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For finite groups $H$ and $C$ such that $C$ acts on $H$ , let $Z(C, H)$ denote the set
consisting of all complements of $H$ in the semidirect product $CH$ with respect to a
fixed action of $C$ on $H$ , i.e.,

$Z(C, H)=\{\dot{D}\leq CH|D\cap H=\{1\}, DH=CH\}$ ,

which bijectively corresponds to the set of all crossed homomorphisms from $C$ to
$H$ ( $[5,$ Ch.2,\S 8]), and let $z(C, H)=\# Z(C, H)$ . One of the famous result concerning
this number is the theorem due to P. Hall ([4, Theorem 1.6]):

For a finite group $H$ and for an automorphism $\theta$ of $H$ such that $\theta^{n}=1$ , the
number of elements $x$ of $H$ that satisfy the equation

$(x\theta^{-1})n=x\cdot X^{\theta.\theta^{2}}x\cdots X^{\theta^{n-1}}=1$

is a multiple of $\mathrm{g}\mathrm{c}\mathrm{d}(n, |H|)$ .

This result is a generalization of the theorem of Frobenius:

The number of solutions of $x^{n}=1$ in a finite group $H$ is a multiple of $\mathrm{g}\mathrm{c}\mathrm{d}(n, |H|)$ .

Let $p$ denotes a prime integer. We shall show some results about $z(C, H)$ where $C$ and
$H$ are $p$-groups. For a finite group $G$ , let $C_{2}(G)=[G, G]$ , and define $C_{i}(G)--[C_{i-1}, G]$

for each integer $i$ such that $i\geq 3$ . We use the following famous theorem due to P.Hall.

Theorem 1 ([3, 6]) Let $x$ and $y$ be any elements of a finite group G. Then there
exist elements $c_{2},$ $c_{3},$ $\ldots$ , $c_{n}$ $of<x,$ $y>such$ that $c_{i}$ is an element of $C_{i}(<x, y>)$ for
each $i$ and that

$x^{n}y^{n}=(Xy)^{nee}c_{2}C\cdots c_{n}^{e}23^{3}n$

where $e_{i}=n(n-1)\cdots(n-i+1)/i!$ for each $i$ .

Using Theorem 1, we obtain the following.
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Proposition 1 Let $G$ be a finite $p$-group, and let $c$ be an element of G. Assume
that $\exp C_{i}(c)\leq p^{u-i+2}$ for each integer $i$ such that $i\geq 2$ . If either $p>2$ or
$\exp C_{2}(c)\leq p^{u-1}$ , then $(cx)^{p^{u}}=c^{p^{u}}$ for any element $x$ of $G$ such that $x^{p^{\mathrm{u}}}=1$ .

Let $H$ be a finite $p$-group that is -not {1}, and let $C$ be $\mathrm{a}$ finite cyclic group of
order $p^{u}$ that acts on $H$ . Let $C_{1}(cH)=H$ . Clearly, $c_{i+1}(cH)\subset C_{i}(cH)$ for
each positive integer $i$ . By [6, p.43, $\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{y}2$], $C2(CH)\neq C_{1}(CH)$ . It follows that
$c_{i+1}(cH)\neq C_{i}(CH)$ for each positive integer $i$ , provided $C_{i}(CH)\neq\{1\}([6])$ . Let
$j$ be the least integer such that $|C_{j+1}(oH)|\leq p^{u-1}$ , and let $Q(CH)$ be a normal
subgroup of $CH$ defined by

$Q(CH)=\Omega_{u}(c_{j()}CH)$ .

Then $|Q(CH)|\geq \mathrm{g}\mathrm{c}\mathrm{d}(p^{u}, |H|)$ , and $|[Q(CH), CH]|\leq p^{u-1}$ . Furthermore,

$\exp Q(CH)\leq p^{u}$

by Proposition 1. The following proposition is a consequence of Proposition 1.

Proposition 2 Let $H$ be a finite $p$-group, and let $C$ be a cyclic $p$-group that acts on
H. Then $z(C, H)\equiv 0$ mod $|Q(CH)|$ .

Corollary 1 ([2, Proposition 3.3]) Let $H$ be a finite $p$ -group, and let $C$ be a cyclic
$p$ -group that acts on H. Then $z(C, H)\equiv 0$ mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C|, |H|)$ .

By using Propositions 1 and 2, we get the following.

Theorem 2 Let $H$ be a finite $p$ -group, and let $C$ be a cyclic group of order $p^{u}$ that
acts on H. Assume that $H$ contains no cyclic normal $C$ -invariant subgroup of order

$p^{u+1}$ . If either $p>2$ or $H$ contains no proper cyclic normal $C$ -invariant subgroup of
order $p^{u}$ , then $z(C, H)\equiv 0$ mod $\mathrm{g}\mathrm{c}\mathrm{d}(p^{u+1}, |H|)$ .

Equivalently, the following theorem holds.

Theorem 3 Let $H$ be a finite $p$ -group, and let $\theta$ be an automorphism of $H$ such that
$\theta^{p^{u}}=1$ . Assume that $H$ contains no cyclic normal subgroup $Q$ of order $p^{u+1}$ such
that $Q^{\theta}=Q.$ If either $p>2$ or $H$ contains no proper cyclic normal subgroup $Q$

of order $p^{u}$ such that $Q^{\theta}=Q$ , then the number of elements $x$ of $H$ that satisfy the
equation

$(x\theta^{-1})p^{u}=x\cdot X^{\theta}\cdot x^{\theta^{2}.\cdot\theta^{p^{u}}}..X-1=1$

is a multiple of $\mathrm{g}\mathrm{c}\mathrm{d}(pu+1, |H|)$ .

Corollary 2 Let $H$ be a finite $p$ -group that contains no normal cyclic subgroup of
order $p^{u+1}$ . If either $p>2$ or $H$ contains no proper cyclic normal subgroup of order

$p^{u}$ , then the number of solutions of $x^{p^{\mathrm{u}}}=1$ in $H$ is a multiple of $\mathrm{g}\mathrm{c}\mathrm{d}(p^{u+1}, |H|)$ .
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We also have some results in the case where $C$ is an abelian p–group that acts on a
p–group $H$ . The following theorem is a result concerning to the number of cocycles.

Theorem 4 ([1]) Let $H$ and $C$ be finite abelian $p$ -groups such that $C$ acts on $H$ .
Then $z(C, H)\equiv 0$ mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C|, |H|)$ .

Sketch of proof. Suppose that $C=C_{1}\cross C_{2}\cross\cdots\cross C_{r}$ , where $C_{1},$ $C_{2,\ldots,r}C$ are cyclic
$p$-groups. Let $x_{j}$ be a generator of $C_{j}$ for each $j$ . Let $G_{i}$ denote the set of all elements
$h$ of $H$ such that $[h, x_{j}]=1$ for any $j$ except $i$ . Assume that $|G_{i}|\geq|C_{i}|$ for any $i$ . Let
$G=Q(C_{1}G_{1})\cross\cdots\cross Q(C_{r}G_{r})$ . Then $|G|\geq|C|$ . For each $i$ , if the order of element
$y$ of $C_{i}H$ is $|C_{i}|$ , then the order of $yh$ is also $|C_{i}|$ for any element $h$ of $Q(C_{i}G_{i})$ by
Proposition 1. Thereby, $G$ acts on $Z(C, H)$ , and the action is semiregular. Hence,
$z(C, H)\equiv 0$ mod $|C|$ . Next, assume that $|G_{i_{0}}|<|C_{i_{0}}|$ for some $i_{0}$ . By Corollary 1,
$G_{i_{0}}$ acts on $Z(C_{i_{0}}, H)$ . Moreover, $H/C_{H}(c)$ acts on $Z(C, H)$ by conjugation. So, the
action of $H/C_{H}(C)\cross G_{i_{0}}$ on $Z(C, H)$ is naturally defined. We have that the order of
the stabilizer of an element of $\mathcal{Z}(C, H)$ is $|.G_{i_{0}}$ : $C_{H}(C)|$ . Hence, $z(C, H)\equiv 0$ mod $|H|$ .
Thus, the theorem holds. $\square$

It follows from [2, Proposition 3.2] that if an elementary abelian $p$-group $C$ acts on a
finite p–group $H,$ $z(C, H)\equiv 0$ mod $|C|$ . The following proposition is a generalization
of Corollary 1.
Proposition 3 ([1]) Let $H$ be a finite $p$ -group, and let $C$ be a finite abelian p-group
that acts on H. Assume that $C$ is the direct product of a cyclic $p$ -group and an
elementary abelian $p$ -group. Then $z(C, H)\equiv 0$ mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C|, |H|)$ .
This results yields the following.

Theorem 5 ([1, 2]) Let $A$ be a finite group such that a Sylow $p$ -group of $A/A’$

is the direct product of a cyclic $p$ -group and an elementary abelian $p$ -group. For
any finite group $G$ , the number of homomorphisms from $A$ to $G$ is a multiple of
$\mathrm{g}\mathrm{c}\mathrm{d}(|A/A’|_{p}, |G|)$ , where $|A/A’|_{p}$ is the highest power of $p$ dividing $|A/A’|$ .
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