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On Estimates in Hardy Spaces
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We consider the Stokes equation
(1) ut — Au+ Vp = 0,dive = 0 in  x (0, 00),
u=uwug att =0,
u =0 on 90 x (0, c0)
in a domain € in R™(n > 2) with smooth boundary. Here v = (ul,...,u") is

unknown velocity field and p is unknown pressure field. Initial data ug is assumed
to satisfy a compatibility condition : divug = 0 in © and the normal component of
ug equals zero on 9. This system is a typical parabolic equation and it has several
properties resembling to the heat equation. »

If @ = R", u is reduced to a solution of the heat equation with initial data ug
because there is no boundary condition. For example regularity-decay estimate

(2) IVu)llp < Ct7/2lugll, for t > 0

holds for all 1 < p < oo with C independent of ¢ and ug, where || f(t )||p =

(foIf m)|pdm) /P and V denotes the gradient in space variables. If p = 2, the
estimate (2) is still valid for any domain. Indeed, since the Stokes operator A is
self-adjoint and nonnegative, the operator A generates an analytic semigroup e~*4.
This yields

1412 g ll; < CEY2ugla.

Since u = e~*ug and ||A%u|l; = | Vu|2, (2) follows for p = 2.(See Borchers and
Miyakawa [3] for applications.) For 1 < p < oo, (2) is valid for bounded domains
(Giga [7]) and for a half space (Ukai [13]). The estimate (2) is also valid for exterior
domain with n > 3, with extra restriction 1 < p < n. (See Borchers and Miyakawa
[2], Giga and Sohr [8] Iwashita [10].)

However, there was no result for p = 1 or p = co where the boundary of 2 is not
empty. The main difficulty lies in the fact that the projection associated with the
Helmholtz decomposition is not bounded in L type spaces, because it involves the
singular integral operator such as Riesz operators. Nevertheless, we prove (2) for
p = 1 where Q is a half space R} = {z = (z1,--,z,); 2, > 0}.
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Theorem 1. Let u be the solution of the Stokes equation (1) in @ = R} with
initial data ug € L'(R™), which satisfies the compatibility condition. Then there is
a constant C independent of ug such that

(3) V)l < Ct=/2uo|y

for allt > 0.

This is rather surprising since we do not expect |[u(t)||1 < Cllugl|z for @ = R7%.
Actually, the estimate (3) follows from a stronger estimate:

Theorem 2. Under the same hypothesis of the Theorem 1, there is a constant C'
independent of ug such that

(4) IVu®)llre @) < €'t uolls

for allt > 0.

Here

1/l ey = inf{]| fll7®ny; £ € HHR™), flRi = f},

where H!(R") is the Hardy space in R™ with a norm
£l = 15" Ne ey = Isup £ * Golll 2 g

Here G, is the Gauss kernel.

To show (4), we recall the solution formula obtained by Ukai [13]. The solution is
represented by the Gauss kernel and various Riesz operators. It is known by Carpio
[4] that the solution u = G * ug of the heat equation with initial data uo € L}(R"™)
enjoys

()  IVu®)llremey < CrtV3fuolly

If the solution of (1) were represented only by G; and a Riesz operator in R”,
(6) could yield (4) since the Riesz operator is bounded in H'. Unfortunately, the
formula contains the Riesz operator in tangential variables ' = (z1,...,Zn—1) to
OR?, it is not clear that such operators are bounded in H!(R"). To overcome
thls difficulty, we rewrite Ukai’s formula so that Vu does not have tangential Riesz
operators with use of the operator A whose symbol equals |¢’|, where (¢/,¢,) = ¢ €
R™. Because of this, we need to prove :

(6) IAu(®)l2a@n) < Cat ™/ |luglla

in addition to (5). Although there are several extra technical difficulty, because of
the formula, this is a rough idea for the proof of (4).
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