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1 Introduction

A Boolean function AND outpus 1 if and only if all the input variables are 1,
and a Boolean function $\mathrm{M}\mathrm{O}\mathrm{D}_{m}$ for a constant $m\geq 2$ outputs 1 if and only
if the number of 1 in the input variables is equal to a multiple of $m$ . In the
early of $80’ \mathrm{s}$ Ajtai [Ajt83] and Furst, Saxe and Sipser [FSS84] have shown
that AND-type gates cannot compute $\mathrm{M}\mathrm{O}\mathrm{D}_{m}$ gate efficiently in a model of
constant-depth circuits. This note proves a converse : $\mathrm{M}\mathrm{O}\mathrm{D}_{m}$ gates cannot
compute AND gate efficiently.

A fundamental task in computational complexity theory is to reveal intrin-
sic computational difficulty of finite problems appeared in nowadays computer
and cryptographic systems. Currently, the class of constant-depth circuits with
unbounded fan-in is widely acknowledged as a model for the first step of prov-
ing complexity lower bounds of concrete problems. As usual, a Boolean circuit
of depth $d$ is a parallel computing network (an unbounded fan-in undirected
graph) consisting from $d$ layers. Each layer contains nodes called Boolean gates
whose input wires are coming from gates in the previous layer and the output
wires are going into gates in the next layer, except that the input wires of
the gates in the initial (bottom) layer are issued from input Boolean variables
or their negations (i.e. literals.) Each gate computes a designated Boolean
function and the full circuit computes a Boolean function at the unique gate
in the end (top) layer. $\mathrm{A}\mathrm{C}^{\mathrm{O}}$-circuits are constant-depth circuits using logical
gates {AND, OR} and $\mathrm{A}\mathrm{C}^{0}$ is the class of languages recognized by a sequence
of polynomial-size $\mathrm{A}\mathrm{C}^{0}$ circuits. This class contains some basic functions in
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computing, e.g. the addition of two $n$ bit numbers. Limitation of the com-
puting power of $AC^{0}$ is widely known. As we have mentioned, Ajtai [Ajt83]
and Furst Saxe and Sipser [FSS84] have proved that $\mathrm{M}\mathrm{O}\mathrm{D}_{m}\not\in \mathrm{A}\mathrm{C}^{0}$ . Later on,
Yao [Yao85] and $\mathrm{H}\mathrm{a}s\circ$ tad [Has86] have improved it to exponential lower bounds.
Thus, logical gates cannot compute a modular gate efficiently. Adding $\mathrm{M}\mathrm{O}\mathrm{D}_{m^{-}}$

gates to $\mathrm{A}\mathrm{C}^{0}$ circuits defines $\mathrm{A}\mathrm{C}^{0}(m)$-circuits, hence $\mathrm{A}\mathrm{C}^{0}(m)$ is a super class of
$\mathrm{A}\mathrm{C}^{0}$ in a strict sense. This extension of computing power seems a mere matter
at first glance, yet previous lower bounds on the class $\mathrm{A}\mathrm{C}^{0}(m)$ are limited in
case that $m$ is a power of a prime number. Razborov [Raz87] has proved an
exponential lower bound of the majority function on $\mathrm{A}\mathrm{C}^{\mathrm{O}}(p^{k})$ and Smolensky
[Smo87] has proved an exponential lower bound of $\mathrm{M}\mathrm{O}\mathrm{D}_{r}$ on $\mathrm{A}\mathrm{C}^{0}(p^{k})$ if $r$ is
not a power of $p$ . If the circuit depth is restricted as 2, then we have lower
bounds for $m$ that is not a prime power. A $\mathrm{M}\mathrm{O}\mathrm{D}_{m^{\mathrm{O}}}\mathrm{M}\mathrm{o}\mathrm{D}_{m}$ ,-circuit has a
$\mathrm{M}\mathrm{O}\mathrm{D}_{m}$ -gate at the top followed by $\mathrm{M}\mathrm{O}\mathrm{D}_{m’}$ -gates in the bottom. Krawse and
Waack [KW91] have proved an exponential lower bound of the equality func-
tion on MOD $\mathrm{o}$mm’MOD-circuits for any $m$ and $m’$ (more generally bottom
gates can be any kind of symmetric gates.) Krawse and Pudl\’ak have proved
an exponential lower bound of $\mathrm{M}\mathrm{O}\mathrm{D}_{q}$ on $\mathrm{M}\mathrm{O}\mathrm{D}_{p^{k}}\mathrm{o}\mathrm{M}\mathrm{O}\mathrm{D}_{r}$ -circuits, where $p$

and $q$ are distinct primes and $r$ is any integer. However, for depth-3 circuits
consisting from modular gates, even $\mathrm{M}\mathrm{O}\mathrm{D}_{6}\mathrm{o}\mathrm{M}\mathrm{o}\mathrm{D}\epsilon \mathrm{o}\mathrm{M}\mathrm{O}\mathrm{D}\epsilon\neq \mathrm{N}\mathrm{P}$ has been
a long-standing open conjecture.

This note attacks lower bounds on circuits consisting from purely modular
gates. The class $\mathrm{C}\mathrm{C}^{0}(m)$ is the class of languages recognized by a sequence
of polynomial-size constant-depth circuits consisting from $\mathrm{M}\mathrm{O}\mathrm{D}_{m}$ gates and
$CC^{0}= \bigcup_{m\geq 2}\mathrm{c}\mathrm{C}^{0}(m)$ [MPT91] (Yao called the class pure-ACC [Yao90].) We
shall prove the next theorem.

Theorem 1 $\mathrm{A}\mathrm{N}\mathrm{D}\not\in \mathrm{C}\mathrm{C}^{0}$.

2 Proof

We suppose that AND $\in \mathrm{C}\mathrm{C}^{0}$ and derive a contradiction. We fix a large
integer $n$ for the dimension (bit length) of input Boolean assignment, hence
we take assignments from the $n$-dimensional Boolean cube $N=\{0,1\}^{n}$ . We
sometimes use $N$ for the number $2^{n}$ . In fact we show that the equality (or
identity) function $\mathrm{E}\mathrm{Q}(x,y)$ is hard to compute on $CC^{0}$ , where

$\mathrm{E}\mathrm{Q}(x,y)=\{$
1 if $x=y$

$0$ otherwise
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We shall evaluate a bilinear form producting the characteristic vector EQ(y) $=$

$(\mathrm{E}\mathrm{Q}(x,y):x\in N\rangle$ of EQ (the y-th coordinate vector) and a given N-
dimensional vector $z$ in two different ways and obtain conflicting values. The
direct evaluation yields

$q( \mathrm{E}\mathrm{Q}(y), z)=\sum_{x\epsilon N}z(x)\mathrm{E}\mathrm{Q}(x, y)=z(y)$,

the projection of $z$ to the $y\mathrm{t}\mathrm{h}$ coordinate. On the other hand, we shall show
that the assumption EQ $\in \mathrm{C}\mathrm{C}^{0}$ would derive a small set $D\subseteq N$ and a prime
number $p$ such that for any $z$ and almost all $y$ an appropriate variation of $z$ on
$D$ makes $q(\mathrm{E}\mathrm{Q}(y), z)\equiv 0$ (mod $p$). Strictly speaking, we say that $D$ spans $N$

modulo $p$ almost everywhere if for any $\epsilon>0$ there exists $n_{0}$ such that for any
$n\geq n_{0}$ , any $z$ and at least $1-\epsilon$ fraction of $y\in N$ , there exists an integer vector
$\tau(y, z)$ that satisfies both $\tau(y, z)(N-D)=\{0\}$ and $q(\mathrm{E}\mathrm{Q}(y),z+\tau(y, z))\equiv$

$0$ (mod $p$). We call $y$ in the fraction good for $D$ . Then we shall show that
if EQ $\in \mathrm{C}\mathrm{C}^{0}$ then there is a small set $D$ that spans $N$ modulo a certain
prime number $p$ almost everywhere. This claim derives a contradiction in the
following way: Take any good $y\in N-D$ and any $z$ such that $z(y)=1$ . Then
we must conclude that $q(\mathrm{E}\mathrm{Q}(y), z+\tau(y, Z))=(z+\tau(y, z))(y)=z(y)=1\equiv 0$

(mod $p$). A contradiction.

Razborov and Smolensky have used low degree polynomials over finite fields
for obtaining their lower bounds. Here we use low degree polynomials over
the integer ring of characteristic $0$ . Therefore a Boolean polynomial $P$ is a
linear combination of AND’s of some (positively occurred) Boolean variables
with integer coefficients. Each AND is called a term whose cardinality (the
number of variables in it) is called the degree. As usual, we call the maximum
of the degree of a term with non-zero coefficient the degree of $P$ and write
$\mathrm{d}(P)$ , and the sum of the absolutes of the coefficients the norm of $P$ and
write $\mathrm{n}(P)$ . We denote by $\mathrm{m}\mathrm{o}\mathrm{d}_{m}(x)$ the unique modulo of $x$ in the range
$- \mathrm{r}\frac{m}{2}\rceil+1\leq \mathrm{m}\mathrm{o}\mathrm{d}_{m}(x)\leq\lfloor\frac{m}{2}\rfloor$ divided by $m$ . As usual $f\mathrm{o}g(x)$ of functions $f$

and $g$ (from the set of integers to the set of integers) denotes the composite
function $f(g((X)))$ . Our proof is founded on Yao’s simulation of $\mathrm{C}\mathrm{C}^{0}$-circuits
by low degree polynomials over the integer ring [Yao90]. He has used modulus
amplification investigated by Toda [Tod89] and collapsed modular hierarchies
of different primes (see also [BT94]).

Theorem 2 (Yao) Given a language $L$ that is recognized by a sequence of
depth-d $\mathrm{C}\mathrm{C}^{0}$ circuits and a polynomial $Q$ . There is a constant $c>1$ and for
any $n>0$ there are prime powers $q_{1},$ $\ldots$ , $q_{d}>n$ and a Boolean polynomial $P$

of degree $O((\log n)^{c})$ and norm $O(n^{\mathrm{t})})\log nc$ such that

$L(x)=\mathrm{m}\mathrm{o}\mathrm{d}_{qd}\mathrm{o}\cdots \mathrm{o}\mathrm{m}\mathrm{o}\mathrm{d}_{q}1(P(_{X}))$
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holds for any $x$ .

We apply this theorem for rewriting $\mathrm{E}\mathrm{Q}(x, y)$ as

$\mathrm{E}\mathrm{Q}(x, y)=\mathrm{m}\mathrm{o}\mathrm{d}_{q_{d}}\mathrm{o}\cdots \mathrm{o}\mathrm{m}\mathrm{o}\mathrm{d}_{q1}(P(x, y))$ (1)

where $q_{1},$ $q_{2},$ $\ldots$ , $q_{d}$ are prime powers greater than $n$ and $P(x, y)$ is a Boolean
polynomial of degree $O((\log n)^{C})$ and norm $O(n^{()^{\mathrm{c}}}\log n)$ for a constant $c>0$ . A
merit of this expression of EQ is that we can decompose $P(x,y)$ into a small
number of productions of $x$ -functions ( $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$

. that depends on only $x$ ) and
$y$ -functions in the following way:

$P(x, y)= \sum_{t}t(X)P_{t}(y)$

where the degrees of $t$ are at most $\mathrm{d}(P)$ and the sum of the norms of $P_{t}$ is at
most $\mathrm{n}(P)$ . If there were no barrier of moduli functions and $\mathrm{E}\mathrm{Q}(x, y)=P(x, y)$

held then a rank argument on communication matrices would immediately
derive evaluations of $q(\mathrm{E}\mathrm{Q}(y), z)$ that conflict to the direct one. Thus we un-
dertake to transport the above decomposition of $P(x,y)$ through moduli func-
tions until reaching to a decomposition of $\mathrm{E}\mathrm{Q}(x,y)$ that can derive unexpected
evaluations of $q(\mathrm{E}\mathrm{Q}(y), z)$ .

We prepare a terminology. For a term $t$ let $t^{*}$ be the minimal satisfiable as-
signment of $t((x_{1^{X_{3^{X}\mathrm{s})}}}*=101010^{\hslash-5})$ and call $t^{*}$ the dual assignment of $t$ .
We denote by $D$ the set of $x$-terms of degree at most $\mathrm{d}(P)$ and $D^{*}$ the set of
the dual assignments of terms in $D$ . We may assume that all $t\in D$ appears
in $P(x, y)$ by allowing $P_{t}(y)=0$ .

Now we prove the claim for $D^{*}$ and finish the proof.

Claim 1 $D^{*}$ spans $N$ modulo a certain prime number $p\geq 2$ almost every-
where.

Proof of Claim. $D$ is a $\mathrm{b}\mathrm{a}s$ is of the field of the real functions defined on
$D^{*}$ , hence we can normalize it as follows. We denote terms in $D$ as $t,$ $u$ and $v$ .
Let $Q_{t}(x)= \sum_{t\underline{\mathrm{C}}u}(-1)^{\mathrm{d}\langle}t)-\mathrm{d}(u)u(x)$. Then we obtain

$Q_{t}(u^{*})=\delta_{t,u}$ (2)

because if $t(u^{*})=0$ then $Q_{t}(u^{t})=0$ and otherwise we have

$Q_{t}(u.)=\Sigma_{\mathrm{t}\subseteq y\subseteq u}\mathrm{t}-1)\mathrm{d}\mathrm{t}\mathrm{t})-\mathrm{d}(v)=\Sigma_{=0}^{\mathrm{C}\cdot \mathrm{f}}.\cdot \mathrm{d}(\mathrm{u})-\mathrm{C}\cdot \mathrm{r}\mathrm{d}1‘)-\mathrm{t}1)^{1}.(\zeta\cdot \mathrm{r}\mathrm{d}(u)-.\cdot \mathrm{C}\cdot r\mathrm{d}\{t))=\mathit{5}_{u}‘$,
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In order to implement this normalization in the evaluation of $P(x, y)$ we $\mathrm{n}e\mathrm{e}\mathrm{d}$

to linearly transform $y$-polynomials as $R_{t}(y)= \sum_{u\subseteq\ell}P_{u}(y)$ . Then we obtain

$P(x, y)= \sum_{t}Q_{t}(x)R_{t}(y)$ (3)

because

$\sum‘ Q$ ‘ $R‘= \sum‘ P‘\Sigma_{\underline{\mathrm{C}}\mathrm{u}}‘ Q_{u}=\sum‘ P_{t\Sigma_{t\subseteq t\subseteq\underline{\subseteq}_{\mathrm{V}}}\mathrm{V}}v\Sigma u-1\mathrm{d}\mathrm{t}u$
)$-\mathrm{d}(u)\mathrm{t})$

$= \Sigma_{t}P‘\sum_{\underline{\subset}u^{v}}‘\sum^{\mathrm{C}}|.=.0^{\mathrm{d}(\tau\prime}‘(\mathrm{r})-\mathrm{c}\cdot \mathrm{r}\mathrm{d}()-1):(^{\mathrm{c}}*\mathrm{r}\mathrm{d}\langle y)-.\cdot$
clrd(‘)

$)$

$=\Sigma_{\iota}P\iota(y)\Sigma t\subseteq v^{vs}‘,v=\Sigma‘ P_{t}\ell$

We transport this decomposition of $P(x,y)$ through moduli functions by evalu-
ating bilinear forms invoked from the $i\mathrm{t}\mathrm{h}$ remainders appeared in (2). For an in-
teger $a$ let $h;(a)=\mathrm{m}\mathrm{o}\mathrm{d}_{q_{1}}.\mathrm{O}\cdots \mathrm{o}\mathrm{m}\mathrm{o}\mathrm{d} (q1a)(h_{0}(a)=a)$ and call its value the $i\mathrm{t}\mathrm{h}$ re-
mainder of $a$ . Let $Q(x)=\langle Q_{\ell}(X)$ : $t\in D$ ) and $h.(R(y))=(h_{i}(R_{\mathrm{t}}(y)) : t\in D)$ .
We wish to evaluate a bilinear form $r(Q(x), h_{1}.(R(y)))$ producting these two
vectors:

$r(Q(x), hi(R(y)))= \sum_{t\in D}Q\ell(X)h_{i}(R_{t}(y))$

Hence $r_{0}(Q(X), R(y))=P(x,y)$ by (3) and $\mathrm{E}\mathrm{Q}(x,y)=h_{d}(r_{0}(Q(X))R(X)))$

by (1). We wish to evaluate $\mathrm{E}\mathrm{Q}(x, y)$ by using $r_{d}(Q(x), R(x))$ so we wish to
switch order of the summation $\sum_{t}$ and the modular function $h_{d}$ . For it we
obtain switchings between $s\dot{.}$ and $\mathrm{m}\mathrm{o}\mathrm{d}_{q:}(S:_{-}1)$ beginning from $i=1$ up to
$i=d$ by adding up phase vectors to the first factor of $r$ . Precisely, we claim
that there are card$(D)$-dimensional integer vectors $\theta_{i}(x, y)$ (we call them phase
vectors) such that for all $1\leq i\leq d$ we have

$\mathrm{m}\mathrm{o}\mathrm{d}_{qi}(r(Q(X)+\theta_{\leq i-1}, h.-1(R(y))))=r(Q(x)+\theta_{\leq i}, h_{i}(R(y)))$ (4)

where $\theta_{\leq}.\cdot=\sum_{i\leq:}\theta_{i}$ . These consecutive switchings derive required remote
switchings

$h_{i}(P(x, y))=r(Q(x), R(y))$ (5)

for all $i$ . Moreover, these hold for any $x\in D$ and $y$ with phase free (all
$\theta_{i}(x, y)=0)$ because $R_{\ell}(y)=P(t^{*}, y)$ holds due to (2).

Now we fix arbitrary $x$ and $y$ and prove (4) by induction on $i$ . At the $i\mathrm{t}\mathrm{h}$ stage
we have already defined $\theta_{j}$ for all $j\leq i-1$ and will define $\theta_{i}$ for getting (5).
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We are enough to show the followings:

$r(\theta_{i}, h_{i}(R))\equiv 0$ (mod $q‘$ ) (6)

$- \mathrm{r}\frac{q_{i}}{2}\rceil+1<r(Q+\theta\leq:, h_{i}(R))<\lfloor\frac{q}{2}.\cdot\rfloor$ (7)

We call the greatest common divider of the components of an integer vector the
period of the vector. We prove (6) and (7) by dividing into cases distinguished
on the period of $h.\cdot(R_{\ell}(y))$ . First of all, if the period is divisible by $q$. then (4)
trivially holds. Hence we may assume that the period is not a multiple of $q:$ .
Secondly, if the period is 1 then we can define the $i\mathrm{t}\mathrm{h}$ phase so that we have

$r(\theta\cdot h|’|.(R))=\mathrm{m}\mathrm{o}\mathrm{d}_{q}.\cdot(r(Q+\theta_{\leq i-1}, hi(R)))-r(Q(x)+\theta_{\leq i-1}, h.(R))$

hence (6) holds. Moreover the linearity of the quadratic form derives

$\prime \mathrm{t}q_{+\theta h}\leq i,|.\mathrm{t}^{R))}=r\mathrm{t}Q+\theta\leq i-\iota,h.(R))+\langle\theta.\cdot,h:(R))=\mathrm{m}\mathrm{o}\mathrm{d}_{9(\prime \mathrm{t}(R)}.\cdot Q+\theta\leq:-1,h:))$

hence (7) holds, too.

Finally, we show that $D^{*}$ spans $N$ modulo $p$ for any good $y$ . We apply (5) for
$i=d$ and obtain

$q( \mathrm{E}\mathrm{Q}(y), z)=\sum_{x}z(x)r_{d}.(Q(x)+\theta_{\leq}d(X, y),$
$R(y))$
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where $\theta_{\leq d}(x, y)=0$ for all $x\in D$ so we have

$q\langle \mathrm{E}\mathrm{Q}1\nu).z)=\Sigma_{\iota\epsilon D}h_{d}\mathrm{t}R‘(\nu))(z(t\wedge)+\Sigma_{x\epsilon N-D}$. $z\mathrm{t}x$) $(Q‘(x)+\theta d\langle\leq x,\nu\}(t))hd(R‘ \mathrm{t}y)\})$

$+p\Sigma_{x\epsilon N-}D.\leq dx)z1x)\theta()1^{s}$

thus letting

$\tau(y, z)(X)=\{$
$-z(\ell.)-\Sigma_{x}\mathrm{e}N-D.(Q‘ \mathrm{t}x)+\theta d\mathrm{t}\leq x,\nu)1t))$ if $x=t^{*}\in D^{*}$

$0$ otherwise

we obtain

$q(\mathrm{E}\mathrm{Q}(y),z+\tau(y,z))=p\Sigma_{*\epsilon N-D}$. $z\mathrm{t}x$ ) $\theta \mathrm{t}x$ ) $\langle$ $\cdot)$$\leq d\equiv 0$ (mod $q_{1}$ )

$\square$ Claim 1
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