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Let $\mathrm{F}(\mathbb{C}^{3})$ denote the space of flags in $\mathbb{C}^{3}$ :

$\{(L, P)$

where
$\mathrm{a}\mathrm{n}\mathrm{d}LP\mathrm{i}_{\mathrm{S}\mathrm{a}}L\mathrm{i}_{\mathrm{S}\mathrm{a}}1-\subset P2- \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{a}1\mathrm{l}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}_{0}\mathrm{n}\mathrm{a}11\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{u}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{S}\mathrm{u}\mathrm{b}_{\mathrm{S}}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{b}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{o}\mathrm{f}\mathbb{C}\mathbb{C}^{3}3,,$

$\}$ .

Equip $\mathbb{C}^{3}$ with its standard inner product and define $\tau$ : $\mathrm{F}(\mathbb{C}^{3})arrow \mathbb{C}\mathrm{P}_{2}$ by

$(L, P)-L^{\perp}\cap P$ , the orthogonal complement of $\mathrm{L}$ in P.

Though $\mathrm{F}(\mathbb{C}^{3})$ and $\mathbb{C}\mathrm{P}_{2}$ are complex manifolds and the fibres of $\tau$ in $\mathrm{F}(\mathbb{C}^{3})$

are complex submanifolds, $\tau$ itself is not holomorphic. In fact, $\mathrm{F}(\mathbb{C}^{3})$ is
the twistor space of $\mathbb{C}\mathrm{P}_{2}$ (as described, for example, in [2]). The Penrose
transform interprets analytic cohomology on $\mathrm{F}(\mathbb{C}^{3})$ in terms of differential
equations on $\mathbb{C}\mathrm{P}_{2}$ . The aim of this lecture is to explain this transform and
how it may be used to derive results concerning the integral geometry of
geodesics in $\mathbb{C}\mathrm{P}_{2}$ with respect to the Fubini-Study metric. This isjoint work
with Toby Bailey at the University of Edinburgh.

A Penrose transform may be constructed in the following circumstances.
Suppose $Z$ is a complex manifold, $X$ is a smooth manifold, and $\tau$ : $Zarrow X$

is a smooth mapping of maximal rank with compact complex fibres. (In
fact, $Z$ need only had a formally integrable or involutive structure, namely a
complex subbundle $T^{0,1}$ of its complexified tangent bundle, closed under Lie
bracket. Again the fibres of $\tau$ would be required to be compact and we would
insist that $T^{0,1}$ restrict to a complex structure in the usual sense on each
of these fibres.) Roughly speaking, the construction is as follows. Suppose
$V$ is a holomorphic vector bundle on $Z$ , and $\omega\in H^{r}(Z, \mathcal{O}(V))$ . Then we
may restrict may consider $\omega|_{\tau^{-1}(x}$) as an element of the finite-dimensional
vector space $H^{r}(\tau^{-1}(x), \mathcal{O}(V|_{\tau}-1(x)))$ . As $x\in X$ varies, these vector spaces
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typically define a smooth vector bundle $\tau_{*}V$ on $X$ and $\omega|_{\tau^{-1}(x}$) is then a
smooth section of this bundle. This would be the Penrose transform $P\omega$

of $\omega$ . Usually, $P\omega$ is subject to certain differential equations as a result
of arising in this way. The machinery for identifying these equations is as
follows.

Let $\Lambda^{0,1}$ denote the vector bundle of $(0,1)$-forms on $Z$ and $\Lambda_{\tau}^{0,1}$ the $(\mathrm{o}, 1)-$

forms along the fibres of $\tau$ . The short exact sequence of vector bundles

$0arrow B^{1}arrow\Lambda^{0,1}arrow\Lambda_{\tau}^{0,1}arrow 0$

defines $B^{1}$ . It induces a filtration of the Dolbeault complex $\Lambda^{0}$ , which the
$\overline{\partial}$-operator respects. In particular, there is a differential operator

$\overline{\partial}_{\tau}$ : $B^{1}arrow\Lambda_{\tau}^{0,1}\otimes B1$

which endows $B^{1}$ with a Dartiallv $\underline{\mathrm{h}_{0}1_{0}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{C}}$ structure–it is a holomor-
phic vector bundle along each fibres of $\tau$ . The exterior powers $B^{p}$ of $B^{1}$ are
also partially holomorphic and the spectral sequence of this filtered complex
reads

$E_{1}^{p,q}=\Gamma(X, \tau^{q}B^{p}*)\Rightarrow H^{p+q}(Z, \mathcal{O})$ .

If we suppose that the dimension of the Dolbeault cohomology along the
fibres of $\tau$

$\frac{\mathrm{k}\mathrm{e}\mathrm{r}\overline{\partial}_{\tau}.\cdot\cdot\Gamma(_{\mathcal{T}}-1(_{X),\Lambda_{\mathcal{T}}}0_{q_{\otimes}}B^{p})arrow\Gamma(\mathcal{T}-1(X),\Lambda 0_{q}+1\otimes Bp)\tau’}{\mathrm{i}\mathrm{m}\overline{\partial}_{\tau}.\Gamma(\tau-1(x),\Lambda_{\tau’}0,q-1\otimes Bp)arrow\Gamma(\tau-1(_{X),\otimes}\Lambda^{0,q}\mathcal{T}B^{p})}$

is independent of $x\in X$ , then $\tau_{*}^{q}B^{p}$ is simply the smooth vector bundle on
$X$ with these spaces as fibres. As a minor variation on this theme, if $V$ is
a holomorphic vector bundle on $Z$ , then the bundles $B^{p}\otimes V$ are partially
holomorphic and there is a spectral sequence

$E_{1}^{p,q}=\Gamma(X, \tau_{*}^{q}(B^{p}\otimes V))\Rightarrow H^{p+q}(Z, \mathcal{O}(V))$ .

The fibres of $\tau$ : $\mathrm{F}(\mathbb{C}^{3})arrow \mathbb{C}\mathrm{P}_{2}$ are easily identified. Over $x\in \mathbb{C}\mathrm{P}_{2}$ , the
fibre is

as in the following diagram.
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Either as $\mathrm{P}(x^{\perp})$ or $\mathrm{P}(\mathbb{C}^{3}/x)$ , this is just $\mathbb{C}\mathrm{P}_{1}$ whose cohomology is easily
computed. In fact, the fibration $\tau$ : $\mathrm{F}(\mathbb{C}^{3})arrow \mathbb{C}\mathrm{P}_{2}$ is homogeneous under
the obvious action of $\mathrm{U}(3)$ and all the bundles we will be concerned with
are homogeneous under this action. This reduces the computation of these
cohomologies to an elementary exercise in representation theory (applying
the $\mathrm{B}\mathrm{o}\mathrm{t}\mathrm{t}-\mathrm{B}_{0}\mathrm{r}\mathrm{e}1_{-}\mathrm{w}\mathrm{e}\mathrm{i}1$ theorem).

It would take us too far astray to describe the general computations.
Instead, there follow some typical results, suppressing all details of their
derivation. If $V$ is taken to be the canonical bundle $\Omega^{3}$ on $\mathrm{F}(\mathbb{C}^{3})$ , then the
$E_{1}$-level of spectral sequence reads

$1$

$\Gamma(\mathbb{C}\mathrm{P}_{2}, \Lambda_{\perp}^{1,1})arrow\Gamma(\mathbb{C}\mathrm{p}_{2}, \Lambda^{3})arrow\Gamma(\mathbb{C}\mathrm{P}_{2}, \Lambda 4)$ $0$

$1$

$0$ $0$ $0$ 0–

where $\Lambda^{p}$ is the bundle of complex-valued p–forms and $\Lambda_{\perp}^{1,1}$ the $(1,1)$-forms
orthogonal to the K\"ahler form. Exterior differentiation provides the differ-
entials of this spectral sequence. These computations hold over any open
subset $X$ of $\mathbb{C}\mathrm{P}_{2}$ and, in particular, the Penrose transform gives an isomor-
phism

$P$ : $H^{1}( \tau-1(X), \Omega 3)\frac{\simeq\backslash }{r}\{\omega\in\Gamma(X, \Lambda^{1}’ 1)\perp \mathrm{s}.\mathrm{t}. d\omega=0\}$.
This follows our earlier rough description with the transform itself obtained
simply by restriction to the fibres $\tau^{-1}(X)$ as $x\in X$ varies. Though the
global isomorphism

$P$ : $H^{1}( \mathrm{F}(\mathbb{C}^{3}), \Omega^{3})\frac{\simeq\backslash }{\prime}\{\omega\in\Gamma(\mathbb{C}\mathrm{P}_{2}, \Lambda^{1}’)\perp 1\mathrm{s}.\mathrm{t}. d\omega=0\}$

is valid, both sides vanish, the left hand side by the $\mathrm{B}_{\mathrm{o}\mathrm{t}\mathrm{t}}-\mathrm{B}_{0}\mathrm{r}\mathrm{e}1_{-}\mathrm{w}\mathrm{e}\mathrm{i}1$ theorem
and the right hand side by Hodge theory.
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If $V$ is the trivial bundle, the Penrose transform is not simply obtained by
restriction to the fibres (since, $H^{1}(\mathbb{C}\mathrm{P}_{1},$ $\mathcal{O})--0$). Nevertheless, the spectral
sequence is still valid. It reads

$1$

$0$ $0$ $0$ $0$

$1$

$\Gamma(\mathbb{C}\mathrm{P}_{2}, \Lambda^{0})-\mathrm{r}(\mathbb{C}\mathrm{P}2, \Lambda^{1})-\Gamma(\mathbb{C}\mathrm{p}_{2}, \Lambda’)1\perp-01-$

The resulting isomorphism

$P$ : $H^{1}( \mathrm{F}(\mathbb{C}^{3}), \mathcal{O})\frac{\simeq}{\prime}.\frac{\mathrm{k}\mathrm{e}\mathrm{r}d_{\perp}^{1,1}.\cdot \mathrm{r}(\mathbb{C}\mathrm{p}_{2}\Lambda^{1})arrow\Gamma(\mathbb{C}\mathrm{p}_{2}\Lambda^{1}’)\perp 1}{\mathrm{i}\mathrm{m}d.\Gamma(\mathbb{C}\mathrm{p}_{2}\Lambda^{0})arrow\Gamma(\mathbb{C}\mathrm{P}_{2},\Lambda 1)},$

”

is, again, simply a confirmation that both sides vanish. (A non-linear ver-
sion of this isomorphism was used by Buchdahl [2] to classify the instantons
on $\mathbb{C}\mathrm{P}_{2}.$ )

A less trivial example is obtained by taking $V$ to be $\Theta$ , the holomorphic
tangent bundle. In this case, the spectral sequence, after some preliminary
cancellation, reads

$1$

$0$ $0$ $0$ $0$

$1$

$\Gamma(\mathbb{C}\mathrm{p}_{2}, \Lambda^{1})-\mathrm{r}(\mathbb{C}\mathrm{p}_{2}, _{\circ}^{2}\Lambda 1)-\Gamma(\mathbb{C}\mathrm{P}_{2}, \mathrm{f}\mathrm{f}\mathrm{l}^{2,2}\circ\perp\Lambda^{1})-0-$

which needs some further explanation as follows. The bundle $_{0}^{2}\Lambda^{1}$ is
the symmetric trace-free two-tensors and $\Lambda^{1}$ is the bundle of tensors with
Riemann symmetries, $\mathrm{f}\mathrm{f}\mathrm{l}_{\mathrm{O}}\Lambda^{1}$ the totally trace-free subbundle, $\mathrm{f}\mathrm{f}\mathrm{l}_{\mathrm{O}}^{2,2}\Lambda^{1}$ those of
type $(2, 2)$ , and, finally, $\mathrm{f}\mathrm{f}\mathrm{l}_{0\perp}^{2,2}\Lambda^{1}$ the (irreducible five-dimensional) subbundle
orthogonal to the K\"ahler form. The differentials are

$\omega_{a}-\mathrm{t}\mathrm{h}\mathrm{e}$ trace-free symmetric part of $\nabla_{a}\omega_{b}$

and
$\theta_{ab}\mapsto \mathrm{t}\mathrm{h}\mathrm{e}$ $2,2\circ\perp$ part of $\nabla_{a}\nabla_{b}\theta_{Cd}$

where $\nabla_{a}$ is the Levi-Civita connection for the Fubini-Study metric. Though
$\mathrm{O}-\mathrm{i}\mathrm{s}$ not an irreducible homogeneous bundle on $\mathrm{F}(\mathbb{C}^{3})$ , the $\mathrm{B}\mathrm{o}\mathrm{t}\mathrm{t}- \mathrm{B}\mathrm{o}\mathrm{r}\mathrm{e}1_{-}\mathrm{w}\mathrm{e}\mathrm{i}1$

theorem applies to its irreducible subquotients and $H^{1}(\mathrm{F}(\mathbb{C}^{3}), \mathrm{O}-)$ is easily
shown to vanish. We have proved the following:
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Theorem 1 Suppose $\theta_{ab}$ is a smooth symmetric two-tensor on $\mathbb{C}\mathrm{P}_{2}$ whose
$\mathrm{f}\mathrm{f}\mathrm{l}_{0\perp}^{2,2}$ part of $\nabla_{a}\nabla_{b}\theta_{cd}$ vanishes. $Then_{f}$ there is a smooth one-form $\omega_{a}$ on $\mathbb{C}\mathrm{P}_{2}$

such that
$\theta_{ab}=\nabla_{(a}\omega_{b)}+\psi gab$ ,

for some smooth one-form $\omega_{a}$ and function $\psi$ . The round brackets here
mean to take the symmetric part and $g_{ab}$ denotes the Fubini-Study metric.

This is part of a series of results which have consequences in integral ge-
ometry, as follows. The $\mathrm{X}- \mathrm{r}\mathrm{a}_{\mathrm{Y}}$ transform on $\mathrm{R}\mathrm{P}_{n}$ is obtained by integrating
a smooth function over geodesics on $\mathrm{R}\mathrm{P}_{n}$ to obtain a function on the space
of geodesics. (The metric on $\mathbb{R}\mathrm{P}_{n}$ is the standard one in which all geodesics
are closed.) It is well-known that this $\mathrm{X}$-ray transform is injective. The
standard embedding $\mathrm{R}\mathrm{P}_{n}\llcorner+\mathbb{C}\mathrm{P}_{n}$ is totally geodesic and, under the action
of $\mathrm{U}(n+1)$ , a large family of totally geodesically embedded $\mathrm{R}\mathrm{P}_{n}’ \mathrm{s}$ are ob-
tained. In particular, every geodesic on $\mathbb{C}\mathrm{P}_{n}$ lies on one of these $\mathrm{R}\mathrm{P}_{n}’ \mathrm{s}$ . It
is immediate that the $\mathrm{X}$-ray transform is injective on $\mathbb{C}\mathrm{P}_{n}$ .

A smooth one-form $\theta$ on $\mathbb{R}\mathrm{P}_{n}$ has $\underline{\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}}$ enerffv if its integral over every
geodesic vanishes. Clearly, if $\theta$ is exact, then it has zero energy. In [6],
Michel proved the converse. In [4], Gasqui and Goldschmidt established
the corresponding result for $\mathbb{C}\mathrm{P}_{n}$ . They reason from $\mathrm{R}\mathrm{P}_{n}$ much as follows.
If $\theta$ is a zero-energy one-form on $\mathbb{C}\mathrm{P}_{n}$ , then it is zero-energy on each totally
geodesic $\mathrm{R}\mathrm{P}_{n}$ , therefore exact and, therefore, closed. This is a strong con-
straint on $d\theta$ , namely that its restriction to every such $\mathbb{R}\mathrm{P}_{n}$ vanish. It is a
straightforward matter of algebra to check that this constraint is precisely
that $d\theta$ be a smooth multiple of $\kappa$ , the K\"ahler form. Then

$*d \theta=d\theta\bigwedge_{\frac{\kappa\wedge\cdots\wedge\kappa}{n-2}}$
so $d*d\theta=0$

and an integration by parts

$||d \theta||^{2}=\int_{\mathrm{m}_{n}}d\theta\wedge*d\theta=\int_{\mathrm{m}_{n}}\theta\wedge d*d\theta=0$

shows that $\theta$ is closed and, hence, exact. (Instead, Gasqui and Goldschmidt
use representation theory to decompose the relevant function spaces.) It
is interesting to note that, for $\mathbb{C}\mathrm{P}_{2}$ , the Penrose transform together with
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the vanishing of $H^{1}(\mathrm{F}(\mathbb{C}^{3}), \mathcal{O})$ provides an alternative way of finishing the
argument.

In a similar way, Theorem 1 may be used in proving the infinitesimal
Blaschke rigidity of $\mathbb{C}\mathrm{P}_{2}$ . This result, due to Tsukamoto [7], says that if a
smooth symmetric two-tensor $\theta_{ab}$ on $\mathbb{C}\mathrm{P}_{2}$ has zero energy, then it is of the
form $\nabla_{(a}\omega_{b)}$ for some smooth one-form $\omega_{a}$ . (His proof is involves a detailed
representation theoretic analysis of the relevant function spaces.) In view
of Theorem 1, it suffices to prove that

$\mathrm{f}\mathrm{f}\mathrm{l}_{0\perp}^{2,2}(\nabla_{a}\nabla b\theta_{c}d)=0$

for then, $\theta_{ab}=\nabla_{(a}\omega_{b)}+\psi g_{ab}$ and taking the energy of both sides shows
that $\psi=0$ . The infinitesimal Blaschke rigidity of $\mathbb{R}\mathrm{P}_{n}$ is due to Michel [5]
(or, see [1] for a Penrose transform proof). It follows that a zero-energy $\theta_{ab}$

on $\mathbb{C}\mathrm{P}_{n}$ is subject to differential constraints when restricted to any totally
geodesic $\mathbb{R}\mathrm{P}_{2}$ . These turn out to be second order constraints, part of a
resolution due to Calabi [3] (a special case of the Bernstein-Gelfand-Gelfand
resolution). They are of the form

$\mathrm{f}\mathrm{f}\mathrm{l}(\nabla_{a}\nabla_{b}\theta_{c}d+Cgab\theta_{cd})$

for a suitable constant $C$ where $\nabla_{a}$ is the Levi-Civita connection on $\mathbb{R}\mathrm{P}_{2}$

for $g_{ab}$ , the standard metric. We may define a differential operator on
$\mathbb{C}\mathrm{P}_{2}$ by exactly the same formula but using the Fubini-Study metric and
connection. We conclude that the resulting tensor vanishes upon restriction
to any totally geodesic $\mathrm{R}\mathrm{P}_{2}$ . This places further algebraic restrictions on
a tensor which, in the first instance, has Riemann symmetries. It turns
out that the only tensors to have this property are obtained by applying
the Young symmetrizer ffl to $\kappa\otimes\lambda$ where $\kappa$ is the K\"ahler form and $\lambda$ an
arbitrary two-form. Explicitly,

$\kappa_{ab}\lambda_{Cd}\mathrm{f}\underline{\mathrm{f}\mathrm{l}}\frac{1}{2}\kappa_{ab}\lambda_{cd}+\frac{1}{2}\kappa_{Cd}\lambda_{ab}+\frac{1}{4}\kappa_{aC}\lambda bd+\frac{1}{4}\kappa_{bd}\lambda_{aC}-\frac{1}{4}\kappa bc\lambda ad-\frac{1}{4}\kappa_{ad}\lambda_{bc}$ .

This is more than enough to ensure that the $\mathrm{f}\mathrm{f}\mathrm{l}_{0\perp}^{2,2}$ piece of $\nabla_{a}\nabla b\theta_{C}d+^{c}g_{a}b\theta_{c}d$

vanishes. However, trace-removal eliminates the $Cgab\theta Cd$ term and we are
left with $\mathrm{f}\mathrm{f}\mathrm{l}_{0\perp}^{2,2}(\nabla_{a}\nabla_{b}\theta cd)=0$ , as required.

More generally, it is shown in [1] that a symmetric $(k+1)$-form $\theta$ on
$\mathrm{R}\mathrm{P}_{n}$ is the symmetrized covariant derivative of a symmetric $k$-form if and
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only if it has zero energy. The Penrose transform and the vanishing of
$H^{1}(\mathrm{F}(\mathbb{C}^{3}), ^{k}\Theta)$ then give a proof of the corresponding result for $\mathbb{C}\mathrm{P}_{2}$ . As
noted in [4] or [7], this is sufficient to obtain the result on $\mathbb{C}\mathrm{P}_{n}$ and also for
quaternionic projective spaces and the Cayley plane.

References

[1] T.N. Bailey and M.G. Eastwood, Zero-energy fields on real projective
space, Geom. Dedicata, to $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{a}\mathrm{r}\#$.

[2] N.P. Buchdahl, Instantons on $\mathrm{C}\mathrm{P}_{2}$ , Jour. Diff. Geom. 24 (1986), 19-52.

[3] E. Calabi, On compact Riemannian manifolds with constant curvature,
Differential Geometry, Proc. Symp. Pure Math., vol. III, pp. 155-180,
Amer. Math. Soc., 1961.

[4] J. Gasqui and H. Goldschmidt, Une caract\’erisation des fomes exactes
de degr\’e 1 sur les epsaces $projeCt\dot{i}fs$ , Comment. Math. Helv. 60 (1985),
46-53.

[5] R. Michel, Probl\‘emes d’analyse g\’eom\’etriques li\’es \‘a la conjecture de
Blaschke, Bull. Soc. Math. France 101 (1973), 17-69.

[6] R. Michel, Sur quelques probl\‘emes de g\’eom\’etrie globale des g\’eod\’esiques,
Bol. Soc. Bras. Mat. 9 (1978), 19-38.

[7] C. Tsukamoto Infinitesimal $Bl\alpha_{S}chke$ conjectures on projective spaces,
Ann. Scient. \’Ec. Norm. Sup. 14 (1981), 339-356.

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF ADELAIDE
SOUTH AUSTRALIA 5005

$\mathrm{E}$-mail: meastwoo@spam.maths.adelaide.edu.au

$\#\mathrm{A}\mathrm{V}\mathrm{a}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ by anonymous ftp from spam.maths.adelaide.$\mathrm{e}\mathrm{d}\mathrm{u}.\mathrm{a}\mathrm{u}/\mathrm{p}\mathrm{u}\mathrm{r}\mathrm{e}/\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{t}_{\mathrm{W}\mathrm{O}\mathrm{o}\mathrm{d}}/$

28


