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We consider the Stokes equation

(1) $u_{t}-\Delta u+\nabla p=0,$ $\mathrm{d}\mathrm{i}\mathrm{v}u=0$ in $\Omega\cross(0, \infty)$ ,
$u=u_{0}$ at $t=0$ ,
$u=0$ on $\partial\Omega\cross(0, \infty)$

in a domain $\Omega$ in $\mathbb{R}^{n}(n\geq 2)$ with smooth boundary. Here $u=(u^{1}, \ldots, u^{n})$ is
unknown velocity field and $p$ is unknown pressure field. Initial data $u_{0}$ is assumed
to satisfy a compatibility condition: $\mathrm{d}\mathrm{i}\mathrm{v}u_{0}=0$ in $\Omega$ and the normal component of
$u_{0}$ equals zero on $\partial\Omega$ . This system is a typical. parabolic equation and it has several
properties resembling to the heat equation.

If $\Omega=\mathbb{R}^{n},$ $u$ is reduced to a solution of the heat equation with initial data $u_{0}$

because there is no boundary condition. For example regularity-decay estimate

(2) $||\nabla u(t)||p\leq Ct^{-1/2}||u_{0}||_{p}$ for $t>0$

holds for all 1 $\leq p\leq\infty$ with $C$ independent of $t$ and $u_{0}$ , where $||f(t)||_{p}$ $:=$

$( \int_{\Omega}|f(t, X)|^{p}d_{X)}1/p$ and $\nabla$ denotes the gradient in space variables. If $p=2$ , the
estimate (2) is still valid for any domain. Indeed, since the Stokes operator $A$ is
self-adjoint and nonnegative, the operator $A$ generates an analytic semigroup $e^{-tA}$ .
This yields

$||A^{1/2-tA}eu0||_{2}\leq Ct^{-1/2}||u0||2$ .
Since $u=e^{-tA}u_{0}$ and $||A^{1/2}u||_{2}=||\nabla u||_{2},$ (2) follows for $p=2.(\mathrm{S}\mathrm{e}\mathrm{e}$ Borchers and
Miyakawa [3] for applications.) For $1<p<\infty,$ (2) is valid for bounded domains
(Giga [7]) and for a half space (Ukai [13]). The estimate (2) is also valid for exterior
domain with $n\geq 3$ , with extra restriction $1<p<$.

$n.(\mathrm{S}\mathrm{e}\mathrm{e}$ Borchers and Miyakawa
[2], Giga and Sohr [8], Iwashita [10].)

$-$

However, there was no result for $p=1$ or $p=\infty$ where the boundary of $\Omega$ is not
empty. The main difficulty lies in the fact that the projection associated with the
Helmholtz decomposition is not bounded in $L^{1}$ type spaces, because it involves the
singular integral operator such as Riesz operators. Nevertheless, we prove (2) for
$p=1$ where $\Omega$ is a half space $\mathbb{R}_{+}^{n}=\{x=(x_{1}, \cdots, x_{n});x_{n}>0\}$ .
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Theorem 1. Let $u$ be th $\mathrm{e}$ solution of the Stokes $e\mathrm{q}$uation (1) in $\Omega=\mathbb{R}_{+}^{n}\mathrm{w}it\Lambda$

initial data $u_{0}\in L^{1}(\mathbb{R}^{n})$ , which satisfies the compatibility condition. Then th$\mathrm{e}re$ is
a constant $C$ independent of $u_{0}$ such that

(3) $||\nabla u(t)||1\leq Ct^{-1/2}||u0||_{1}$

for all $t>0$ .

This is rather surprising since we do not expect $||u(t)||_{1}\leq C||u_{0}||_{1}$ for $\Omega=\mathbb{R}_{+}^{n}$ .
Actually, the estimate (3) follows from a stronger estimate:

Theorem 2. Under the same hypothesis of the Theorem 1, there is a constant $C’$

independent of $u_{0}$ such that

(4) $||\nabla u(t)||_{\mathcal{H}^{1}(}\mathbb{R}_{+}^{n})\leq c_{t||}^{J-1/}2u0||_{1}$

for all $t>0$ .

Here
$||f||_{\mathcal{H}^{1}}( \mathbb{R}^{n})=\inf\{||\tilde{f}+||\mathcal{H}^{1}(\mathbb{R}^{n});\tilde{f}\in \mathcal{H}^{1}(\mathbb{R}^{n}),\tilde{f}|_{\mathbb{R}^{\mathfrak{n}}}+\equiv f\}$ ,

where $\mathcal{H}^{1}(\mathbb{R}^{n})$ is the Hardy space in $\mathbb{R}^{n}$ with a norm

$||f||_{\mathcal{H}^{1}}=||f^{*}||L^{1}( \mathbb{R}^{n})=||\sup_{s>0}|f*Gs|||L^{1}(\mathbb{R}^{n})$.

Here $G_{s}$ is the Gauss kernel.
To show (4), we recall the solution formula obtained by Ukai [13]. The solution is

represented by the Gauss kernel and various Riesz operators. It is known by Carpio
[4] that the solution $u=G_{t}*u_{0}$ of the heat equation with initial data $u_{0}\in L^{1}(\mathbb{R}^{n})$

$\mathrm{e}\mathrm{n}\mathrm{j}\mathrm{o}\mathrm{y}_{\mathrm{S}}$

(5) $||\nabla u(t)||_{\mathcal{H}^{1}(\mathbb{R})}n\leq C_{1}t^{-1/}|2|u0||_{1}$

If the solution of (1) were represented only by $G_{t}$ and a Riesz operator in $\mathbb{R}^{n}$ ,
(6) could yield (4) since the Riesz operator is bounded in $\mathcal{H}^{1}$ . Unfortunately, the
formula contains the Riesz operator in tangential variables $x’=(x_{1,\ldots,-1}x_{n})$ to
$\partial \mathbb{R}_{+}^{n}$ , it is not clear that such operators are bounded in $\mathcal{H}^{1}(\mathbb{R}^{n})$ . To overcome
this difficulty, we rewrite Ukai’s formula so that $\nabla u$ does not have tangential Riesz
operators with use of the operator A whose symbol equals $|\xi’|$ , where $(\xi’, \xi_{n})=\xi\in$

$\mathbb{R}^{n}$ . Because of this, we need to prove

(6) $||\Lambda u(t)||_{\mathcal{H}^{1}(\mathbb{R})}n\leq C_{2}t^{-1/2}||u0||_{1}$

in addition to (5). Although there are several extra $\mathrm{t}\mathrm{e}\mathrm{c}.\mathrm{h}\mathrm{n}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$ difficulty, because of
the formula, this is a rough idea for the proof of (4).
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