function $f$ is ordered tree-shellable with respect to $\pi$ if
it can be represented by an OBDT with variable order $\pi$ which has exactly $|PI(f)|1-$

paths. $f$ is ordered tree-shellable if there exists $\pi$ such that $f$ is ordered tree-shellable
with respect to $\pi$ . Let $\pi$ be the shelling variable order of $f$ .

As an ordered tree-shellable function is tree-shellable, Proposition 1 and Theorem 2
also hold for ordered tree-shellable functions. It is easy to see that the shelling term order
of an ordered tree-shellable function is equivalent to the lexicographical order based on
the shelling variable order.

Theorem 4 A Boolean function $f=k=1i\in I_{k}\vee\wedge Xmi$ is ordered tree-shellable with respect to

$\pi$ iff the following condition holds.
For any $I_{k}$ and any $i\not\in I_{k},$ $i \prec_{\pi}\max(I_{k})$ , either
i) there does not exist $I_{l}$ such that $(I_{k}\cup\{i\})\cap\{x_{\pi\langle 1)}, x_{\pi}(2), \ldots, i\}=I_{t}\cap\{x_{\pi\langle 1)}, x_{\pi}(2), \ldots, i\}$ ,
or
ii) if such prime implicants exist, atleast- one of them satisfy $I_{k}\cup\{i\}\supset I_{l}$ .

Proof [if] We assume w.l.o.g. that the variable order $\pi$ satisfies $\pi(k)=k$ for any $k$ , and
the lexicographical order of terms $\pi_{T}$ satisfies $\pi_{T}(k)=k$ for any $k$ .

First, we show how to construct an OBDT from terms of $f$ . To construct an OBDT,
we add terms one by one in lexicographical order. The algorithm to $\mathrm{d}\dot{\mathrm{e}}$termine the path $P_{k}$

that corresponds to $I_{k}$ is as follows. Note that ‘ $\cdot’ \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ concatenation of two sequences.
[Construct OBDT]
1: $P_{k}=\epsilon$ (empty sequence)
2: For $i=1$ to $\max(I_{k})$ repeat 3 and 4.
3: If $i\in I_{k}$ , then $P_{k}=P_{k}\cdot x_{i}$ .
4: If $i\not\in I_{k}$ and there already exists a path which start with $P_{k^{X}i}$ , then $P_{k}=P_{k}\cdot\overline{x_{i}}$ .
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Next, we show that the OBDT constructed by this algorithm proves that $f$ is ordered

tree-shellable if $f$ satisfies the condition of this theorem. Let $F_{l}$ be the function represented
by the OBDT with first $l\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{h}_{\mathrm{S}}lP_{1},$ $\ldots,$

$P_{l}$ . To show that $f$ is ordered tree-shellable, we

have to prove that
$F_{l}= \bigvee_{1i\in}\bigwedge_{k=I_{k}}x_{i}$

for any $l$ by induction on $l$ . When $l=1,$ $F_{1}$ clearly

represents the first term of $f$ . Assume that $F_{k-1}$ represents the sum of first $k-1$ terms.

Let $J_{k}=\{i|\overline{x_{i}}\in P_{k}\}$ . When $s\in J_{k}$ , there exists a term $I_{t}$ which satisfy $(I_{k}\cup\{s\})\cap[s]=$

$I_{t}\cap[s]$ . From condition ii), there exists $I_{t}$ which satisfy $\wedge$ $x_{i}\leq\wedge x_{j}$ . From the
$i\in I_{k^{\cup}}\{s\}$ $j\in I_{l}$

induction assumption, A $x_{i}$ is an implicant of $F_{k-1}$ . As $F_{k}=F_{k-1}(. \bigwedge_{kf\in I}x_{i}j\in J\wedge\overline{X_{j}})k=$

$i\in I_{k^{\cup}}\{s\}$

$F_{k-1} \vee(\wedge X::\in I_{k}j\in\bigwedge_{Jk}\overline{X_{j}})(\bigwedge_{:j\in J_{k}\in I_{k}\cup\{j\}}xi)=F_{k}-1(\bigwedge_{:\in Ik}x_{i}),$

$F_{k}$ represents the sum of first $k$

terms.
[only if] It is proved similarly to Corollary 3.

$\square$

4.3 Aligned Function

Definition [4] Let $f$ be a positive Boolean function represented by a PDNF $f=$

$k=1i \vee\bigwedge_{\in I_{k}}$ x..$fm$. is aligned with respect to $\pi$ if, for every $I_{k}$ and for every $i$ such that $i\not\in I_{k}$ and

$i \prec_{\pi}\max(I_{k})$ , there exists $I_{l}(k\neq l)$ such that $I_{l} \subseteq\{i\}\cup(I_{k}\backslash \{\max(I_{k})\})$ . $f$ is aligned if

there exists $\pi$ such that $f$ is aligned with respect to $\pi$ .
The result in [4] can be written as follows if we use our terms.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathfrak{m}5$ A positive Boolean function $f$ is aligned with respect to $\pi$ iff there exists a

leveled OBDT with variable order $\pi$ which represents $f$ and has exactly $|PI(f)|$ l-paths.

This theorem means that an aligned function is an ordered tree-shellable function. It

can be seen as another definition of an aligned function. It is also shown in [4] that it is

possible to decide if a positive function is aligned or not and find a shelling variable order
$\pi$ if it is shellable in polynomial time.

5 Relations Among Shellable Functions

In this section, we show relations among various shellable Boolean functions. Let $S$ be

the class of all shellable functions, $\mathcal{L}\mathcal{E}$ be the class of all lexico-exchange functions, $TS$

be the class of all tree-shellable functions, $\mathcal{O}TS$ be the class of all ordered tree-shellable
functions and $A$ be the class of all aligned functions, respectively.

Theorem 6 $TS$ is a proper subclass of $S$ .
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Sketch of proof
$f=X_{1}x2X3+X1X_{2}X_{4}+X_{1}x_{2}X5+x_{1^{X_{3\mathrm{s}}}}X+X_{13}XX6+X_{2}X_{4}x5+X_{2^{X}46}X+X_{3}X4X6+X_{3^{X_{5}X_{6}+X_{4}X_{5^{X_{6}}}}}$

is shellable but not tree-shellable. $\square$

Tree-shellability of a Boolean function is checked by Algorithm TS (Fig.1). It checks

whether $f=k^{\vee}1im \bigwedge_{=\in I_{k}}xi$ is tree shellable and if $f$ is tree shellable, it outputs $m$ l-paths

which construct a BDT representation of $f$ .
Note that $I_{j}\backslash P=\{s|s\in I_{j}, x_{s}\not\in P\}$ and $s(P)$ is the sequence obtained by deleting

the last literal from $P$ . This algorithm checks the tree-shellability of a function based on
Corollary 3. In this algorithm, we first give $x_{1}$ as the label of the root node. Then, check
if the condition of Corollary 3 is satisfied at the root node, and examine recursively if
two subfunctions $f|_{x_{1}=0}$ and $f|_{x_{1}=1}$ are both tree-shellable. If the above conditions hold,
$f$ is tree-shellable and there exists a BDT with the root node labeled by $x_{1}$ which proves
that a given function $f$ is tree-shellable. Otherwise, we choose the other variables one by
one as the label of the root node. As this algorithm checks all the possible BDTs, this
algorithm requires exponential time of $n$ in general.

Theorem 7 $\mathcal{O}\mathcal{T}S$ is a proper subclass of $\mathcal{T}S$ .

Sketch of proof $f=X_{1}x_{2^{X_{3}}}+X_{1}x_{2}x_{4}+X1x2x\mathrm{s}+X1x3X6+x_{2}X_{4}X_{5}+x2X4x6+x3x4x_{6}+x3X_{5}x_{6}$

is tree-shellable but not ordered tree-shellable. $\square$

It is possible to check the ordered tree-shellability by an algorithm similar to Algorithm
$\mathrm{T}\mathrm{S}$ . The only difference is that, in this case, the variable order must be the same for all
subtrees.

Theorem 8 $A$ is a proper subclass of $\mathcal{O}\mathcal{T}S$ .

Sketch of proof From Theorem 4, every aligned function is also ordered tree-shellable.
$f=x_{1}x_{2}+x_{1}x_{3}+x_{3}x_{4}$ is ordered tree-shellable but not aligned. $\square$

Theorem 9 $\mathcal{O}\mathcal{T}S$ is equivalent to $\mathcal{L}\mathcal{E}$ .

Proof Let $f$ be a positive Boolean function represented by a PDNF $f=k=1i \in I\vee m\bigwedge_{k}Xi$ .

First, we assume that $f$ is lexico-exchange with respect to a variable order $\pi$ . We can
assume w.l.o.g. that $\pi(k)=k$ for any $k$ . If $h= \min(I_{i}\backslash I_{j})$ for some $I_{i},$ $I_{j}(I_{i}\prec_{L}I_{j})$ ,
there exists $I_{l}$ which satisfies $I_{l}\prec_{L}I_{\mathrm{j}}$ and $I_{l}\backslash I_{j}=\{h\}$ . It means that $I_{j}\cup\{h\}\supset I_{l}$ .
Assume $I_{l}\cap[h]\neq(I_{j}\cup\{h\})\cap[h]$ , then $I_{l}\cap[h-1]\neq I_{j}\cap[h-1]$ . However, it contradicts
with $I_{l}\backslash I_{j}=\{h\}$ . Hence $I_{l}\cap[h]=(I_{j}\cup\{h\})\cap[h]$ . Therefore, for $I_{j}$ and $h$ , condition
ii) of Theorem 4 is satisfied. For $I_{j}$ and $h’(h’\not\in I_{j})$ , if there exists no $I_{i}$ which satisfy
$h’= \min(I_{i}\backslash I_{j})$ , condition i) of Theorem 4 is satisfied. Hence, $f$ is ordered tree-shellable
with respect to $\pi$ .
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Algorithm TS
input $I_{1},$

$\ldots,$
$I_{m}$

$I=\{1,2, \ldots, m\},$ $P=\epsilon$ (empty sequence)

if checkTS(1) $=1$ then output $P_{1},$
$\ldots,$

$P_{m}$

else $f$ is not tree-shellable

$check\tau S(level)$

for $j=1$ to $m$ do $I_{j}’=I_{j}\backslash P$

if $I=\{s\}$ for some $s$ and $I_{s}’=\emptyset$

then $P_{s}=P$ , return 1
for $i=1$ to $n$ do

if $x.\cdot\not\in P$ then
if $i\in I_{s}^{\text{ノ}}$ for every $s\in I$ then

$P=P\cdot x_{i}$

if $cheCk\tau S(level+1)=1$

then $P=s(P)$ , return 1
else $P=s(P)$ , return $0$

else if $i\in I_{s}’$ and $i\not\in I_{t}’$ for some $s,$ $t\in I$ then
$I=\{s|s\in I,i\not\in I_{s}^{J}\},$ $P=P\cdot\overline{x_{i}}$

$J(level+1)=\{t|t\in I,i\in I_{t}’\},$ $Q(level+1)=P\cdot x_{i}$

if $\forall s\in I\exists t\in J(level+1)I_{s}’\cup\{i\}\supset I_{t}’$ then
if $cheCk\tau S(level+1)=1$ then

$I=J(level+1),$ $P=Q(level+1)$

if $check\tau S(level+1)=1$

then $P=s(P)$ , return 1
$P=s(P),$ $I=I\cup Q(level+1)$

return $0$

Figure 1: Algorithm to check tree-shellability.
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Second, we assume that $f$ is ordered tree-shellable with respect to $\pi$ . Let $I.\cdot\prec_{L}I_{j}$ and
$h= \min(I_{*}\backslash I_{j})$ . Then, $(I_{j}\cup\{h\})\cap[h]=I_{i}\cap[h]$ . From condition ii) of Theorem 4, there
exists $I_{l}$ such that $(I_{j}\cup\{h\})\cap[h]=I_{l}\cap[h]$ and $I_{j}\cup\{h\}\supseteq I_{l}$ . As $h\not\in I_{j},$ $I_{j}\cup\{h\}\supseteq I_{l}$

means that $I_{l}\backslash I_{j}=\{h\}$ . Hence, $f$ is lexico-exchange with respect to $\pi$ . $\square$

6 Tree-shellability of Quadratic Functions

In this section, we consider the case when a positive Boolean function is quadratic. A
Boolean function is called quadratic if all the terms consist of exactly two literals. A posi-
tive quadratic function $f$ is represented by a graph $G=(V, E)$ , where $V=\{x_{1,2,\ldots,n}XX\}$

and $(x_{u}, x_{v})\in E$ iff $x_{u}x_{v}$ is a term of $f$ .
It is shown in [3] that a quadratic function is lexico-exchange (or ordered tree-shellable)

iff it is represented by a cotriangulated graph. A graph is called cotriangulated if any
induced subgraph contains a vertex whose nonneighbors form an independent set. We
call such a vertex cosimplicial. On the shelling variable order for quadratic functions, [3]
shows that $x_{\pi\langle 1)},$ $\ldots,$ $X\pi(n)$ is a shelling variable order of $f$ if $x_{\pi(k)}$ is a cosimplicial node of
the graph induced by $xX_{\pi}\pi(k),$$\ldots,(n)$ for any $k(1\leq k\leq n-1)$ .

We show the necessary and sufficient condition that $\pi$ becomes a shelling variable
order.

Theorem 10 For an ordered tree-shellable quadratic function, a variable order is a
shelling variable order iff $x_{\pi\langle k)}$ is a cosimplicial node or an isolated node of the graph
induced by $x_{\pi\langle k)},$ $\ldots,$ $x_{\pi}(n)$ for any $k(1\leq k\leq n-1)$ .

Proof Consider $I\cup\{i\}$ for some $I\in PI(f),i\not\in I$ and check when it satisfies the
condition of Theorem 4. For simplicity, we call a term $J$ which satisfy $i\in J,$ $J\subset I\cup\{i\}$

as a term of type $A$ , and one which satisfy $i\in J,$ $J\not\subset I\cup\{i\}$ as a term of type $B$ . Let
$I=\{k, l\}$ . We consider the following four cases.
Casel: The case when there exists at least one term of type $A$ and no term of type $B$ .
When there is only one term of type $A$ , let $x_{i}x_{k}$ be the term. If $l\prec i$ , condition i) is
satisfied. If $i\prec l$ , condition ii) is satisfied. Therefore, the condition is always satisfied. It
is easy to see that the condition is always satisfied even when there are two terms of type
$A$ .
Case2: The case when there exists at least one term of type $B$ and no term of type $A$ .
When there is only one term of type $B$ , let $x_{i},$ $x_{t}(t\neq k, t\neq l)$ be the term. If $\max(I)\prec i$ ,
$I\cup\{i\}$ is out of consideration. If $i \prec\max(I)$ , to satisfy condition i), either $k\prec i,$ $l\prec i$ or
$t\prec i$ must be satisfied. Obviously, condition ii) is never satisfied. Therefore, the variable
order must satisfy $((k\prec i)\wedge(l\prec i))\vee((k\prec i)\vee(l\prec i)\vee(t\prec i))=(k\prec i)\vee(l\prec i)\vee(t\prec i)$.
If there are more than one terms of type $B$ , the above condition must be satisfied for all
of them.
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Case3: The case when there exist prime implicants of type $A$ and type $B$ . Assume that

$J=\{i, k\}$ be a term of type $A$ and $I\mathrm{f}_{j}=\{i, t_{j}\}(t_{j}\neq k, t_{j}\neq l,j=1,2, \ldots)$ be terms of

type $B$ . To satisfy condition i), it is necessary that $l\prec i$ for $J$ , and that $k\prec i,$ $l\prec i$ or

$t_{j}\prec i$ for $I\mathrm{f}_{j}$ . Condition ii) is satisfied by $J$ when $i\prec l$ . After all, the variable order must

satisfy ( $(k\prec i)$ A $(l\prec i)$ ) $((l\prec i)\wedge((k\prec i)\mathrm{v}(l\prec i)(\wedge jtj\prec i)))\mathrm{v}(i\prec l)$

The formula is always true. It is similar even when there exist two terms of type $A$ . Thus,

the condition is always satisfied.
Case4: The case when there exists neither a term of type $A$ nor a term of type $B$ . In this

case, there exists no edge from $x_{i}$ . Clearly, $x_{i}$ does not affect the shelling variable order.

From the above discussion, we have only to consider Case 2 to decide the shelling

variable order. Note that all the requirements for the shelling variable order have the
$\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}*\prec i$. This means that $x_{i}$ cannot be the first variable.

Next, we consider when a variable can be chosen as the first variable. When $x\dot{.}$ is

a cosimplicial node, for any edge $(x_{k}, x\iota)$ , there exists either an edge $(X_{k}, X_{i})$ or $(x_{l}, x_{i})$ .
Then for any $I\in PI(f),$ $I\cup\{i\}$ is classified to Case 1 or Case 3. When there is no edge

from $x_{i}$ , it is classified to Case 4. Otherwise, there exists an edge $I=(x_{k}, x\iota)$ such that

there exists neither $(x_{k}, X_{i})$ nor $(x_{l}, xi)$ . In this case, $I\cup\{i\}$ is classified to Case 2. Hence,

$x.\cdot$ can be the first variable when either $x_{i}$ is a cosimplicial node or there exists no edge

from $x_{i}$ .
When the first variable is fixed, some of the requirements for the variable order are

satisfied. At last, we prove that the remaining requirements are equivalent to the require-

ments obtained by the subgraph induced by $V-\{x_{i}\}$ when $x_{i}$ is the first variable. It is

clear when there exists no edge from $x_{i}$ . When $x_{i}$ is a cosimplicial node, $x_{i}$ affects the

requirements if there exist nodes $x_{t},$ $x_{i}$ such that $\{i, t\}\cup\{k\}$ is classified to Case 2. In this

case, the requirements are written in the form $(i\prec*)R$ , where $R$ is some requirement.

Thus, all the requirements concerning $x_{i}$ are removed. It is easy to check that no other

requirements are removed.
As $G$ is cotriangulated, the induced subgraph also has a cosimplicial node. Thus we

can repeatedly choose an appropriate variable. $\square$

The next theorem shows that tree-shellability is equivalent to ordered tree-shellability

on quadratic functions.

Theorem 11 A tree-shellable quadratic function is ordered tree-shellable.

Proof Let $T$ be the BDT which proves that a quadratic function $f$ is tree-shellable. Let
$P_{m}$ be a 1-path which satisfy $i\prec\tau m$ for any other 1-path $P_{i}$ in $T$ . We show that any

varible order which is consisitent with the order of variables in $P_{m}$ is a shelling variable

order of $f$ .
Let $P_{k_{1}},$

$\ldots,$
$P_{k_{t}}$ be the paths that diverge from $P_{m}$ at the node labeled by $x_{l}$ . As

$x_{l}\in P_{k_{i}}(1\leq i\leq t)$ , after the 1-edge from the node labeled by $x_{l},$ $P_{k_{1}}$. includes only one
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positive literal. It is easy to see that a positive function all of whose terms have only one
literal is ordered tree-shellable with respect to any variable order. Therefore, it is possible
to change the order of variables in these paths so that it is consistent with that of $P_{m}$ . $\square$

7 Conclusion

In this paper, we have defined tree-shellable and ordered tree-shellable Boolean functions,
which have the property that every 1-path of its BDT representation has a $\mathrm{o}\mathrm{n}\mathrm{e}_{-}\mathrm{t}_{0}$ one
correspondence to a prime implicant. We have shown some basic properties of tree-
shellable and ordered tree-shellable functions, and clarified relations among classes of
several shelalble functions. The notion of tree-shellability has also made it possible to
characterize lexico-exchange and aligned functions in terms of tree-shellability.
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