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On large deviation probability of sequential MLE
for the exponential class

BLTFAY¥ =H 8% (Haruyoshi Mita)

We investigate the asymptotic behavior of probability of large deviations for the sequential
maximum likelihood estimator for processes of the exponential cléss With independent
increments. It is shown that the probability of large deviations for the sequential maximum
likelihood estimator decays exponentially fast as a stopping boundary diverges. Further we
study the asymptotic efficiency of the sequential maximum likelihood estimator in the Bahadur
sense.vMany authors have studied the efficiency of sequential estimators in the decision theoretic
sense. However, we try to study the asymptotic efficiency of the sequential maximum likelihood

estimator in the sense of probability of large deviations.

1. The exponential class of processes with independent increments -

Let X(¢),t €T, be a stochastic process Ae\t“med on a probability space (£2,F, F). with values
in (R',B), where T =[0,») or {0,1,2,-----} and B is thé Borel o—field in R'. The probability
P, depends on an unknown parameter §€ @ , where @ is an open subset of R'.Let F, teT,
be the o- field generated by the process X (s), s<?, and the reStriction of P, to the o—field F,
is denoted by 7, . |

Definition. The stochastic process X () belongs to the exponential class with independent
increments, if the following conditions are fulfilled:

(i) X(t) is a stationary stochastic process with independent increments satisfying

P,(X(0)=0)=1 for all 6 < ® and continuous in probability.
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(i) The probability distributions at time ¢ , that is, P, €€ @ are dominated by the
restriction of a probability measure # on F,, which is denoted by 4, , and the Radon-Nikodym

derivatives may be represented in the form

dP,
p(x,t,6)= d;t = g(x,t)exp(6x - f(O)1),

where g is a non-negative function defined on R' x Tand fis a twice differentiable real valued
function with (6)>0 forall € &.

It is known that if a stochastic process X (¢) belongs to the exponential class with independent
increments, then X () is equivalent to a stochastic process Y(¢) having the property that almost
all of its sample paths are right-continuous and have left-limits at each f , that is, have at most
jump discontinuitviesb»o‘f fhe first kind. Moreover, the process Y(¢) is uhique in the sense that

Y(¢) is any other such process, then P(Y(¢) = Y(t) forevery H=1
2. Stopped processes of the exponential class

Let 7 be an arbitrary stopping time, that is, 7 is a random variable defined on £2 with values
in 7u {»} and has the property that {w €2 (w)<t} €F, for any ¢t €T. The o—field of the
7—past of the process X (¢) is denoted by

F={FeFFn{wedw)<t}eF foranyteT}.
We assume Pg( 7<) =1forany € ®. Let F,, and u, denote the restrictions of Pyand u
on F,, respectively. It is known that F,_ is dominated by x, and the corresponding likelihood
function, which is denoted by L (6), is represented as
L(6):= g(X(7), D)exp(8X(7) - f(O)7). @2.1)
See Basawa,l.V. and Prakasa Rao,B.L.S.(1980). This means that the likelihood function is

independent of the sampling rule. Since L () is the likelihood function of the exponential

family, we obtain

E (X(D)=f(OELD). 2.2)
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3. ‘Lower bounds for consistent estimators

To allow for asymptotic considerations, we introduce the stopping times indexed by the real
parameter ». Let 7(u) be a stopping time indexed by u e/ where I is éithér the set of non-
negative real numbers or the set of non-negative integers. We consider the estimation of an
unknown parameter §€ @. Let ¢ (u), X(7(u))) be an estimator of @ based on a sufficient
statistic (#(u), X(#(u))). For convenience we write Py = (), X((u))). When a
sequence of stopping times {7(u): u €} is giyen, an'estimator'qp,(u) is said to be consistent for
@ with respect to the sequence of stopping times {t(u). u eI} if forany 8€®, ¢,,,—> 0 in

probability as u— o under F,. Let T be a’class' of sequences of stopping times having the

property that for any fe€®, r( )

E (1))
u

—~=—>c¢(6) in probability as: w-—>c under F, and

—>c(6) as u—> », where C is positive and continuous in @. Furthermore, let C be a

class of estimators which are consistent for & with respect to any stopping time sequence which
belongs to T'. Let X,(6,,6,) be the Kullback-Leibler information distance from P vy 10 Py, s
that is, for any 8, 6, € O,

K,(6,.6,): —J logd—;‘—"—“lqu -

It follows that |
K,(6,6,)=(6,-0 ) Eq (X(H1) = (£(8) = £ (8))Eg ((w)
= (8= 0) ()~ (f(8) ~ [ (6:)) )Eg (+(w))
= E, (du)K(6,,6),

where K(8,,0,) = (6,- 6,) f(8) - (f(8)- f(6,)) .

weput K(6,6) =503 K(6.6).

Next Theorem gives us a lower bound for the probability of large deviation for any

consistent estimator ¢, satisfying {«(u).uel} eT.
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Theorem 1. Suppose that @, is consistent for 6 with respect to any sequence of
stbpping times satisfying {t(u).u €I'} €T. Then, for any sequence {W(u).u €'} €T it follows

that for any 0 € © and any >0 satisfying 0t g € 6,
Pro ™ 4>92- B(0 e,

liminf ———log P,
e Eg(z( 2y '8 For

where B(6,¢) = min{K(O— £,0),K(0+¢,06)}. ‘

Proof. Fix {«(u)uel} €T any. For any >0 and any & > ¢ satisfying 0+¢ €6, it

follows that . v
P[00 = 8> © = oo -t WP
2 flpo-tbeln {“j;;:‘(«)m «5} %Wm W
o 2e” J’{lq’du)_q”}n{%jﬂq"} L7
> eﬁ(PMW)( Dot~ 4>‘g)— Pm],,(,,,(%‘f:—)"B eé‘)]_ | G.1)
Since {@,,, u €I} is consistent for 9 we have _
1im Py o[ = 4> 8) =1 6

Let 0= E(n(u))(K(6+ 51,9) +6)——F5— 0(6(’;) £) where 9, >O is arbitrary. Then we have
dP,
P . O+, () Se )
G+, 1( )( dPBz‘( N

= Py o8 X (o)~ (£(8+ £) = 1 (E) o) > Ef(x(u))(K(8+ 5,0+ &)
=Pm,,r<,,{e, XD _ (104 &) 1 ()12 > o 1) C“9+8)<K<e+el,9>+ci>)

u c(6)
E) KO+ g gl,g)+(;1)), - 63

f(u)

= P@*sl,z(u)( T(u)) >

where Y1) = 6, -0 _(1(6+ &)~ f(9) 2

Since X(¢) belongs to the exponential class with independent increments, Xt(t) - f(0+¢)

o(u)

with probability one as ¢ — o under Py, . Since - ¢(0+ &) > 0 in probability as

u—> o under Py, .., it follows that 7(u) — o in probability as # — o under Fy,, ).

X (=)
o(u)

= ::(u)—) —c(8+&)f(6+¢&) inprobability as u—> e under Py, .-

Therefore, — f(6+ &) in probability as  — o under P3+E;,,(u). Hence, we have
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Therefore,

Y(o(u)) = c(0+ &)K(6+ &,,6) in probability as u —> under Py, . -

Further, it follows that

Eg(zrl(u)),c(f(ﬂ;)el)(K(0+gl’6)+51)_)c(0+ £ K(O+ 6.6+ 5) 5 > 0.

By (3.3), it follows that -

db,, . ‘
1, 7(1) o
Pg“"""’("_—_dPg oo >e’ |>0 asu—>o,

From (3 1) and (3 2) we have

liminf - 1( X EOIRG | P P = —(K(0+ 6,0 +8) ) C(f(*;‘).
Since 6, >0 and 51 > ¢ are arbitrary and C is continuous, we have
liminf "= E( z(u)) Ty oe f z(u)( Py~ 4 > 5) 2 K(9+ L O)—— 75— 6(0(2)8)
=-K(0+¢&¢). (3.4)
Replécing 6+ & by - & in the above discussion, we obtain
liﬂglff@(_i@ﬁlog Pa,(u)((o,(u)— 4> 5)2-—1?(9— £0). | (3.5)
According to (3.4)and (3.5), the proof is completed. | 0

4. Bahadur efficiency for the sequential MLE

We introduce thé following stopping time:
raﬁ(u):=inf{t:aX(‘t)’-i—ﬁtZu}, 4.1)
where a# 0, 8, and >0 are constants; and & and S are chosen such that Py(z, 5(#) < 90) =1 for
any 0 ©®. We abbreviateb the indices @ and B, that is, we write #(u) for 7,4(u). Let D,,, be
_ the overshoot for the stopping time given by (4.1), that is,

D= @ X((u)) + fr(u)-u. (42)

We have
CaE (X (7)) + BEo(1(4)) = Eg( Dy +4). ’ 4.3)
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From (2.2), we have
(f (O)+ BE( o)) = Eo Dy +1). | (44)
We define h(6):= f(6)+a f6. Since P)( (1) 20)= Fy(D,,, 20) =1, we have

ah(6)=af(6)+B>0. (4.5)
Hence, 4 is invertible on ©. Since d #0, X(du)=a ' (u+ D,y — B(u)). Therefore, the

likelihood function is represented as _ :
L,y(6) = g(X(o(w)), d(u)) exp(0c”' (u+ Dy,) — h(6) o(w)). - (49
We denote @y 4(s), s e_R' , as the moment generating function ofa réndom variable X under b,

Here we need the following assumption :

Assumption (A). For any 8 e @, there exist a neighborhood N, of 8 and a random variable
M(u) having the property that forany u eI, |

() forany 9eN,, Py(D,, < My(u)=1,

(1)  the distribution of M (u) under P, is independent of w and $e N, -
and

(1ii)  the moment generating function of My(u) under F, exists in a neighborhood of origin.

Assumption (A) is fulfilled for many stochastic processes including Wiener process, Poisson

process, Bernoulli process, etc.

Now let Aﬁm be the maximum likelihood estimator for the stopped likelihood function L, .

X(dw)
o(u)

Assumption (A) is fulfilled then the maximum likelihood estimators ?9,(“) is consistent for @

From (1), we have f (AG,(,,))= . According to Serensen (1986), we can show that if

with respect to the sequence of the stopping times given by (4.1).

Now we consider the moment generating function of i(l_:ﬂ under P,. Since h(6) - s/u eh(O)

for sufficiently large u > 0, we have

¢z‘(u)/u,0(s) = Ea(exp(( r(u)/u)s))
= B, [8(X (), € expla™ O+ D) ~ (W)~ /) (a0
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— exp(a”u(6- 7 (W(O) - 5/u) E, [exp(a™ (8- (&)~ s/)Dy,)
BOX(x(1)), 1)) exp(@™ ™ (H(6) - sfu)(u + Do) ~ (H(6) = 5/) {u))]
= exp(a™ U0~ K (KO = S/ i@ (O~ H(H(O)=5/))). (A7)

From a result of Serensen(1986, Lemma 3.7), it follows that for any 6> 0,

¢DK"),d(su"5) —1 as U—>o
uniformly for (0’ ,8) € Nyx[-s,,5], where the interval [—s;,5] is contained in the domain of the
moment generating function of D, under F,. Therefore, by (4.5) we have -
I OE exp('a“s/li(e)) as u—> . -
By the continuity theorem for moment generating functions and (4.5), we have
w(u)/u— 1/ ah(6)>0 in probability as u — « under F;.
Thus, the first assertion has been shown.
By (4.4), (4.5), and Assumption (A), it follows that

E(d(u))/u= E(D,, /u+1)]ah(6)—1/ah(6)>0 asu—> .

Therefore we obtain the following result: -

Lemma 1. . Suppose that Assumption (A) is fulfilled. Then the stopping time given by (4.1)

belongs to the class T, that is, it follows that for any 6€ 0,
au)
u a0

>0 in probability as u—> « under B,

and
E(w) |1
u ak(6)

>0 as u— o.

Next theorem shows that the large deviation probability of the sequential maximum

likelihood estimator decays exponentially fast as u — .

Theorem 2. Suppose that P)(t(u)<©)=1 for any 6€ 0, where the stopping time t(u) is

given by (4.1). If Assumption (A) is fulfilled then for all sufficiently small >0, we have
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lim ————10g P, (|00 - 61 > £)=-B(6,¢)

u=<0 Ee(z( )
Proof.  From lemma 1, the stopping time 7(u) given by (4.1) belongs to the class T and

the sequence of the maximum likelihood estimator {"0,(,,):u eI} is consistent for 8. Therefore, -

by Theorem 1 it is sufficient to show that

hmsupEo(z( ))longz(u)( ) 61> g)<-B(6,¢).

It follows that
P (B = 0> €)= P (B > 0+ )+ Pa (B < 0-9)
= Py (84 8) > 0) + Py (o (6 8) < 0)
=L+, Y
where
L= Py ([ (6+ 8) > 0)
and

L, = Py (U (6— 8) <0).
By Markov inequality, we obtain
I, <inf Eo(exp(si,(u)(m £))
=inf 6 ad® 49)
According to (4.2) and (4.6), it follows that | | |
B, 000eS) = Edl expls(X () - f(6+ &) (w)))]
= B, [exp((s+ O X (1)~ (F (O + 5 (6+ ) dw)]
= £, [exp(a(s+ 0Dy +1) - (f(O)+ 5f (6+ &) +(s+ O)a Hr())]
=, [expl(s+ )@ (D + 1)~ (HO)+ sh( 0+ £))(w))] |
= exp(au(s + O k' (W(6) + sh(6+ £))))
E, lexp(a™ (s + 0= i (h(6) + Sh(6+ £))) Dy )-&( X ((w)), o)
exp( e h ((6) + 5h(6+ E))( Dy + ) — (H(6) + SH(+ £)) T(w)) ]
= exp(au(s + 0 9))E exp(a(s+ 0~ HD,,)) 1

= expla”'u(s+ 6~ 9)gp, s(a(s+6-9)), (4.10)
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where &= h"\(h(6)+ sh(0+ 6)).
Let y,(s)= a”'(s+ 0- 9). Since h is invertible and differentiable on @, it follows that
() vy, () = & ul1= O+ &) [R(H (sh( 0+ &) + ().
It is easily seen that the equation (J&)y,.(s)=0 has ‘a unique solution
5= (h(0+ &) - h(0)) / h(6+¢)> 0 and ¥, (5) attains its minimum value for s = 5. Hence,
- Anf yy (5) = Wo(%)
=a 'u(s;+ 60— 9)
= (@ 'u(h(O+ &)~ h() - 0+ &) [(6+ &)
= —uc(0+ &)K(6+¢,0). ' 4.11)
By (4.9), (4.10), and (4.11), we have
log/, < isr:g log ¢i«u> Bee) o5
= infl () + log By, (" 5+ 0- 9)
< Yu(s) +1og b, o (s5+ 6~ 9)).
< —uc(0+ E)K(0+ £,6) +1og E(expa™ (s, + 6~ IMw).  @12)
Since the distribution of M,(u) under Pj is independent of # and the stopping time () given

by (4.1) belongs to the class T , it follows that

1 ~ ,
limsup ————~—logl, < -K(6+ &,06). ’ 4.13
nSUP ) OB (6+¢6). | (4.13)
In a similar fashion, we have v ,
. 1 p : ' ’
lll}l_gpmloglz S —K(9— 8,0). (414)

Hence, by (4.8), (4.13), and (4.14), we have

1 -
lim 5108 Pao ([P = q>2)<-B(69).

u—»o0

This completes the proof. .0

Now, let 7,(6) be the Fisher information, that is, I(O=E e((%log Lqu)(ﬁ))z). We have

1,(8)= —Ea(g;—log L,(;,)w)]
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= (O En(w)).
We define /(6):= f(6). It is easily seen that
K(6.0)=5 (6~ 0/ 1(Of1+0o(D] as §—>06. (4.15)

Let ¢, = o(7(u), X ((u)) be an estimator of & and let 1, = 1,(&, 6) be defined by

Py|p - 8> ©) = P(N(O,D|> &/4,), | (4.16)

where N(0,1) is a normal random variable with mean 0 and unit variance. Following Bahadur

we call A, the effective standard deviation of ¢,,. According to (4.16), it is clear that @, 1s

consistent for @ if and only if 1, — 0 as ¥ — . From the fact that for x>0,

(1/x - 1V/x*)2m) 2 exp(=x*/2) < P(IN(0,D|> x) < (1/x)(2 ) V* exp(~x*/2),

if @, 1s consistent for & then

log Py(¢. - 8> g)=_%;22 (1+0(1) asu—>w. @.17)

By Theorem 1 and (4.15), if ¢@,_, is consistent for & with respect to any sequence of the

stopping times satisfying {«(u).u € I'} €T then

hrgl_glfllrlgglfmlog 1)(9(l¢z(u) - 61 >£)2>- lll'gljg.lp 2
' 1
= —'-2—1(9)
Therefore, from (4.17) we have _
liminf liminf {£,( wu)A, ) 2 1(6)7 : (4.18)

Inequality (4.18) gives us an asymptotic lower bound of the effective standard deviation of @,,,.

We shall say that a consistent estimator ¢, is asymptotically efficient in the Bahadur sense if

lim lim {E(«(4))4,"} = 1(6)”"
holds for any € &.

By Theorem 2, we obtain the next theorem.

Theorem 3. Suppose that Assumption (A) is fulfilled. Then the sequential maximum likelihood

estimator 8, is asymptotically efficient in the Bahadur sense among all estimators which

belong to C, where the stopping time ©(u) is given by (4.1).
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5. Examples
To illustrate our results, we give two examples.
Example 1. Let X(¢) be a Wiener process with drift & and unit variance. Of course, this

process belongs to the exponential class and the density function is given by

f(x,t,0)=-—;ﬁexp( ét) JeXp(@((f)——@zf) teT =[0,%),

where 6 takes its value in a parameter space @c R'. We suppose that @ is a subset of the set

{@.ab+ >0} Since X(¢) is continuous with probability one, we have Py(D,,, =0)=1 for

any @e@. Therefore, it is easily seen that Assumption (A) is fulfilled and the sequential

maximum likelihood estimator AG,(“) = X(7(u))/7(u) is asymptotically éfﬁcient in the Bahadur

sense.

By the way, in this example we can directly derive the asymptotic behavior of tail

probability of 6, as follows . It is known that the stopping time 7 is distributed as the

T

o1
generalized inverse Gaussian distribution N™( -5, wa?,(0+ a’'f)* )(see Serensen(1986)).

We denote N (1, , ) as the generalized inverse Gaussian distribution. This distribution

has the density function

Fs v = 21&”’(/\’[‘—) lexp(-3E+y) Lo, 6D

where K is the modified Bessel function of the third kind. For details, see Jorgensen(1982).

—1 .
Since aX(7)+fBr=u and 0, = X(«(u))/o(u) we have 6, = _‘_)"_z__ﬁ_ a B. Without loss of

generality, we assume that > 0 in the following discussions, because if <0 then we can

replace I, With I _ in (5.3) below. Under this assumption, it follows that 8+ a™'f > 0. By

property of the generalized inverse Gaussian distribution we have

O +a'f~ N (%, ua(0+ a“/?)z,aa" ). (5.2)
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From (5.1), substitutions A =1, y=ua™(8+a”'p)’, y=ua™ give

f(xtua O+ P ua™) =
(0+a'p
2K, (ua™'(6+a”P)

ua(6+a'p)’ i}
( po B +ua 'x))~](0,m)(x)»

xFexp(~4(

Using the fact that K, (x) = Z e (see, Jorgensen(1986), pp. 170), we have
‘ 7 N2

f (x;%,ua“(ﬁ% a’'pua™)

ua’ S ex (- ua (x—(0+
2 P 2x

a“lﬂ))z )'I(O,co)(x)

_ 2
- —J%x exp(~ 2y 1 (0, 53

where m= 60+ a'f, n=ua"'. Shuster(1968) obtained the distribution function of inverse
Gaussian distribution. We can derive the distribution function of the generalized inverse
Gaussian distribution given by (5.3) along the lines of Shuster(1968) as follows. Let X be a

random variable which is distributed as the generalized inverse Gaussian distribution given by

(5.3). Let F(c;m,n) = P(X <c). Note that

F(c;m,n) = F( —;—1; 1, mn). " (5.4)

First we deal with the case m=1.

Case (i). Letc<1. Using substitution y = Jx , we have

F(e;lm)=[ /2—% exp[a—'l—qﬁxz—;l)—]dx
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(2 o -1 e

2 1\2
Put z=n(—yy—zp— foryS\/c—‘. SinceyS\[ESI,wehave

) _2n+z— Z+4nz Y .
2n "y +1

_1 1+"____z
2 z+4n )

_1\2
nd n(c-1)
c

<Z<0,

Hence, we have

yZ
2 +1

| o 1
F(C; l,n) = J.n(c;l)z \/—2——7;—2“(;——
s 1 1 , z z
= n(c;l)“—_—r———zm '-2’(1+ ———~Z+4n)exp —i)dz

= —;—G(d )+ %exp(Zn)G(d +4n), (5.5

)exp(-— -;—)dz

‘ L
- where G(d) = j:’(zm)-% exp(-—;—)dt and d = n(cc 1) -

n(: -1y

Case(ii). Let c>1. Since d = -—Ql——, by (5.5) we have

c
F(c;l,n)=F(l/c;L,n)+( F(c;], n) -F(/c;1,n))

= %G(d) + %cxp(Zn)G(d +4n)+ P(% <X<c). (5.6)

’ ‘ X -1)?
It is easy to see that %< X <c if and only if _rz(_/\;__)_ <d. From the fact that the random
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_1\2
variable n(_X)_(_!_)_ is distributed as a chi-squared distribution with one degree of freedom, it

follows that

P(%<X<c)= P(y} <d)=1-G(d).

Hence, by (5.6) we obtain

F(c;1,n) =1- —21—G(d) + %exp(Zn)G(d +4n). (5.’})

From (5.4), (5.5), and (5.7), it is immediately evident that the following results hold for any

m>0,
F(c;m,n) = %G(d') + %exp(2mn )G(d' + 4mn), 0<Lc<m,
—1- %G(d') + %exp(Zmn )G(d + dmn), m<c<o (5.8)
where d' = f’(—ci”—’): Since P(y,">x)=2P(N(0,1)>/x)=2P(N(0,1) < —/x) for x>0,

by (5.8) it follows that for any ¢>0, m>0, n>0,

F(c;m,n) = @(\/g(c—m))-i-exp(2mn)%—\/lz—(c+m)) , | (5.9

where @ is the standard normal distribution function.

Now, we have

B

6. - 61 >&)= P (0, +a"'f>0+s+ P+ P, (0, +a ' B<O0-s+a”'P)

=1+1,, (5.10)
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where I, = P, (8, +a'B> O+ e+a”'P) and I, = P, ( 0.+a'f<b-c+a’'P).

From (5.2) and (5.9), we have

o /__u_a_‘___
1= w[g O+ e+ a“,BJ
—exp(2ua™(0+ a"ﬂ))d{—‘ /9+’2+a5 Q(6+a'B)+ s)).

From the fact that (x™ — x7*)@(x) < 1— @(x) < x™'@(x) for any x>0, where ¢(x) is the density

function of the standard normal distribution, we have

ua
L —_—
[, <1 %8‘/ _lﬂ]

1 ‘% ua‘lsz
<&l ua . 1 e_2(0+¢z"'ﬁ+£)
6+a'f+e) 2rx

- 2
ua'&

1 = s
2(6+a ' Bre)
bl

=kule

and

1

3 ‘1 bl
—1 ) s | -5 _ ua &
1>l el uax _g? ua 111 PETC)
: O+a'f+e) O+a'B+e) |\2n

L _ ua’l(Z(Bﬂz’lﬂH-e)2

(e @rap)| e 20+ @'+ 2 Il 7 aeapo
6+a'f+e 27
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1 3 __ua'é
- - ora- 3
= (u 2kz"u 2k3)e Ybra g),

where &, k,, and k, are positive and independent of u.

Hence, we have

_ ua' 1 : 1
I =e 2&@50 2.0 (1) = ™9 .4 2.0 (1), (5.11)
Similarly, we have
Ll ) 1
L=e 594 7.0()=e™*% .4 2.0,(D). (5.12)

By (5.10), (5.11), and (5.12), we have

lim

S |
M E () 08 ol

b,—4> £)=—B(6,¢).

Example 2. Let X(¢) be a Poisson process with intensity 3> 0. Let #=1log 9 and suppose

that @ is a subset of the set {& ae’ + B> 0} . The density function is given by
X(1)

LI —ef {12
St 0)=grrexpl@(D-e%),  1eT=(1.2,1,
Since the Poisson process has jumps of size one, we have 0< D, Sla] with probability one.

Therefore Assumption (A) is fulfilled and the sequential maximum likelihood estimator

?0,(") = log( X(=(u))/ z(u)) is asymptotically efﬁciént in the Bahadur sense.
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