goooboooobgon
1054 0 1998 O 54-65 54

On Tree-Shellable Boolean Functions

Yasuhiko TAKENAGA*, Kouji NAKAJIMA' and Shuzo YAJIMA?
Kok HBE HhilgE — KBME=
* Department of Computer Science and Information Mathematics,
University of Electro-Communications
takenaga@cs.uec.ac.jp
1 Department of Information Science, Graduate School of Engineering, Kyoto University

{ Faculty of Informatics, Kansai University

1 Introduction

It is important to clarify the properties of Boolean functions in various fields of computer
science. Prime implicant is a very important concept on the theory of Boolean functions.
Each prime implicant of a positive Boolean function is essential. Thus, every positive
Boolean function is uniquely represented by an irredundant DNF and each term of the
irredundant DNF corresponds to a minimum true point.

A shellable Boolean function is a positive Boolean function whose irredundant DNF
representation satisfies that, for any k&, first k£ product terms become orthogonal by adding
negative literals to each term. The notion of shellablility was originally used in the theory
of simplicial complexes and polytopes (for example, in [6, 7]). More recently, it is studied
for its importance on reliability theory (for example, in [1, 2, 8]).

Various subclasses of shellable Boolean functions have been proposed, e.g. lexico-
exchange function [2], aligned functions [4]. Both of them have some good properties
when their product terms are ordered lexicographically.

In this paper, we define a tree-shellable function and an ordered tree-shellable function
as restricted shellable Boolean functions. A tree-shellable function is a Boolean function
such that the number of prime implicants equals the number of paths from the root to a
leaf node in a binary decision tree (BDT) representation of it. An ordered tree-shellable
function has the similar relation with an ordered BDT, which is a BDT such that, on all
the 1-paths, variables appear according to a total order of variables.

A tree-shellable function has the following good properties. If a Boolean function is
shellable, one can easily solve the following problem.

[Union of Product Problem] ([2])

Input: Priz; = 1)1 <i<n), f(z1,.yTpn)

Output: Pr[f(z1,...,2zn) = 1] v

where Pr[A] represents the probability of event A. This is the problem of computing the
reliability of some kind of systems. Each variable represents the state of a subsystem. A

subsystem is operative if the variable has value 1. If a Boolean function f is shellable, one
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can easily compute the exact value of Pr[f = 1] using the orthogonal DNF representation
of f.

Second, if a Boolean function f is tree-shellable, it is easy to compute the dual of f.
The dual of a Boolean function f(zi,...,z,) is defined by f¢ = f(z7, ..., ;). The idea of
the duality plays an important role in mathematical programming. In general, it seems
to take exponential time to compute the DNF representation of the dual f¢ from the
DNF representation of f. However, if f is tree-shellable, it is possible to compute the
irredundant DNF representation of f¢ in polynomial time from a DNF representation of
f. If the BDT representation of a Boolean function f is given, it is possible to compute
the BDT representation of f¢ only by exchanging a 1-edge and a 0-edge for every variable
node and exchanging label 1 and label 0 for every leaf node.

In this paper, we first define tree-shellable and ordered tree-shellable functions and
show some basic properties of them. Next, we clarify relations among various shellable
functions. We show that the implic‘ations between shellable and tree-shellable functions,
tree-shellable and ordered tree-shellable functions, ordered tree-shellable and aligned func-
tions are proper. We also show that ordered tree-shellability is equivalent to the lexico-
exchange property. At last, we discuss on the shelling variable order of ordered tree-

shellabile quadratic functions.

2 Preliminaries

2.1 Basic Notations
Let B = {0,1}, n be a natural number, and [r] = {1,2,...,n}. Let [0] = 0. Let 7 be a

permutation on [n]. = represents a total order of integers. Let 7(z) be the i-th element of
7. If s appears before ¢t with respect to 7, we denote s <, t. For S C [n], min,(S) and

max,(.S) for order 7 is defined as follows.

min,(S)=h ifh€Sandh <7 forallie S\ {h}
max,(S)=h ifh€ Sandi <, h forallie S\ {h}

If 7 is clear from the context, we can simply write s < ¢, min(.S) or max(S5).

Let I,, I; be distinct subsets of [n] and 7 be a permutation on [n]. If [,N{x(1),...,7(i—
)} =Ln{x(1),...,7(z — 1)}, n(:) € I, and 7(z) ¢ I, hold for some ¢ € [n], we denote
I, <1, I,. The order <y, is called lexicographical order.

2.2 Disjunctive Normal Form Boolean Formula

Let f(x1,...,2s) be a Boolean function. We denote f > g if f(z) = 1 for any assignment

z € {0,1}" which makes g(z) = 1. An implicant of f is a product term A z; A z; which
i€l jeJ
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satisfy /\ z; /\ z; < f, where I,J C [n]. An implicant which satisfies N =Nz £f
el  jed iel-{s} J€J

for any s € I and A z: /\ ;& f for any t € J is called a prime implicant of f.
iel  jeJ—{t}

An expression of the form f = \/ ( N\ =i /\ T,‘) is called a disjunctive normal form
k=1 i€l J€Jk
Boolean formula (DNF), where Iy, Jy C [n] and Iy N Jp = 0 for k =1,....m. T =

N\ zi )\ T;is called a term of f.
i€ly  jeJdi

A DNF is called an orthogonal DNF (ODNF), if (Ii NJ)U(LNJg) # 0 for every
pair of terms Ty, T; (k # ). If f is represented as an ODNF, at most one term of f has
value 1 for any assignment. If f is a positive Boolean function, f can be represented as

a positive DNF (PDNF). A PDNF is a DNF such that J, = @ for all k. For simplicity,
we call that I, is a term of a positive function. A PDNF is called irredundant if I C I
is not satisfied for any k,! (1 < k,I < m,k # [). For an irredundant PDNF, let PI(f)
be the set of all I;. PI(f) represents the prime implicants of f. In the following of this
paper, we consider only positive functions and we assume that a function is given as an

1rredundant PDNF f = \/ /\ x;.

k=1 ZGIk

2.3 Binary Decision Tree

A Binary Decision Tree (BDT) is a labeled tree that represents a Boolean function. The
leaf nodes of a BDT are labeled by 0 or 1 and the other nodes are labeled by variables.
Each node except leaf nodes has two outgoing edges, which are called a 0-edge and a
I-edge. The value of the function is given by traversing from the root node to a leaf
node. At a node, one of the outgoing edges is selected according to the a531gnment for
the variable. The value of the function is 0 if the label of the leaf is 0, and 1 if the label
is 1.

A path from the root node to a leaf node labeled 1 is called a 1-path. A path P of
an OBDT is represented by a sequence of literals. If the k-th edge on a 1-path P is the
1-edge (0-edge, resp.) from the node labeled by x;, positive literal z; (negative literal T,
resp.) is the k-th element of P. For simplicity, we denote &; € P when £; is included in
the sequence representing P, where #; is either z; or 7;. Let P* P%) denote the k-th
element of P and the prefix of P with length k, respectively. Note that, on every 1-path,
each variable appears at most once. :

When the 0-edge and the l-edge of node v point the same node, v is called to be a
redundant node. An OBDD which has no redundant node is called a reduced OBDT. In
the following of this paper, a BDT means a reduced BDT. If there is a total order of
variables 7 which is consistent with the order of variables in any path of a BDT, it is
called an ordered BDT (OBDT). The total order of variables for an OBDT is called the
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variable order. Let S(P) be the set of variables that appear in path P. An OBDT which
satisfy S(P) = [max, S(P)] for every path P is called a leveled BDT.

3 Shellable Boolean Functions

3.1 Shellable Function

Definition Let f be a positive Boolean function represented by a PDNF f = \/ /\ z;
k=1i€l;
and 77 be an order of terms of f. f is shellable with respect to mr if there exist Jy, ..., Jm(C

[n]) which satisfy the following conditions.

1. Forany ! (1<1<m),\V A w,~=\/( A = A TJ')

k;l iEIwT(k) ‘ k=1 i€l p(x) jEJwT(k)
2. For any s,t such that 1 <s <t <m, (I,NJ)U (L NJ)# 0.

f is shellable if there exists 77 such that f is shellable with respect to 7. 77 is called
the term order of f.

3.2 Lexico-Exchange Function

Definition [2] Let f be a positive Boolean function represented by a PDNF and =
be an order of variables of f. f is lezico-exchange with respect to , if, for every pair
I;, I; such that I; < I;, there exists I; which satisfies [; < I; and [\ I; = {h}, where
h = min(I; \ I;). f is lexico-exchange if there exists 7 such that f is lexico-exchange with
respect to w. | : |

It is proved in [5] that it is NP-hard to check if a PDNF is lexico-exchange.

4 Tree-Shellable Boolean Functions

4.1 Tree-Shellable Function

Definition A positive Boolean function f is tree-shellable when it can be represented by
a BDT with exactly |PI(f)| 1-paths.

m

Proposition 1 If f = \/ /\ zi is tree-shellable, there exists a BDT T representing f
k=11€l}
which satisfy the following conditions.

e T has m 1-paths Py, ..., Py,.

e Each P, corresponds to a term I by the rule that ¢ € I} iff z; € F4.
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Proof We have only to prove that the second condition holds. Let P,..., P, be the
paths of a BDT representing f which has m 1-paths. Let pos(P:) (neg(Px), resp.) be
the set of indices of variables whose positive (negative, resp.) literals are in P;. Then Py
represents the product term /\ T; /\ ;.
7 i€pos(Px)  i€Eneg(Px)
If pos(Px) ¢ I; for some k, [, minterm /\ T; /\ T;, which must be 0, becomes

i€pos(Py)  i¢pos(Pi)
1 by Pi. Thus, for any k, pos(P;) 2 I must hold for some I. We can assume w.l.o. g

that pos(Px) 2 Ix. If pos(Px) 2 Ix, minterm N zi A\ i, which is a minimum true point
i€l i@l

corresponding to I, cannot be 1 by Pi. Clearly, no other path makes it 1. Therefore,

pos(Py) = Ii holds for any k£ (1 < k <m). S

The next theorem shows that tree-shellability is a kind of shellability as its name

shows.
Definition For a BDT T, let 77 be an order of 1-paths such that ¢ <., j iff P,-(k'l) =

Pj(k_l),R-k is a positive literal and P is a negative literal. Let f = \V A zi be tree-
k=11€l}
shellable and a BDT T representing f have m paths. Then we call that f is tree-shellable

with respect to 77 and 7r is the shelling term order of f.

Theorem 2 Let a positive Boolean function f = \/ /\ z; be tree-shellable with respect
k=11€I;
to w1, and Pk,be the 1-path of the BDT representing f that corresponds to I;. Then

! .
VA == \/( A = /\ ) foranyl (1 <1<m).

k=1 iEIwT(k) =1 i€pos( "’T(“)) jEney(PnT(k))

Proof For simplicity, we assume w.l.o.g. that =r(k) =k for any k.

Let J={i|Tr€ P}. As ANzi=(Az Az)V(V /A i), we have to show

i€l i€l j€J J€Jyieu{s}

1-1 i
that A z<V( A 2 A T foranyje€J.
iefu{s} k=1 iepos(Px) . jE€neg(Py) ‘
Let z be an arbitrary assignment which makes /\ z; true. That is, z; = z; =
ie[u{s} '
1 (Vi € I) in z. As f(z) = 1, there must be a 1-path P, that is traversed by z. As

x satlsﬁes z; = 1 for any 2 € Il, | <., s never holds. That is, the assignment z makes

V( A =z A\ 7;) true. Therefore, any assignment which makes V A witrue

k=1 i€pos(Py) jEneg(Px) JEJieu{s}
-1

also makes \/( /\ z; /\ T;) true. : ]

k=1 i€pos(Px) j€Eneg(Px)

If a BDT T represents f = \/ /\ z; and has exactly m paths, T proves that f is
k=11€]
tree-shellable. The next corollary holdg for f and T.
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Corollary 3 For any 1-path P; of T and any T; € Py, there exists I; which satisfy
P,Et—l) = P,(t_l), Pl =7, P} =z, and I} U {s} D I, for some t.

Proof 2= A =z, /\ 7;is a true minterm of f. However, it is not an implicant
i€hU{s} JgIxU{s} :
of /\ z; /\ z; because P, mcludes m, Thus, there must exist a pa,th P, which make z
€I JEJk
true. P, is on Py until the node labeled by z,. Therefore, P(t V= = PtV P! =7, and
P! = z, hold. :
Assume that I, ¢ I; U {s}, where I, = {¢ | z; € P,}. Then, as Pz includes a positive
literal which is not included in Iy N {s}, P, cannot make z true. It is a contradiction.

Thatis, I, C I, U {s}. . - | | o

4.2 Ordered Tree-Shellable Function

Definition A positive Boolean function f is ordered tree-shellable with respect to = if
it can be represented by an OBDT with variable order = which has exactly |PI(f)] 1-
paths. f is ordered tree-shellable if there exists 7 such that f is ordered tree-shellable
with respect to 7. Let 7 be the shelling variable order of f.

As an ordered tree-shellable function is tree-shellable, Proposition 1 and Theorem 2
also hold for ordered tree-shellable functions. It is easy to see that the shelling term order
of an ordered tree-shellable function is equivalent to the lexicographical order based on

the shelling variable order.

Theorem 4 A Boolean function f = \/ /\ x; is ordered tree-shellable with respect to
k=11:€l
7 iff the following condition holds. *

For any Iy and any ¢ € I, i <, max([l;), either
i) there does not exist I; such that (I U {i}) N {&xqa), Tr(2), -+ 2} = LN {Zr(1); Ta(2)y s 1}
or

ii) if such prime implicants exist, at least one of them satisfy I, U {e} D I.

Proof [if] We assume w.l.o.g. that the variable order = satisfies w(k) = k for any k, and
the lexicographical order of terms 71 satisfies 7r(k) = k for any k.

First, we show how to construct an OBDT from terms of f. To construct an OBDT,
we add terms one by one in lexicographical order. The algorithm to determine the path P
that corresponds to I is as follows. Note that ‘-’means concatenation of two sequences.
[Construct OBDT]

1: P, = € (empty sequence)

2: For i =1 to max([};) repeat 3 and 4.

3: If ¢ € I, then Py, = Py - z;.

4: If 7 ¢ I and there already exists a path which start with Pez;, then Pk = Pk ;.
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Next, we show that the OBDT constructed by this algorithm proves that f is ordered
tree-shellable if f satisfies the condition of this theorem. Let F be the function represented
by the OBDT with first / paths P, ..., ;. To show that f is ordered tree-shellable, we

]
have to prove that F; = \/ /\ z; for any I by induction on {. When [ = 1, F; clearly

k=11:€I;
represents the first term of f. Assume that Fj_; represents the sum of first k — 1 terms.

Let Ji = {i | T; € P;}. When s € Ji, there exists a term I; which satisfy (Lu{s})n[s] =
I; N [s]. From condition ii), there exists I, which satisfy /\ z; < /\ z;. From the

i€ u{s} J€l:
induction assumption, /\ z; is an implicant of Fy_;. As Fy = Fj_ \/( /\ T; /\ T;) =
i€ L,u{s} ' i€l jEJ
Fi._4 V( /\ z; /\ T;) \/( \/ /\ z;) = Fr \/( /\ z;), F) represents ‘the sum of first k&

€L, €k J€Jk i€l u{s} iel
terms.

[only if] It is proved similarly to Corollary 3.

4.3 Aligned Function

Definition [4] Let f be a positive Boolean function represented by a PDNF f =

m
\/ /\ ;. [ is aligned with respect to 7 if, for every Ix and for every i such that i ¢ I and

k=1i€l)
i <, max(Iy), there exists I; (k # I) such that I; C {¢} U (Ix \ {max(Iy)}). f is aligned if

there exists = such that f is aligned with respect to =.

The result in [4] can be written as follows if we use our terms.

Theorem 5 A positive Boolean function f is aligned with respect to = iff there exists a
leveled OBDT with variable order = which represents f and has exactly |PI(f)| 1-paths.

This theorem means that an aligned function is an ordered tree-shellable function. It
can be seen as another definition of an aligned function. It is also shown in [4] that it is
possible to decide if a positive function is aligned or not and find a shelling variable order

7 if it is shellable in polynomial time.

5 Relations Among Shellable Functions

In this section, we show relations among various shellable Boolean functions. Let S be
the class of all shellable functions, £LE be the class of all lexico-exchange functions, 78
be the class of all tree-shellable functions, @7 S be the class of all ordered tree-shellable

functions and A be the class of all aligned functions, respectively.

Theorem 6 7S is a proper subclass of S.
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Sketch of proof

[ = 2120234 129 T4 + 21 ToT5+ T123T5+ T1T3T6+ T2T4T5s+ T2TaTo+ TaTalo+ TaTsTo+ T4TsTe

is shellable but not tree-shellable. ' a
Tree-shellal:glity of a Boolean function is checked by Algorithm TS (Fig.1). It checks

whether f = \/ /\ z; 1s tree shellable and if f is tree shellablé, it outputs m 1-paths
k=11€l}
which construct a BDT representation of f.

Note that I; \ P = {s|s € I;,z, ¢ P} and s(P) is the sequence obtained by deleting
the last literal from P. This algorithm checks the tree-shellability of a function based on
Corollary 3. In this algorithm, we first give z; as the label of the root node. Then, check
if the condition of Corollary 3 is satisfied at the root node, and examine recursively if
two subfunctions f|;,—o and f|,,=; are both tree-shellable. If the above conditions hold,
[ is tree-shellable and there exists a BDT with the root node labeled by z; which proves
that a given function f is tree-shellable. Otherwise, we choose the other variables one by
one as the label of the root node. As this algorithm checks all the possible BDTs, this

algorithm requires exponential time of n in general.
Theorem 7 O7TS is a proper subclass of 7S.

Sketch of proof f = ¢ 12223+ T1 2224+ T1T2T5+T1T3T6+T2T4T5+ToT4T6+T3TaT6+T3T5T6
is tree-shellable but not ordered tree-shellable. (]

It is possible to check the ordered tree-shellability by an algorithm similar to Algorithm
TS. The only difference is that, in this case, the variable order must be the same for all

subtrees.
Theorem 8 A is a proper subclass of OT S.

Sketch of proof From Theorem 4, every aligned function is also ordered tree-shellable.
f =12y + x123 + x324 is ordered tree-shellable but not aligned. ]

Theorem 9 O7TS is equivalent to LE.

’ ' m .
Proof Let f be a positive Boolean function represented by a PDNF f = \/ A ..
k=1:ielg
First, we assume that f is lexico-exchange with respect to a variable order 7. We can

assume w.l.o.g. that 7(k) = k for any k. If A = min(I; \ [;) for some I, I; (I; <i I;),
there exists I; which satisfies I; < I; and I; \ I; = {h}. It means that I; U {h} O 1.
Assume I; N [h] # (I; U {h}) N {h], then I; N [h — 1] # I; " [h — 1]. However, it contradicts
with I; \ I; = {h}. Hence I, N [k] = (I; U {h}) N [h]. Therefore, for I; and h, condition
ii) of Theorem 4 is satisfied. For I; and ' (k' & I;), if there exists no I; which satisfy
h' = min(I; \ I;), condition i) of Theorem 4 is satisfied. Hence, f is ordered tree-shellable

with respect to «.



Algorithm TS
input I, ..., I
I={1,2,..,m}, P = e (empty sequence)
if checkTS(1) = 1 then output Py, ..., P
else f is not tree-shellable

checkT S(level)
forj=1tomdoI;=1;\ P
if I = {s} for some s and I, = {
then Py = P, return 1
fort=1tondo
if z; ¢ P then
if 2 € I! for every s € I then
P=P-x
if checkT S(level +1) =1
then P = s(P), return 1
else P = s(P), return 0
else if : € I and 1 ¢ I for some s, tE I then
I={s|seli¢l}, P=P-7;
J(level +1) = {t |t e I,i € I}, Q(level +1) = P - z;
ifVseI 3te J(level +1) ILU{i} D I then
if checkT S(level + 1) =1 then
I =J(level +1), P = Q(level + 1)
if checkT S(level +1) =1
then P = s(P), return 1
P =s(P), I =1UQ(level +1)

return 0

Figure 1: Algorithm to check tree-shellability.

62
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Second, we assume that f is ordered tree-shellable with respect to . Let I; < I; and
h = min(l; \ I;). Then, (I; U{h})N[h] = I; N [h]. From condition ii) of Theorem 4, there
exists I; such that (I; U {A}) N[kl =L N[h]and [;U{h} D I;. As h & I;, [; U{Rh} 2 I
means that I; \ I; = {h}. Hence, f is lexico-exchange with respect to =. O

6 Tree-shellability of Quadratic Functions

In this séction, we consider the case when a positive Boolean function is quadratic. A
Boolean function is called guadratic if all the terms consist of exactly two literals. A posi-
tive quadratic function f is represented by a graph G = (V, E), where V = {z1, 23, ..., 24}
and (z,,z,) € E iff z,z, is a term of f. :

It is shown in (3] that a quadratic function is lexico-exchange (or ordered tree-shellable)
iff it is represented by a cotriangulated graph. A graph is called cotriangulated if any
induced subgraph contains a vertex whose nionneighbors form an independent set. We
call such a vertex cosimplicial. On the shelling variable order for quadratic functions, [3]
shows that Tr(1), s Tn(n) 18 & shelling variable order of f if z,(x) is a cosimplicial node of
the graph induced by z,(x), ..., Zr(n) for any k (1 <k <n —1).

~ We show the necessary and sufficient condition that = becomes a shelling variable

order.

Theorem 10 For an ordered tree-shellable quadratic function, a variable order is a
shelling variable order iff z,() is a cosimplicial node or an isolated node of the graph
induced by Tr(k), ..., Tr(n) forany k (1 <k <n—1).

Proof - Consider I U {¢} for some I € PI(f),i ¢ I and check when it satisfies the
condition of Theorem 4. For simplicity, we call a term J which satisfy « € J,J C T U {3}
as a term of type A, and one which satisfy z € J,J ¢ I U {i} as a term of type B. Let
I = {k,1}. We consider the following four cases.

Casel: The case when there exists at least one term of type A and no term of type B.
When there is only one term of type A, let z;z; be the term. If [ < ¢, condition i) is
satisfied: If ¢ < [, condition ii) is satisfied. Therefore, the condition is always satisfied. It
is easy to see that the condition is always satisfied even when there are two terms of type
A.

Case2: The case when there exists at least one term of type B and no term of type A.
When there is only one term of type B, let z;, z, (t # k,t # ) be the term. If max(I) < 1,
ITU {3} is out of consideration. If ¢ < max([), to satisfy condition i), either k < ¢, I < ¢ or
t < ¢ must be satisfied. Obviously, condition ii) is never satisfied. Therefore, the variable
order must satisfy ((k < )A(l < 0))V((k <)V <)V(t <)) = (k <)V <)V(t < 7).
If there are more than one terms of type B, the above condition must be satisfied for all
of them.
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Case3: The case when there exist prime implicants of type A and type B. Assume that
J = {i,k} be a term of type A and K; = {i,t;} (t; # k,t; # 1,j = 1,2,...) be terms of
type B. To satisfy condition i), it is necessary that I < for J, and that k <, [ <zor
t; < i for K;. Condition ii) is satisfied by J when ¢ < I. After all, the variable order must
satisfy (k<) A (1<) V([ <) A (k<) VI=<i)V(At; <)) V(i<
The formula is always true. It is similar even when there exist two terms of type A. Thus,
the condition is always satisfied.
Cased: The case when there exists neither a term of type A nor a term of type B. In this
case, there exists no edge from z;. Clearly, z; does not affect the shelling variable order.
From the above discussion, we have only to consider Case 2 to decide the shelling
variable order. Note that all the requirements for the shelling variable order have the
form * < 1. This means that z; cannot be the first variable. |
 Next, we consider when a variable can be chosen as the first variable. When z; is
a cosimplicial node, for any edge (z, ), there exists either an edge (z, ;) or (21, z:).
Then for any I € PI(f), I U {i} is classified to Case 1 or Case 3. When there is no edge
from z;, it is classified to Case 4. Otherwise, there exists an edge I = (xx, ;) such that
there exists neither (z, x;) nor (z;,z;). In this case, TU {i} is classified to Case 2. Hence,
; can be the first variable when either z; is a cosimplicial node or there exists no edge
from z;. _
When the first variable is fixed, some of the requirements for the variable order are
satisfied. At last, we prove that the remaining requirements are equivalent to the require-
ments obtained by the subgraph induced by V — {z;} when z; is the first variable. It is
clear when there exists no edge from z;. When z; is a cosimplicial node, z; affects the
requirements if there exist nodes z;, z; such that {i,1} U{k} is classified to Case 2. In this
case, the requirements are written in the form (¢ < *) V R, where R is some requirement.
Thus, all the requirements concerning z; are removed. It is easy to check that no other
requirements are removed.
As G is cotriangulated, the induced subgraph also has a cosimplicial node. Thus we
can repeatedly choose an appropriate variable. a
The next theorem shows that tree-shellability is equivalent to ordered tree-shellability

on quadratic functions.

Theorem 11 A tree-shellable quadratic function is ordered tree-shellable.

Proof Let T be the BDT which proves that a quadratic function f is tree-shellable. Let
P,, be a 1-path which satisfy i <7 m for any other 1-path P; in T. We show that any
varible order which is consisitent with the order of variables in P, is a shelling variable
order of f. :

Let Py,,..., P, be the paths that diverge from P, at the node labeled by z;. As
z; € P, (1 <14 <), after the 1-edge from the node labeled by z;, Py, includes only one
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positive literal. It is easy to see that a positive function all of whose terms have only one
literal is ordered tree-shellable with respect to any variable order. Therefore, it is possible
to change the order of variables in these paths so that it is consistent with that of P,,. O

7 Conclusion

In this paper, we have defined tree-shellable and ordered tree-shellable Boolean functions,
which have the property that every 1-path of its BDT representation has a one-to-one
correspondence to a prime implicant. We have shown some basic properties of tree-
shellable and ordered tree-shellable functions, and clarified relations among classes of
several shelalble functions. The notion of tree-shellability has also made it possible to

characterize lexico-exchange and aligned functions in terms of tree-shellability.
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