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Abstract

This paper is a survey on Morrey-H\"older estimates for hypoel-
liptic pseudodifferential equations on nilpotent Lie groups, the Kohn
Laplace equation and the tangential Cauchy-Riemann equation on CR
manifolds.

1 Morrey-H\"older estimates for elliptic equa-
tions.

We will begin with Morrey-H\"older esitmates for elliptic equations which give
a motivation of this paper. As is well known, the following H\"older continuity
of the solutions of Laplace equation on $\mathrm{R}^{n}$ holds true for $L^{p}$-data with $p>n$ :

Theorem Cl (well known) Suppose $f$ and $g$ are distributions on an open
set $U\subset \mathrm{R}^{n}$ which satish $\triangle f=g$ on U. If $g\in L_{lo}^{p}(CU)fn<p<\infty_{f}$ then
$\nabla f$ is locally H\"older continuous of orde7 $1-n/p$ on $U$ .

A natural question is what happen when $p\leq n$ . To study this question,
let us recall the classical Morrey spaces $L_{\mathrm{C}}^{p\lambda}|(\mathrm{R}^{n})$ :

$\mathcal{L}^{p,\lambda}(\mathrm{R}^{n})=\{f\in L_{1\mathrm{c}}^{p_{\mathrm{O}}}(\mathrm{R}^{n})$ : $\sup_{x\in \mathrm{R}^{n},>0},.\frac{1}{r^{\lambda}}\int_{||x-y}||<rd|f(y)|^{p}y<\infty\}$ ,
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where $||x||$ is the Euclidean norm on $\mathrm{R}^{n}$ . Moreover, for an open set $U\subset \mathrm{R}^{n}$ ,

let
$\mathcal{L}_{1\mathrm{o}\mathrm{c}}^{p,\lambda}(U)=$ { $f\in L_{1o\mathrm{c}}^{p}(U)$ : $\varphi f\in \mathcal{L}^{p,\lambda}(\mathrm{R}^{n})$ for $\forall\varphi\in D(U)$ }

Morrey-H\"older estimates for elliptic equations are the following:

Theorem C2 (cf. [18]) Suppose $1\leq p\leq n$ . Let $U\subset \mathrm{R}^{n}$ be an open
set, and $P$ an elliptic pseudodifferential operator in the H\"ormander class
$OPS^{2}1,0$ on U. Suppose $f$ is a compactly supported $d\dot{w}$tribution on $U$ , and

$g$ a distribution on $U$ which satisfy $Pf=\mathit{9}$ on U. If $n-p<$ A $<n$ and
$g\in \mathcal{L}_{1\mathrm{o}\mathrm{c}}^{p,\lambda}(U)$ , then $\nabla f$ is locally H\"older continuous on $U$ of order $1-(n-\lambda)/p$ .

This theorem improves Theorem Cl. In fact, as we will see later in more
general case, Theorem Cl is a direct consequence of Theorem C2.

In this paper, we will describe Morrey-H\"older estimates for non-elliptic

equations such as $\coprod_{b}u=f_{\mathrm{o}\mathrm{r}\overline{\partial}_{b}=}uf$ .

2 Morrey-H\"Older estimates for $\overline{\partial}_{b}$ .
Before moving on to the main body of this paper, we mention an application

of Morrey spaces to $\overline{\partial_{b}}$ equation.
Let $M$ be a compact strongly pseudoconvex CR manifold, and $\rho(x, y)$

a quasi-distance associated with an approximate Heisenberg coordinate. It

was introduced by Folland and Stein [7]. By using this quasi-distance $\rho$ ,

Folland and Stein introduced many non-isotropic function spaces which are

appropriate for estimating solutions of the $\overline{\partial_{b}}$ equation. To describe Morrey-
H\"older estimates for $\overline{\partial}_{b}$ , we need one of them: Let $V\cross V$ be an open set in
$M\cross M$ on which $\rho$ is defined. For $0<\mu<\mathrm{I}$ , let

$\Gamma_{\mu}(V)=\{f\in C(V)$ : $||f|| \infty+\sup_{yx\neq}\frac{|f(x)-f(y)|}{\rho(x,y)^{\mu}}<\infty\}$ ,

where and always $||\cdot||_{p}$ is the usual $IP$ norm with respect to the measure
$dm$ on $V$ induced by the Hennitian form $\langle , \rangle$ defined in [7]. Moreover, we
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denote by $\Gamma_{\mu}(V, \iota oc)$ the space of all $f\in C(V)$ such that $\varphi f\in\Gamma_{\mu}(V)$ for
every compact supported $C^{\infty}$ function $\varphi$ on $V$ . These are called non-isotropic
H\"older spaces.

The following theorem was proved by Folland and Stein:

Theorem FS (cf. [7]) (A) Suppose $\varphi$ and $\theta$ are locally integrable $(0,q)-$

forms, $0<q<n_{f}$ which satisfy $\square _{b\varphi=\theta}$ on V. If $\theta\in L^{p}(V),$ $2n+2<p\leq$

$\infty,$ $then—j\varphi\in\Gamma_{\beta}(V, \iota_{\mathit{0}}c)$ , wheoe $\beta=\mathrm{I}-(2n+2)/p$.
(B) Suppose $\theta$ is $(0, q)$ -form in $L^{2}(M)(0<q<n)$ . If $\theta\in L^{p}(V)_{\mathrm{z}}$

$2n+2<p$, then the Kohn solution $\varphi=\neg\partial_{b}G_{b}\theta$ (see $[\mathit{1}\mathit{0}J$) is in $\Gamma_{\beta}(V, \iota_{\mathit{0}}c)$ ,
where $\beta=1-(2n+2)/p$ .

A question arising $\mathrm{h}\mathrm{o}\mathrm{m}$ the above theorem is what occors when $p\leq$

$2n+2$ . Our analysis of non-isotropic Morrey spaces can give an answer to
this question. We begin with defining non-isotropic Morrey spaces on $V$ :

$L^{p,\lambda}(V)-- \{f\in L_{lc}^{\mathrm{p}_{O}}(V):x\in V,\tau>\sup_{0}\frac{1}{r^{\lambda}}\int_{\beta(x,y})<r|f(y)|pdm(y)<\infty\}$

$(0<p<\infty, 0\leq\lambda)$ . We have that

$L^{p,\lambda}(V)=$ $\lambda=0\lambda=2n\lambda>2n+2+2$

.

(1)

Using Morrey spaces, we get the following estimates:

Theorem 1 ([1]) (A) Let $\varphi$ and $\theta$ be locally integrable $(0, q)$ -forms, $0<q<$
$n$ , which satisfy $\square _{b}\varphi=\theta$ on V. Suppose $1<p\leq 2n+2$ . If $\theta\in L^{p,\lambda}(V)$ ,

$2n+2-p<\lambda<2n+2,$ $then—j\varphi\in\Gamma 1-(2n+2-\lambda\rangle/p(V,\iota oc)$ , for $1\leq j\leq 2n$ .

(B) Suppose $\theta$ is $(0,q)$ -form in $L^{2}(M)(0<q<n)$ . Let 1 $<p\leq$

$2n+2.$ If $\theta\in L^{p,\lambda}(V),$ $2n+2-p<\lambda<2n+2$ , then $\varphi=arrow \mathrm{a}c_{b\varphi}$ is in
$\Gamma_{1-}(2n+2-\lambda)/\mathrm{P}(V,\iota oC)$ .
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This theorem is not only an answer to the above mentioned question,
but also an improvement of Theorem $\mathrm{F}\mathrm{S}$ . Indeed Theorem 1 implies
Theorem FS by the following way: If I $<q<p<\infty$ , then If $(V)\subset$

$L^{q,\lambda}(V)$ , where $\lambda=(2n+2)(1-q/p)$ . Hence if $2n+2<p<\infty$ and
$\theta\in L^{p}(V)$ , then $\theta\in L^{q,\lambda}(V)$ for every $\mathrm{I}<q\leq 2n+2$ , and thus Theorem 1
implies that the Kohn solution $\varphi \mathrm{o}\mathrm{f}\overline{\mathrm{a}}\varphi=\theta$ is in $\Gamma_{1-(n+}22-\lambda$) $/p(V,\iota_{oc})$ , where
$1-(2n+2-\lambda)/q=\mathrm{I}-(2n+2)/p$ . Therefore Theorem FS (B) follows
from Theorem 1 (B). By a similar way, Theorem 1 (A) is proved by using
Theorem FS (A).

3 Dirichlet growth theorem on nilpotent Lie
groups

The classical Morrey spaces were introduced by Morrey in order to prove
$\mathrm{M}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{y}-\mathrm{H}_{\ddot{\mathrm{O}}1\mathrm{d}}\mathrm{e}\mathrm{r}$ estimates for solution of elliptic equations. A main step of
the proof is the folowing classical Dirichlet growth theorem by Morrey:

Theorem $\mathrm{M}$ (cf. [14]) Suppose $\mathrm{I}\leq p\leq n$ and $0<\mu<\mathrm{I}$ . If
$f\in H_{p}^{1}(\mathrm{R}^{n})$ and $|\nabla f|\in L_{d}^{p,n-(1-\mu}$

)
$p(\mathrm{R}^{n})$ ,

then there exists a continuous function $\tilde{f}$ on $\mathrm{R}^{n}$ satisfying that $f=\tilde{f}$ almost
everywhere on $\mathrm{R}^{n}$ , and that

$x,y \in \mathbb{R}^{n},y\sup_{\# 0}\frac{|\tilde{f}(x+y)-\tilde{f}(X)|}{||y||\mu}\leq c||\nabla f||L^{1}ci^{n}-\mathrm{t}1-\mu)\leq c^{J}||\nabla f||L_{Ci^{n}}p-(1-\mu)\mathrm{p}$

’

where $C$ and $C’$ are positive constants depending only on $n_{f}p$ and $\mu$ .

However, since partial differential equations we will study are not elliptic,
Theorem $\mathrm{M}$ is not appropriate to our aim. For this reason we prove an
analogue of the Dirichlet growth theorem to stratified Lie groups. As we
will describe later, our analogue is not only a generalization of the classical
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Dirichlet growth theorem to stratified Lie groups, but also a refinement of it
even if $G$ is the Euclidean group.

In what follows, let $G$ be a stratified Lie group equipped with the following
stratification for the Lie algebera 6 of $G$ :

$6=V_{1}\oplus\cdots\oplus V_{m},$ $[V_{1}, V_{j}]=V_{j+1}$ when $1\leq j\leq m-\mathrm{I},$ $[V_{1}, V_{m}]=\{0\}$ .

Let $Q= \sum_{j=1}^{m}j\dim(V_{j})>2$ . Denote by $x\cdot y$ the multiplication of $x,y\in G$ ,
and by $x^{-1}$ the inverse element of $x\in G$ . Let $0$ be the unit of $G$ . Denote
by $\{\delta_{r}\}$ the family of dilation on $G$ associated with the stratification of $G$ ,
that is, if $x=\exp(L)\in G$ for $L–L_{1}+\cdots+L_{m}\in V_{1}\oplus\cdots\oplus V_{m}$, then
$\delta_{f}(x)=\exp(rL_{1}+r^{2}L_{2}+\cdots+r^{m}L_{m})$ . In this paper we choose once and for
all a homogeneous norm $|\cdot|$ by

$| \exp(_{j}\sum_{=1}^{m}L_{j)}|=(\sum_{j=1}^{m}||L_{j}||2m!/j)^{1}/2m!$ ,

where $||\cdot||$ is a Euclidean norm on 6 with respect to which the $V_{j}’ \mathrm{s}$ are
mutually orthogonal. Denote by $dx$ the Haar measure on $G$ . Let $d(x,y)=$

$|x\cdot y^{-1}|,$ $(x,y\in G)$ .
In the following, we fix a sub-laplacian $\mathcal{L}=-\sum^{N}j=1x^{2}j$ of $G$ , where $X_{j}’ \mathrm{s}$

are left-invariant vector fields which form a basis of $V_{1}$ . For $\mathrm{I}<p<\infty$ , we
denote by $\mathcal{L}_{p}^{\alpha}$ the $\alpha$-th power of the smallest closed extension $\mathcal{L}_{p}$ of $\mathcal{L}|C_{0}^{\infty}(c)$

in $L^{p}(G)$ . For $1<p<\infty$ and $\alpha\geq 0$ , Folland [5] defined the non-isotropic

Sobolev space $S_{\alpha}^{p}$ as the domain of $\mathcal{L}_{p}^{\alpha/2}$ equipped with the norm

$||f||_{S_{\alpha}^{\mathrm{p}}}:=||f||_{p}+||\mathcal{L}\alpha/2fp||_{p}$.

We will use also the non-isotropic H\"older semi-norm of order $\mu\in(0, \mathrm{I})$

defined by
$|f|_{\mu}:= \sup_{0x,y\in G,y\neq}\frac{|f(x\cdot y)-f(x)|}{|y|\mu}$

for continuous functions $f$ on $G$ . For details of Sobolev spaces $S_{\alpha}^{p}$ and the

semi-norm $|f|_{\mu}$ , we refer Folland [5].
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Morrey spaces $If^{\lambda}’(G)$ on $G$ are defined by

$\{f\in L_{l\alpha}^{p}(c)$ : $||f||p, \lambda=\sup(\frac{1}{r^{\lambda}}\int_{|x}\cdot y^{-1}|<fd|f(y)|p)y<\infty\}x\in G,\mathrm{r}>01/p$

$(1 \leq p<\infty, 0\leq\lambda<Q)$ .
The following theorem is an analogue of the Dirichlet growth theorem:

Theorem 2 ([1]) Suppose $1\leq p<\infty_{f}0<\mu<1$ , and $\mu<\alpha<\min\{\mu+$

$(Q/p),Q\}$ . Let $1<q<Q/\alpha$ . If
$f\in S_{\alpha}^{q}$ and $\mathcal{L}_{q}^{\alpha/2}f\in L^{p,Q-(\alpha-\mu}$

)$p(c)$ ,

then there exists a continuous function $\tilde{f}$ on $G$ satishing that $f=\tilde{f}$ almost

everywhere on $G_{f}$ and that

$|\tilde{f}|_{\mu}\leq C||\mathcal{L}^{\alpha/2}qf||_{1},Q-(\alpha-\mu)\leq C’||\mathcal{L}qf\alpha/2||p,Q-(\alpha-\mu)\mathrm{p}$
’

where $C$ and $C’$ are positive constants depending only on $G_{\mathrm{Z}}p,$
$\mu$ and $\alpha$ .

As a consequence of Theorem 2 we have a version of Theorem $\mathrm{M}$ to the

group $G$ : As usual, a multi-index $I=$ $(i_{1}, \cdots , i_{k})$ is a $k$-tuple with $k$ arbitrary

and $1\leq i_{j}\leq N$ for $j=1,$ $\cdots$ , $k$ , and we set $|I|=k$ . Then we define $X_{I}$ to

be $X_{i_{1}}X_{i_{2}}\cdots X_{i_{k}}$ .

Corollary 3 ([1]) Suppose $1<p\leq Q$ and $0<\mu<1$ . Let $k$ be an integer

with $1 \leq k<\min\{\mu+(Q/p), Q\}$ . Let $1<q<Q/k$ . If

$f\in S_{k}^{q}$ and $\sum_{|I|=k}|X_{I}f|\in L^{p,Q-(-\mu}k$

)
$\mathrm{P}(c)$ ,

then there is a continuous function $\tilde{f}$ on $G$ so that $f=\tilde{f}$ almost everywhere

on $G$, and that

$| \tilde{f}|_{\mu}\leq C\sum_{I||=k}||X_{I}f||_{p,Q-}(k-\mu)p$ ’

where $C$ is a positive constant depending only on $G_{f}L,$ $p$ and $\mu$ .
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Let us compare Theorem 2 and Corollary 3 with Thoerem $\mathrm{M}$ : In the
classical case, Morrey’s theorem show us that the H\"older seminorm of a
function $f$ is estmated $\mathrm{h}\mathrm{o}\mathrm{m}$ above by some Morrey space norm of gradient
$\nabla f$ of $f$ . However, our results assert that the non-isotropic H\"older norm of
$f$ is estimated by $X_{j}f$ for only $X_{1},$ $\cdots$ , $X_{N}\in V_{1}$ , which generate never the
tangent bundle $TG$ of $G$ except when $G$ is euclidean. $\mathrm{h}$ addition, Theorem
2 concerns with not only $\nabla f$ but ako fractional derivative $\mathcal{L}_{p}^{\alpha/2}f$ of $f$ .

4 Morrey spaces and pseudodifferential
equations on Lie groups

In this section we apply what we have obtained to pseudodifferential oper-
ators on a stratified Lie group $G$ which were introduced in Christ, Geller,
Glowacki and Polin [4]. Let us recall the definition of their pseudodifferential
operators. Denote by $S$ the usual Schwartz space on $G$ . For $f\in S,$ $t>0$ , we
write $f_{t}(x)=t^{-Q}f(\delta 1/t^{X})$ . A distribution $K\in S’$ is said to be homogenous of
degree $k$ if $K(f_{t})=t^{k}K(f)$ for all $t>0$ and $f\in S$ . Let $Rhom_{k}$ be the set of
all regular homogeneous distributions of degree $k$ on $G$ , and let $\mathrm{K}^{k}=Rh\sigma m_{k}$

when $k\not\in\{0,1,2, \cdots\}$ , and

$\mathrm{K}^{k}=\{K’+p(x)\log|x|$ : $K’\in Rhom_{k}$ ,

$p(x)$ a homogeneous polynomial of degree $k$}, when $k\in\{0,1,2, \cdots\}$ .

Definition 2 ([4]). Suppose $j\in \mathbb{C}$ and $U\subset G$ is open. Let $\mathcal{U}=\{(x, y)$ :
$x\in U,x\cdot y^{-1}\in U\}$ . We define the core class $C^{j}(U)$ to consist of the set of
$K\in D’(\mathcal{U})$ with the following properties (i) and (ii):

(i) There exist $K_{\mathrm{u}}^{m}\in \mathrm{K}^{-Q-j+m}$ depending smoothly on the parameter
$u\in U$ such that for each $N>0$ there exists $M>0$ such that

$K- \sum_{m=0}^{M}$ $Km=E_{M}\in C^{N}(\mathcal{U})$ .

7



(ii) For some finite $R\geq 0,$ $K_{u},(w)=K(u,w)$ vamishies identically for
$|w|>R$ .

Let $K\in C^{j}(U)$ . For $f\in D(U)$ , let $\mathcal{K}f(x)=f*K_{x}(x)$ , if the right-hand
side is defined. We say that $\mathcal{K}$ is a pseudodifferential operator of order $j$ on
$U$ with core $K$ , and denote $\mathcal{K}=\mathcal{O}(K),$ $K=\kappa(\mathcal{K})$ , and $\mathcal{O}C^{j}(U)=\{\mathcal{K}$ : $K\in$

$C^{j}(U)\}$ . We also wirte the relation in (i) by $\mathcal{K}\sim\sum \mathcal{K}^{m}$ .

We say that $\mathcal{K}(\sim\sum_{i}\mathcal{K}^{i})\in \mathcal{O}C^{j}(U)$ has a local right parametrix at a
point $x_{0}\in U,$ if there is an open neighborhood $W$ of $x_{0}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\theta^{\mathrm{i}\mathrm{g}}\mathrm{n}$ that for
every open set $W_{1}\subset\subset W$ , there exist an operator $P_{1}\in \mathcal{O}C^{-j}(W)$ and a
smoothing map $S:\mathcal{E}^{J}(W)arrow C^{\infty}(W)$ such that

$PP_{1}h=h+Sh$ on $\mathrm{W}$ ,

for $h\in \mathcal{E}’(W_{1})$ .
The following Morrey-H\"older estimates of pseudodifferential equations are

proved by using Theorem 2 and Corollary 3:

Theorem 4 ([1]) Let $k$ be a positive even number with $k<Q$ and $\mathcal{P}\in$

$\mathcal{O}C^{k}(G)$ . Suppose $P$ is hypoelliptic, and has a focal right parametrix at a
point $x_{0}\in G$ . Then $x_{0}$ has an open neighborhood $W\subset G$ as follows: Suppose
$\alpha_{f}p$ and $\lambda$ are positive numbers with $0<\alpha<k_{f}1<p\leq Q/(k-\alpha)$ and
$Q-p(k- \alpha)<\lambda<\min\{Q-p(k-\alpha)+p, Q\}$ . Let $f,$ $g\in D’(W)$ , and assume
that $\mathcal{P}f$ is defined and

$Pf=g$ on $W$.

(1) If $g\in L^{p,\lambda}(W, \iota_{\mathit{0}}C)$ , then for every $\varphi\in D(W)_{i}$

$|\mathcal{L}_{p}\alpha/2(\varphi f)|k-((Q-\lambda)/’p)-\alpha<\infty$ .

(Note that $0<k-((Q-\lambda)/p)-\alpha<1.$)

(2) If in addition to the above hypotheses, $\alpha$ is an integer, then

$\sum_{|I|\leq\alpha}x_{I}f\in\Gamma_{k(}-(Q-\lambda)/p)-\alpha(W, l_{oc})$
.
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There are some sufficient conditions on pseudodifferential operators to be
hypoelliptic and to have right parametrix. For them, we refer the reader to
[4], and also to [17] when $G$ is the Heisenberg group.

Using these results, in particular Theorem 2, Corollary 3 and Theorem
4, we can prove Theorem 1. We also use Morrey space boundedness of non-
isotropic singular integrals which was proved in [1] or in [3].

Since $L^{q}(c)\underline{\subset}Lp,Q(1-(p/q))(c)$ for $1<p<q<\infty$ , Theorem 10 yields the
following corollary which is an extension, to non-elliptic case, of the regularity

result for second order elliptic equations of $L^{p}$ data $(p>n)$ :

Corollary 5 ([1]) Let $k,$ $P,$ $x_{0}$ be as in Theorem 4. Then there exists an
open neighborhood $W\in G$ of $x_{0}$ as follows: Suppose $\alpha$ is an integer with
$0<\alpha<k$ , and $p$ a real number with $Q/(k-\alpha)<p<Q/(k-\alpha-1)$ where

we can regard $Q/0$ as $\infty$ . Let $f,$ $g\in D’(W)$ , and assume that $Pf$ is defined
and $Pf=g$ on W. If $g\in L^{p}(W, \iota_{\mathit{0}}C)$ , then $\sum_{|I|\leq\alpha}\mathrm{x}_{I}f\in\Gamma_{\ell}(W,$ $\iota_{oC)}’$ where
$P–k-(Q/p)-\alpha$ .

These results extend Theorems Cl and C2, the classical theorems on regu-

larity of the Laplace equation, to certain hypoelliptic, higher order equations
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