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On the number of crossed homomorphisms from a finite cyclic
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‘ For finite groups H and C such that C acts on H, let Z(C, H) denote the set
consisting of all complements of H in the semidirect product CH with respect to a
fixed action of C' on H, i.e., '

Z(C,H)={D < CH|DNH = {1}, DH = CH},

which bijectively corrésponds to the set of all crossed homomorphisms from‘ C to
H([5, Ch.2,88]), and let z(C, H) = $Z(C, H). One of the famous result concerning
this number is the theorem due to P. Hall ([4, Theorem 1.6]):

For a finite group H and for an automorphism § of H such that 8" = 1, the
number of elements x of H that satisfy the equation -

2

() =z-2% 2° T =1

is a multiple of ged(n, |H]).
This result is a generalization of the theorem of Frobenius:
The number of solutions of ™ = 1 in a finite group H is a multiple of ged(n, |H|).

Let p denotes a prime integer. We shall show some results about z(C, H) where C' and
H are p-groups. For a finite group G, let Co(G) = [G, G, and define C;(G) = [Ci_1, G]
for each integer i such that i > 3. We use the following famous theorem due to P.Hall.

Theorem 1 ([3, 6]) Let x and y be any elements of a finite group G. Then there
ezist elements ¢y, cs, ..., Cn 0f < 2,y > such that ¢; is an element of Ci(< x,y >) for
each 1 and that o

n,n __ n _e2 s €n
z™y" = (zy)"cscs® - -

where e; = n(n —1)---(n —i+1)/i! for each i.

Using Theorem 1, we obtain the following.
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Proposition 1 Let G. be a finite p-group, and let ¢ be an element of G. Assume
that exp C;(G) < p*~**% for each integer ¢ such that i > 2. If either p > 2 or
exp Co(G) < p~1, then (cx)P* =P for any element z of G such that 7" = 1.

Let H be a finite p-group that is not {1}, and let C be a finite cyclic group of
order p* that acts on H. Let C;(CH) = H. Clearly, C;1,(CH) c C;(CH) for
each positive integer i. By [6, p.43,Corollary 2|, Co(CH) # C1(CH). It follows that
Ci+1(CH) # C;(CH) for each positive integer i, provided C;(CH) # {1}([6]). Let
j be the least integer such that |Cj 1(CH)| < p*!, and let Q(CH) be a normal
subgroup of CH defined by

Q(CH) = Qu(C;(CH)).
Then |Q(CH)| > ged(p*, |H|), and |[Q(CH),CH]| < p*~'. Furthermore,
exp Q(CH) < p*
by Proposition 1. The follovving proposition is a consequence of Proposition 1.

Proposition 2 Let H be a finite p-group, and let C be a cyclic p-group that acts on
H. Then 2(C,H) = 0 mod |Q(CH)|.

Corollary 1 ([2, Proposition 3.3]) Let H be a finite p-group, and let C be a cyclzc
- p-group that acts on H. Then z(C, H) = 0 mod ged(|C|, |H]).

By using Propositions 1 and 2, we get the following.

Theorem 2 Let H be a finite p-group, and let C be a cyclic group of order p* that
acts on H. Assume that H contains no cyclic normal C-invariant subgroup of order
p**tL. If either p > 2 or H contains no proper cyclic normal C-invariant subgroup of
order p*, then z(C, H) = 0 mod ged(p**!, |H|).

Equivalently, the following theorem holds.

Theorem 3 Let H be a finite p-group, and let 6 be an automorphism of H such that
gr* = 1. Assume that H contains no cyclic normal subgroup @ of order p**! such
that Q° = Q. If either p > 2 or H contains no proper cyclic normal subgroup @
of order p* such that Q° = Q, then the number of elements x of H that satisfy the
equation

0V =z-2° 2% .. 277 =1

is a multiple of ged(p¥*!, |HY).
Corollary 2 Let H be a finite p-group that contains no normal cyclic subgroup of

order putl. If either p > 2 or H contains no proper cyclic normal subgroup of order
pY, then the number of solutions of zP* =1 in H is a multiple of ged(p**', [H|).
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We also have some results in the case where C is an abelian p-group that acts on a
p-group H. The following theorem is a result concerning to the number of cocycles.

Theorem 4 ([1]) Let H and C be finite abelian p-groups such that C acts on H.
Then 2(C, H) = 0 mod ged(|C|, |H|).

Sketch of proof. Suppose that C = C; x Cy X - -+ x Cy, where Cj, Cs, ..., C, are cyclic
p-groups. Let z; be a generator of C; for each j. Let G; denote the set of all elements
h of H such that [h,z;] = 1 for any j except i. Assume that |G;| > |C;| for any 3. Let
G = Q(C,Gy) x --+- x Q(C,G,). Then |G| > |C|. For each i, if the order of element
y of C;H is |C;|, then the order of yh is also |C;| for any element h of Q(C;G;) by
Proposition 1. Thereby, G acts on Z(C, H), and the action is semiregular. Hence,
z(C, H) = 0 mod |C|. Next, assume that |G;,| < |C;,| for some 45. By Corollary 1,
G, acts on Z(C;,, H). Moreover, H/Cy(C) acts on Z(C, H) by conjugation. So, the
action of H/Cx(C) x G;, on Z(C, H) is naturally defined. We have that the order of
the stabilizer of an element of Z(C, H) is |Gy, : Cy(C)|. Hence, 2(C, H) = 0 mod |H]|.
Thus, the theorem holds. O -

It follows from [2, Proposition 3.2] that if an elementary abelian p-group C acts on a
finite p-group H, z(C, H) = 0 mod |C|. The following proposition is a generalization
of Corollary 1.

Proposition 3 ([1]) Let H be a finite p-group, and let C be a finite abelian p-group -
that acts on H. Assume that C is the direct product of a cyclic p-group and an
elementary abelian p-group. Then z(C, H) = 0 mod gcd(|C|, |H|).

This results yields the following.

Theorem 5 ([1, 2]) Let A be a finite group such that a Sylow p-group of AJ/A’
is the direct product of a cyclic p-group and an elementary abelian p-group. For
any finite group G, the number of homomorphisms from A to G is a multiple of
ged(|A/A',, |G]), where |A/A'|, is the highest power of p dividing |A/A'|.
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