On the number of crossed homomorphisms from a finite cyclic p-group to a finite p-group

Yugen Takegahara 竹ヶ原 裕元 Muroran Institute of Technology 室蘭工業大学

For finite groups H and C such that C acts on H, let $\mathcal{Z}(C, H)$ denote the set consisting of all complements of H in the semidirect product CH with respect to a fixed action of C on H, i.e.,

$$\mathcal{Z}(C,H) = \{ D \le CH | D \cap H = \{1\}, DH = CH \},\$$

which bijectively corresponds to the set of all crossed homomorphisms from C to $H([5, Ch.2, \S8])$, and let $z(C, H) = \sharp Z(C, H)$. One of the famous result concerning this number is the theorem due to P. Hall ([4, Theorem 1.6]):

For a finite group H and for an automorphism θ of H such that $\theta^n = 1$, the number of elements x of H that satisfy the equation

$$(x\theta^{-1})^n = x \cdot x^{\theta} \cdot x^{\theta^2} \cdots x^{\theta^{n-1}} = 1$$

is a multiple of gcd(n, |H|).

This result is a generalization of the theorem of Frobenius:

The number of solutions of $x^n = 1$ in a finite group H is a multiple of gcd(n, |H|).

Let p denotes a prime integer. We shall show some results about z(C, H) where C and H are p-groups. For a finite group G, let $C_2(G) = [G, G]$, and define $C_i(G) = [C_{i-1}, G]$ for each integer i such that $i \geq 3$. We use the following famous theorem due to P.Hall.

Theorem 1 ([3, 6]) Let x and y be any elements of a finite group G. Then there exist elements c_2, c_3, \ldots, c_n of $\langle x, y \rangle$ such that c_i is an element of $C_i(\langle x, y \rangle)$ for each i and that

$$x^n y^n = (xy)^n c_2^{e_2} c_3^{e_3} \cdots c_n^{e_n}$$

where $e_i = n(n-1)\cdots(n-i+1)/i!$ for each i.

Using Theorem 1, we obtain the following.

Proposition 1 Let G be a finite p-group, and let c be an element of G. Assume that $\exp C_i(G) \leq p^{u-i+2}$ for each integer i such that $i \geq 2$. If either p > 2 or $\exp C_2(G) \leq p^{u-1}$, then $(cx)^{p^u} = c^{p^u}$ for any element x of G such that $x^{p^u} = 1$.

Let *H* be a finite *p*-group that is not $\{1\}$, and let *C* be a finite cyclic group of order p^u that acts on *H*. Let $C_1(CH) = H$. Clearly, $C_{i+1}(CH) \subset C_i(CH)$ for each positive integer *i*. By [6, p.43,Corollary 2], $C_2(CH) \neq C_1(CH)$. It follows that $C_{i+1}(CH) \neq C_i(CH)$ for each positive integer *i*, provided $C_i(CH) \neq \{1\}([6])$. Let *j* be the least integer such that $|C_{j+1}(CH)| \leq p^{u-1}$, and let Q(CH) be a normal subgroup of *CH* defined by

$$Q(CH) = \hat{\Omega}_u(C_j(CH)).$$

Then $|Q(CH)| \ge \gcd(p^u, |H|)$, and $|[Q(CH), CH]| \le p^{u-1}$. Furthermore,

 $\exp Q(CH) \le p^u$

by Proposition 1. The following proposition is a consequence of Proposition 1.

Proposition 2 Let H be a finite p-group, and let C be a cyclic p-group that acts on H. Then $z(C, H) \equiv 0 \mod |Q(CH)|$.

Corollary 1 ([2, Proposition 3.3]) Let H be a finite p-group, and let C be a cyclic p-group that acts on H. Then $z(C, H) \equiv 0 \mod \gcd(|C|, |H|)$.

By using Propositions 1 and 2, we get the following.

Theorem 2 Let H be a finite p-group, and let C be a cyclic group of order p^u that acts on H. Assume that H contains no cyclic normal C-invariant subgroup of order p^{u+1} . If either p > 2 or H contains no proper cyclic normal C-invariant subgroup of order p^u , then $z(C, H) \equiv 0 \mod \gcd(p^{u+1}, |H|)$.

Equivalently, the following theorem holds.

Theorem 3 Let H be a finite p-group, and let θ be an automorphism of H such that $\theta^{p^u} = 1$. Assume that H contains no cyclic normal subgroup Q of order p^{u+1} such that $Q^{\theta} = Q$. If either p > 2 or H contains no proper cyclic normal subgroup Q of order p^u such that $Q^{\theta} = Q$, then the number of elements x of H that satisfy the equation

 $(x\theta^{-1})^{p^u} = x \cdot x^{\theta} \cdot x^{\theta^2} \cdots x^{\theta^{p^u-1}} = 1$

is a multiple of $gcd(p^{u+1}, |H|)$.

Corollary 2 Let H be a finite p-group that contains no normal cyclic subgroup of order p^{u+1} . If either p > 2 or H contains no proper cyclic normal subgroup of order p^{u} , then the number of solutions of $x^{p^{u}} = 1$ in H is a multiple of $gcd(p^{u+1}, |H|)$.

We also have some results in the case where C is an abelian p-group that acts on a p-group H. The following theorem is a result concerning to the number of cocycles.

Theorem 4 ([1]) Let H and C be finite abelian p-groups such that C acts on H. Then $z(C, H) \equiv 0 \mod \gcd(|C|, |H|)$.

Sketch of proof. Suppose that $C = C_1 \times C_2 \times \cdots \times C_r$, where C_1, C_2, \ldots, C_r are cyclic *p*-groups. Let x_j be a generator of C_j for each *j*. Let G_i denote the set of all elements *h* of *H* such that $[h, x_j] = 1$ for any *j* except *i*. Assume that $|G_i| \ge |C_i|$ for any *i*. Let $G = Q(C_1G_1) \times \cdots \times Q(C_rG_r)$. Then $|G| \ge |C|$. For each *i*, if the order of element *y* of C_iH is $|C_i|$, then the order of *yh* is also $|C_i|$ for any element *h* of $Q(C_iG_i)$ by Proposition 1. Thereby, *G* acts on $\mathcal{Z}(C, H)$, and the action is semiregular. Hence, $z(C, H) \equiv 0 \mod |C|$. Next, assume that $|G_{i_0}| < |C_{i_0}|$ for some i_0 . By Corollary 1, G_{i_0} acts on $\mathcal{Z}(C_{i_0}, H)$. Moreover, $H/C_H(C)$ acts on $\mathcal{Z}(C, H)$ by conjugation. So, the action of $H/C_H(C) \times G_{i_0}$ on $\mathcal{Z}(C, H)$ is naturally defined. We have that the order of the stabilizer of an element of $\mathcal{Z}(C, H)$ is $|G_{i_0} : C_H(C)|$. Hence, $z(C, H) \equiv 0 \mod |H|$. Thus, the theorem holds. \Box

It follows from [2, Proposition 3.2] that if an elementary abelian *p*-group C acts on a finite *p*-group H, $z(C, H) \equiv 0 \mod |C|$. The following proposition is a generalization of Corollary 1.

Proposition 3 ([1]) Let H be a finite p-group, and let C be a finite abelian p-group that acts on H. Assume that C is the direct product of a cyclic p-group and an elementary abelian p-group. Then $z(C, H) \equiv 0 \mod \gcd(|C|, |H|)$.

This results yields the following.

Theorem 5 ([1, 2]) Let A be a finite group such that a Sylow p-group of A/A'is the direct product of a cyclic p-group and an elementary abelian p-group. For any finite group G, the number of homomorphisms from A to G is a multiple of $gcd(|A/A'|_p, |G|)$, where $|A/A'|_p$ is the highest power of p dividing |A/A'|.

References

- [1] T. Asai and Y. Takegahara, On the number of crossed homomorphisms, preprint.
- [2] T. Asai and T. Yoshida, |Hom(A, G)|, II, J. Algebra, 160 (1993), 273–285.
- [3] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc.(2), 36 (1933), 29-95.
- [4] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc.(2), 40 (1935), 468– 501.
- [5] M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
- [6] M. Suzuki, Group Theory II, Springer-Verlag, New York, 1986.