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Padé approximation for words generated by certain substitutions

Jun-ichi TAMURA (MR #-. EBENAEZ)

0. Introduction. Let A* be a free monoid generated by a non-empty set

A, i.e., A* is the set of finite words over A with the empty word i. We put
A*:=A*UA", where N is the set of non-negative integers, so that A" is the set
of infinite words over A. Any monbid morphism ¢:A*—A* can be extended to a map
6:A*—A* by (900192 ):=0(eo)o(p:)o(v.) -~ (p.€A), which is a so-called
substitution over A. A word ¢€A is referred to as a fixed point of ¢ if d(p)=9p.
For a finite set A={a,b,...} of symbols, any word ¢=po9.9: €AY gives rise to a
function
p(z):= =3 gaz™ """, - (1)

which is an element of K ((z7')), the field of formal Laurent series over the
field K=Q (A):=Q (a,b,...) of rational functions of finite variables a, b,
with rational coefficients, where the symbols a, b, ... are considered to be
independent variables. By (1), we identify a word ¢€A" with a formal series
p(2)EK ((z1)).

The main objective of the paper is to construct the Padé approximation,
~ which will be explained below, for the series (1) for the fixed point

G -=p e 62 (ea=tn “?€A) of the substitution ¢ over A={a,b} defined by

£E=¢
6(a):=a*b, d(b):=a, kEN\{0}, (2)

and to give some results on Hankel determinants.

The set A* becomes a complete metric space with respect to the metric
defined by |

d(&,1):=exp(-inf{n; &.#1.}) (§=Co€ibz -, n=non1n2 - -€A* ({a,7.€A)).
The set K ({(z~')) becomes a metric space induced by a non-Archimedean norm
defined by

| o1 :=exp(-no+h), no:=inf{n€N; .20} (§ 0] :=0)

for



p=2>2 9.z""""EK ((271)) (3)
with h€Z :={0,%1,#2,...}. Note that | 9| =exp h holds if ¢op.p.---€AN. For any
given ¢9=999,90, - €EK*(DA*), we say that (P,Q)€EK [z]? is an h-Padé pair of order
m for o if

I Qo-P | <exp(-m), Q#0, deg Q:=deg, Q<m (4)

holds for ¢=¢(z)EK ((z7')) given by (3). It is known that an h-Padé pair (P,Q)
of order m for y always exists for any h€Z, m20, ¢€K*. For h-Padé pairs (P,Q)
of order m for ¢. a rational function P/QEK (z) is uniquely determined for any
given heZ, m20, ¢€K?®*, cf. Lemma 1. The element P/QEK (z) for an h-Padé pair
(P.Q) of order m for 9eK* is referred to as the h-Padé approximant of order m
for 9. A number m€éN 1is called a normal h-index for ¢€EK* if (4) with ¢=¢(z)
given by (3) implies deg Q=m. A normal h-Padé pair, i.e., deg Q is a normal
h-index, is said to be normalized if the leading coefficient of Q equals one.
~Normal (-1)-indices (resp. (-1)-Padé pairs, (-1)-Padé approximants) will be
simply referred to as normal indices (resp. Padé pairs, Padé approximants). We
can consider the series (3) over K=Q (a,b,...) witha, b, ...€C. In such a
case, ¢ defined by (3) turns out to be not only an element of C ((z !')), but
also an analytic function on {z€C; |z|>1}, and the h-Padé approximant of order
m for ¢ pointwise converges to ¢ with respect to the usual topology on C for
each zeC, |z|>]1 as m tends to infinity.

For any word ¢=¢op:9. - €K™, and (n,m)€ZxN, we denote by H...(p) the
Hankel determinant

Ho m:=det(9ns+isi)osi. ssm-1€Z [a,b,...] (Ha o:=1),

where ¢,:=0€K (n¢-1). Hankel determinants play an important role in the theory
of Padé approximation, cf. [N-S], [K-T-ZYW]. It is a classical result that, for
any h2-1, m is a normal h-index if and only if Hu+,. .#0, cf. Lemma 2, 3.

J.-P. Allouche, J. Peyriere, Z.-X. Wen and Z.-Y. Wen considered H. .(¢) for
the Thue-Morse sequence ¢=abbabaab--- at (a,b)=(1,0), and showed that the

function H.. w(¢) (mod 2) of (n,m)EN? is 2-dimensionally automatic, cf.



[A-P-ZXW-ZYW]. In [K-T-ZYW], we considered the H.. .(¢) for the Fibonacci word 0,
which is the fixed point of the substitution (2) with k=1, and gave explicit
formulae for H.. .(9). Moreover, we gave a general formula'

Huer.w(p)=(-1)t"72 T =~ P(z) (s€C*, heZ), (5)
where (P,Q) is a normalized h-Padé pair of degree m for ¢, IxI dénotés the
largest integer not exceeding a real number x, and zec;;¥;)—o indicates a
product taken over all the roots z€C of Q with their multiplicity. Wé

determined all the Padé approximants for the function (1) for the Fibonacci word

9 at (a,b)=(1,0) and (0,1).

Remark 1. "'We gave the proof of the formula (5) only for h=-1 in
[K-T-W]. The formula with h€Z is reduced to the case h=-1, cf. Remark 2 in

Section 1.

We shall give all the Padé approximants'for the function (1) for the fixed
point ¢=¢ ) of the substitution (2), and some results on Hankel determinants
for ¢ together with their variants. Such results come from a continued fraction
expansion introduced in Section 1. Since the continued fraction of the series
t(z)=¢(z:a,b;k):=(¢ ) (z) in the case k22 is not valid for k=1, we give the
continued fraction of the ¢(z) in two sections: Section 2 (k=1), Section 3
(k22). cf. Theorems 1-6 in Section 2 and Theorems 7-10 in Section 3. In Sections
4-5, a and b are always considered to be complex numbers. We give some theorems
related to the distribution of the zeros of the polynomials Q(z)€C [z], the
denominators of Padé approximants for ¢(z) with normal indices, in Section 4,
cf. Theorems 11- 13. In Section 5, we give some results related to the uniform
convergence of the Padé approximants of the ¢(z) as a complex function, cf.
Theorems 14-15. We also give somé results on certain variants of Hankel
determinants for ¢ in Section 6, cf. Theorems 16-17. We give some conjectures in

Section 7. We are intending to give no proofs for any Theorems and Lemmas here;



the proofs for Theorems 1-17 will be given in a forthcoming paper [T2].

1. Basic Lemmas. We introduce a continued fraction expansion for

pEK ((z7!)), cf. [N-S], [K-T-ZYW]. As far as we are concerned only with the Padé

approximation and the continued fraction, we can take any field K. For any

finite or infinite sequence an.(z)eEK ((z7')) (mn=0,1,2,...), we use the notation:
1
[ao;a:,az2,..., an]:=aot " EK ((z7'))U {m} (n20),
a;t+
a,+
1
+

an

where we mean by ¢/0 (resp. f+w, f/w) the element @ (resp. ®, 0) in the set
Kz '))U{w} for oCK ((z7'))*:=K ((z7'))\{0}, BCK ((z™')). An infinite
continued fraction is defined by

[ao;al,az,...]:=%;g [ao;a:,a2,...,a.] (8)
provided that the limit exists in K ((z7')), where the limit is taken with
respect to the metric induced by the non-Archimedean norm in K ((z7!)). We
define p., q.€K ((z"')) by

pP-1=1, po=ao; q-:=0, qo=1,

(7)
Pa=8nPn-1+Pn-2] Gn=@ndn-1%dn-2 (n21)
Then
pPn/dn=[a0;a1,3z,...,3.]€EK ((z7 1)) U {w} (n20)
holds. Note that (7) implies |
| Po-19n"Pada-1=(-1)", (8)

so that (p.,q.)#(0,0). The polynomial part [¢] of ¢ is defined to be a

polynomial
[pl:= = 9.z "*"eK [2]

0O<nsh

.for ¢ given by (3). We put <¢>:=9¢-[9], the fractional part of 9. We define a map

T:K((z7'))—=K ((z7'))U{o} by T(¢):=1/<e>. For any 9¢€K ((z"')), we éan define



the continued fraction expansion by the following algoritm:
an=aa.(9):=[T"(¢)] (n20), (9)
where we mean by T" the n-fold iteration of the map T, T° is the identity map on
K((z')). If T"(¢)#o for all 0¢n¢N and T"*'(p)=» for some N20, then the
algorithm terminates at n=N. The algorithm terminates if and only if ¢€K (z). If
the algorithm terminates at n=N, then ¢=[a,;a:,a.,...,ax]. In general, the
conlinued fraction (6) converges to an element in K ((z7')) if
a.€K [z] (n20), deg a.21 (n21). (10)
Using this fact together with (7), (8), one can see that if the algorithm does
not terminate, then the continued fraction (8) converges to ¢, i.e.,
p=[ao;a1,2.,...1, 9EK ((z7'))\K (2)
as far as a. (n20) are given by the continued fraction expansion algorithm (9).
We say a continued fraction is admissible if the continued fraction is obtained

by applying the algorithm for an element pEK ((z71)).

Lemma 1. (1) For any (h,m)€ZxN, an h-Padé pair (P,Q) of order m
exists for any ¢€K*; for each (h,m)€EZ XN, P/Q=(P/Q)(z;m;9;h)EK (z) is uniquely

determined for such h-Padé pairs (P,Q).

We denote by A.(¢) the set of all normal h-indices for peK*. We put

Ap):=A-1(p)

Lemma 2. The set IT of all h-Padé approximants P/Q for ¢€K* coincides
with the set of all convergents p./d. (n20) of the continued fraction expansion
[a0;a:,82,a3,...) of 9(z)EK ((z7')) given by (3). The set Il is an infinite set
if and only if ¢(z)€K ((z7'))\K (z), and the set Ax(p) coincides with the set
{deg d.; NEN}={ = deg an; nEN} for any heZ.

<m<n

Lemma 3. Husr. m(9)#0 if and only if mEAw(p) for all heZ.



For the proofs of Lemmas 1-3, see [N-S], [K-T-W].

Remark 2. The proofs of Lemmas 1, 3 are given only for h=-1 in [N-S],
[K-T-W]; the lemmas can be easily reduced to those in the Case'h=—1 by using
that (P+Q:-[¢],Q) is an h-Padé pair for ¢ if and only if (P,Q) is a (-1)-Padé

pair for <ed.

Lemma 4. A finite or infinite continued fraction [as;a:,az,...] is
admissible if and only if (10) holds. If there exist sequences {é.}n.z:

(E.€K((z7'))), and {an}nzo (2.€K [2]) satisfying (10) such that

9=[ao;a1,a2,...,a.%¢é.], | &1 <1
holds for all n2t for an integer t20, then the continued fraction [ao:a:,az,...]
converges to ¢.
Lemma 5. Let M be a matrix of size mxm with entries consisting of two

variables a, b. Then
det M=(a-b)"~'(patgb)€Z [a,b],
where‘p, q are integers defined by

p=det M | (a.br=¢1.0), g=det M | (a.s)=co0. 1)

In Sections 2, 3, K=Q (a,b) is the field of rational functions with two
independent variables a, b unless otherwise mentioned. In what follows,
e(z)=¢(z:a,b)=e(z;a,b;k) denotes an element of K ((z™')) given by (1) with
t=tot1tz - in place of 9=909.92 -, where t¢=¢ ‘“=¢ot 1tz - (tn=tn “’€{a,b}) is
the unique fixed point of the substitution ¢ defined by (2) with k21. In
Sections 4, 5, a, b are cosidered to be complex numbers, so that e(z)E()((Z*‘)),
which becomes an analytic function on {z€C; |z|>1}.

We denote by {fu}ez-2={Ffa* }uz-z, and {Ea)nz-2={8» *}as-2 the linear

recurrence sequences with f(x):=x?-kx-1 as their common.characteristic



polynomial satisfying v
fo.=1-k, f-.:=1; 8-271, g_1:¥0.
We put
"ha:=gaatgae-1b.
By |wl. we denote the length of a finite word w, by wlx the number of
occurrences of a sybol x appearing in a finte word w. Note that
famlen(@)], ho=lo"(a)la-atlo" (@)l b, fa=gatBa-r (n20)
in particular, if k=1, 8.=fn-1, ha=fu-iatf.-2b (n20).
In [T1]. the auther gave the Jacobi-Perron-Parusnikov expansion for a
vector consisting of Laurent series with coefficients given by a fixed point of
certain substitutions, which contains the following identity (11) as its special

case:

Lemma 6. The equality
(z-1)e(z:1,0:k)=[0:b_2,b_y,bo.bi.ba. ... JEQ ((z71)) (11)

holds for any k21, where

bnzizf"m%:_lsz““ (n2-1), b-z:=1, (12)
and f.=f, < :=]¢"(a)| becomes a polynomial in k of the form:

fou= = (“+"'C2ik2i+n+iC2i+1k2i+1),

0Lisn

f2n+l:0<zi‘zn(n+iC2ikZi+n+i+|C2i+[k2i+1).

Remark 3. The continued fraction (11) is not an admissible one in
Q ((z"')) in the sense of the algorithm of the continued fraction expansion
given by (9), while (11) with z€Z, 222 turns out to be admissible in R in the
sense of the algorithm of the simple continued fraction expansion for any k21.
Note that the continued fractions in the theorems in Sections 2, 3, 6 are

admissible in K ((z7')).



2. The Padeé approximation for the ¢(z;a,b:1). In this section, we

suppose k=1. We set ¢(z;a,b):=¢t(z;a,b;1). Taking k=1 in Lemma B, we have the

following
Lemma 7. '(Z—l)e(z;l,O)r[O;Zf'z,zf",zf°,zf‘,zf2,...]E(l((z“)) holds.
We use the notation
fao;ai,a.,..., ah,cm,dm]f—t::[ao:al,az,...,ah,cl,d:,c.+1,d1+z,...}.
Theorem 1. The continued fraction expansion of the t¢{(z)=¢(z:;a,b) as an
element of K ((z7')) is given by e(z)=[O;al,az,as,cm,dm]f=x with

a,=a %(az-b),
az=-(a-b) " 'h; " %?(a’h,z-a%(a?-ab-b?)),
as=-a~*(a-b)h,;%h. ' (h,z+a)),

fo-l fn-2

cn=(-1)""'a*(a-b) "'h, *hns+, 2(z " +z +eotl),

dmz(_l)m_la_4(a“b)h14hm+1_lhm+2_l(Z_l).

If (a,b)EC?, then Theorem 1 is valid under the condition
azb, hy(=fa-1 Vatf,-, (Vb)#0 for all n20. (13)
In Theorems 2-5 below, we give the continued fraction expansion for ¢(z)=
e(z;a,b)€EC ((z7')) with (a,b)EC?, which does not satisfy (13). Note that

¢(z;a,a)=[0;a " '(z-1)] (a€C*, ¢(z;0,0)=0).

Theorem 2. Let (a,b)eC? with a=0, b#0. Then e(z)=[0;a‘,az,cm,dm]:=1
with
. al=b"zz, a=-bz,
Ca=(-1)m b o 2 (2T R,

dm=(-1)""'bfa-1 'fu ' (z-1).

Theorem 3. Let (a,b)eC?, a#0, h,;=0. Then ¢(z)=t(z:a,-a)=



[O;an,az,as,cm,dm]?-l with -
a,=a"'(z+1), a,=—2 'a(z?-z-1), as;=-2a"'(z+1),
Co=(-1)"2 'afm-2 " ' fu-17"'(2-1),

dm:(—l)m—lza_lfm— i z (me+l_1+zfm+l‘2+. . +1)

Theoren 4. Let (a,b)eC?, a#0, h,=0. Then t¢(z)=¢(z;a,-2a)=
[O;al,az,as,a4,cm.dm]:—l with |
a,=a-'(z+2), a,=3"'a(z-1), as;=—3a"'(z°-z%+1), a,=—3"'a(z’+z+1),
cm=(-1)"3a" 'fu-2 " 'fn-1""'(z-1),

dp=(-1)"" 13- 1gf,_, 2 (me+z_l+zfm+z“2+' C+1).

Theorem 5. Let (a,b)eC?, a#0, hi+.=0 (t21). Then

' . . «© .
t(z)=c(Z:a,—ft"fx+1a)=[0;ax,az,aa,cl,d1,...,ct_l,dl-l.cl,el.ez,1m,Jm]m=1

with
a,=a"%(az-b),
a,=-(a-b) 'h, 2(a’h,z-a?(a?-ab-b?)),

as=—a~*(a-b)h, ?h, ! (h.z+a)),
cu=(-1)7~1at (a-b)~ 'hy ~*has o ? (21" Lzl 2e i),
do=(=1)""1a=* (a-b)h1 *hms 1 'hesz~ ' (z-1),

1= (-1)'"ta-* (a-b)hy *hesr 22t T (z-1),
ez=(—1)“‘a‘(a—b)"‘h;"‘hf+xz(zfl+2—1+zf‘+2—2+'"+1),

in=(-1)"*'a *(a-b)h, *his1 2fm-z 'fuoi 1 (z-1),

Gum (1)1 1at (amb) Ty A FFan 2 (2T g R,

In view of Theorem 1 together with Lemmas 2, 3, we get

Corollary 1. The Hankel determinant H(e¢)o.(€Z [a,b]) is not zero

*and only if med0,fo=fi-1,fi=fo1,fe, fa-l,fo,...1}.

if
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Noting that f..: and f.-. are coprime, in view of Theorems 3-5, Corollary 1

together with Lemmas 2, 3, 5, we obtain

Cbrollary 2. HO ¢ (e)=rn(1°n~1a+fn-zb)(a—b)f"_1 (n21),

’

H (¢)=Su (Fa-1a+fa_2b) (a-b) "*172 (n22),
O,fn+l_1 .

where r.#0, s.70 are integers independent of a, b.

Theorem 6. . The numerator- p. and the denominator q. of the n-th
convergent of the continued fraction expansion for ¢(z;a,b) is given by
Po=0, qo=1; p:=1, q.=a”*(az-b);
p.=—(a-b) " 'h, 2(a’h,z+a?(a%?-ab-b?)),
q.=—(a-b) 'h, ?(a’h,z?-a’z-a%);

pz“fl:akzhlzhn—v‘(Eozf“_1+ﬁlzfn—2+"'+£ )‘

an‘l:a_zhlzhn_l(Zf“_]-);

fn+1_2_'_.‘.+€ )
' fn+l_1

—hn+1(£ozf"“l+elzf"‘2+‘"+€f RIZICES

n

paa=(-1)"a? (a-b)~thy~?{h, (soz "*' T+5,2

( fn‘+1_].

gz.=(-1)"a?(a-b) " 'h, " 2{h.(z f“”_2+--

“+1)

+z

-1, .72,

Chear (20T T4, nee.

Note that the numerator of the right-hand side of p:. is divisible by z-1, so

that p..€K [z].

Corollary 3. The normalized Padé pairs (p.*,q.*)EK [2]? for ¢(z;a,b)E
K ((z~')) is given by
po*=0, qo*=1; pi*=a, q.*=z-a”'b;
p.*=az+a '(a?-ab-b?), q.*=z%?-a(atb) 'z-a(atb)™';

fn— n—
Pzn-1%=t0Z 1+81Zf 2+"'

fa

’

fa-1
-1;

Q2n—1*:Z
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fl\+l_l fn+l_2+'

pz.*={toz +£.2 Cotg

fn+[—].

—hn“lhn+1(Cton,l'*&lZf“ 2+ +£f 1)}/(2_1),

don®={zf" o lmh thas i (2011 (2-1), 22,

3. The Padé approximation for the &(z;a,b:k) with k22. In this

section, we suppose k22.

Lemma 8. Let b.€Z [z] be as in Lemma 6. Then
b,=(z~1)b.*+k (n2-1)

holds, where

b"*zbn(z:k)::zf“ = ARV (k—J)Z(J—l)f"+‘+k >, z'
0¢isfnei—l 1£j¢k-1 0¢isfa-1
Theorem 7. The continued fraction expansion of the ¢(z)=¢(z;a,b;k) as

an element of K ((z™')) is given by

a(z):[O;a"‘(z—l),(—l)m(a—b)“hmzbm_x*,(—l)m(a~b)hm"hm+1"‘(z-l)]?=o.

If (a,b)EC 2, then Theorem 7 'is valid under the condition
a#b, h,(=g.a+g.-.b)#0 for all n20. (14)
In Theorems 8-10 below, we give the continued fraction expansion for
¢(z:a,b:k)EC ((z7')) with (a,b)EC?, which does not satisfy (14). Note that

t(z:a,a:k)=[0;a ' (z-1)] (a€C™, ¢(z;0,0)=0).

Theorem 8.  Let (a,b)eEC? with a=0#b. Then

E(z):€(Z;O.b;k):[O:b“Z(zk—l),(—I)Nbgmbm*,(—1)mb“gm“gm+1*‘(z~1)]f*o

Theoren 9. Let (a.b)eC? with h,=0, t20. Then

. . LY
E(Z):ﬁ(Z;a,‘g1_1'lgla):[0;al,d;;,Cg,do,.. . ,sz,dl—z,el,ez,lm,Jm]m=o,
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where
a,=a~'(z-1),
cn=(-1)"(a-b)hn 'hm+ "' (z-1),
dn=(-1)""'(a-b)  'hm+1%bn*,
ei=(-1)'"'(a-b)hi-1"%(z-1)b( -4,
e2=(-1) "1 (a-b)~*hy -, ?b,
In=(-1)"*' "' (a-b)hi- 1 " 2gn""gns1 ' (2-1),
dn-(=1)"*"(a=b) " 'hi-1*8m+1 *bms1+1*.

Theorem 10. The numerator p. and the’denominator q.» of the n-th

convergent of the continued fraction expansion for ¢(z;a,b;k) is given by

Po=0, qo=1;
pzn+1=hn“(aozf"_1+elzf“_2+---+c ),
fn_l
q2n+l:hn»l(zf"—1);
pzn+a:(—1)“(a-b)"{hn(£ozf"”—1+slzf“”_2+~‘'”f 1),
n+1"
-hn+.(eozfﬂ“1+e,zf“”2+---+ef DV (1),

'QZn+2:('1)"(a_b)-l{hn(Zf“+l—l+an+1_2+...+1)

—hn+1(zf"'l+if“~2+~-'+1)}, n20.

Corollary 4. The normalized Padé pairs (p.*,q.*)€K [z]? for t(z;a,b;k)
€EK ((z~')) is given by

Po*=0, qo*=1;

n— fn_
p2n+1*:€to 1+€1Z 2+..,+€ )
fn“l
fa
q2n+l*:Z _l;
p2n+v2*:{€ozf"+l_1+elzf"+!~2+...+€ v
fn+1_1

R heer ozl " Tre izl R e )Y/ (2-1),

n

Qonr2*={z0 " = 1ha thesy (20" 11V /(221 n20.
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In view of Corollary 4 together with Lemmas 2, 3, we get

Corollary 5. The Hankel determinant H(e %’ )o.n(€Z [a,b]) is not zero if

and only if m€{03f0~1,f0,f1—1,f1,fz—l,fz,...}.
In view of Theorems 8, Corollary 5 together with Lemmas 2, 3, 5, we get

Corollary 6. The following formulae hold:

HO (e“")=rn(gna+gn_,b)(a—b)f“*l,

, n

fn+’1—2

H (¢ ¢ )=s,(g.at+gn-1b) (a-b) (n20),
O, fn+l~1
where r.#0, s.#0 are integers independent of a, b.
4. The distribution of the Zeros of qn*(z). As we have mentioned the

relation (5) between the h-Padé approximants with normal h-indices for geK*
with K C C and the Hankel determinants Huosr.m(9), it will be interesting to
know the distribution of the zeros of the denominators of Padé approximants with
"normal indices. In this section, we shall give resulfs on the simplicity, and
the asymptotic behavior of the zeros of the denominator q.*€C [z] of the Pade
. approximants for the function ¢(z:a,b:k) (a,beC, k2l).

First, we give the simplicity results. From Corollaries 3, 4, ‘and
Theorems 1, 7, it is clear that dz..+1*(n20) has only simple roots, if a#b, and

ha#0 (0<mén+l (k=1); 0¢mén (k22)).
Theorem 11. (case k=1) Let q.* be as in Corollary 3, and let (a,b)EC?
with

a#b, hn.#0 for all 0<min.

If b/a€C is different from any algebraic number { satisfying the equation
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f fn-—l

fn+lf"+l(fn—3§+fn—2) “—i(fn—zg_"fn—l)f":fn—l fnf“(fn—lghi—fn)fn*ly

then all the zeros of the polnomial q:.* (n22) are simple.

Note that ho#0 implies a#0, so that b/a€C is well defined in Theorem 11.
In view of Theorem 11, it is clear that if b/a is a transcendental number, then
all the roots of q.* are simple. Using that any two numbers among f.-», f.-i, fa

are coprime for all n20, we can show the folowing

Corollary 7. (case k=1) All the denominators q.€C [z] of the Padé

approximants with normal indices for ¢(z;a,0) (a€C*) have only simple roots.

Theorem 12. (case k22) Let g.* be as in Corollary 4, and let (a,b)EC?
with
a#*b, ho#h.-1, ha#0 for all 0<m¢n-1.
Suppose that b/a€C is different from any algebraic algebraic number {
satisfying the equation

fn_f )fn

fn—-lf“_l(fn—l_fn) nul(gn—l§+gn

fn )}fn_fn—l

=f, (gn_z§+gn_1)f"“{(gn-z—gn_x)ﬁ(gn«l ~Ea

Then all the zeros of the polnomial q:.* (n2l) are simple.

Corollary 8. Let (p.*,q.*) be the normalized Padé pair for ¢(z;a,b;k)
as before, and let (a,b)EC? be as in Theorem 10 with k=1, or as in Theorem 11

‘with k22. Then

po*(z)/a.*(z)= =

s Pt )
" dg.*
(Em ")
dz

holds for all n20, where {(, ‘"7 (1<{m¢G.:=deg q.*) are the roots of the polynomial
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qa. .

Secondly, we give results on the asymptotic behavior of the zeros. It is
clear that all the zeros of qz.+1* (n21) are on the unit circle for all k21. We
can show that all the zeros of q..* tend to the unit circle as n—oo under a

minor conition:

Theorem 13. Let g.* be the denominator of normalized Padé pair for
¢(z:a.b:k) as before, and let (a,b)EC? with
(case k=1) a#b, h.#0 for all n20,
(case k22) a#b, ha#h.-:, h.#0 for all n20.
Let no be an integer satisfying
a-1/4{Ihn+/ha|<a+1/4 for all n2no=no(a,b;k),
a=a(k)=(k+(k?+4)*)/2.

Then

(76C : qua*(2)=01C {z€C: (3/4-1/0)/B"¢121<(a+5/4)1 8"} (n2no)

holds for all k21.

We remark that h..:/h. converges to a(k) for ail (a,b)#(0,0), so that an

integer no exists for all k21.

5. Uniform convergence of the Padé approximants of ¢(z;a,b;k). In

this section, we consider p.*/qd.* and ¢(z;a,b;k) as analytic functions
on {z€C; |z[>1}.

We need some definitions to state a lemma. We denote by {Vi}azo, {Walazo
the sequences of words V.=V, (™' =V, ("%, Wn=Wn‘”’=Wn‘“ik’ over {0,1} defined by
the following locally catinative formulae for each m2-2, k21:

Vosz=Vas1*Vas Wosrz=Woui*Wa, n20
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with (15)

fm+l_1 k fm

Fmes Wo:=10 W =W Ko m(m2o1: W, 2 i=1)

VO::O fm-i-z—].;

, V.=:10
Noting that V. (resp. W.) is a prefix of V... (resp. W...) for all n2l, we can
set

Vn:u ﬂ “ "'ﬂ (ﬂnE{O,l}), Wn:U Vv -V (UnE{O,l}, nzl).
0 ]. 2 fn+m+l 0 1 2 fn+m+1

Noting also that pi=p; ™ “py ™K yi=p; ™ =y; (" gre defined for any i20
for each m2-2, k21, we can define infinite words uzu‘”’éu‘”'"’, y=y (M =y (m. O hy
p=lim Va=wowinz- o, v=lim Wa=vovive - €{0, 13", (16)

where the limits are taken with respect to the metric d in {0,1}*.

Remark 4. V. W become fixed points of substitutions in some cases:
VOB =¢(1,0), W2 =¢(1,1)=111---, W =¢(1,0), where t¢=¢t(a,b) is the fixed

point of the substitution (2).

Lemma 9. Let P, /Q. ™ the n-th convergent of the continued fraction
[0;bm,bm+1,bmsz,...], where b,€Z [z] is a polynomial (11) in Lemma 7, P*,(™ =

P*, ™) (z), Q*, ™ =Q*, ™ (z) the functions defined by

“fasme1tfmez “frntme1tfmse:
P*n(m) =7 rem Pn(m)y Q*H(M) =z nem " Qn (m)-

Then
p*,(m = . = piz”t, Q¥ (™= > viz™ !
0§l§fn+m+l Og—lgfn+m+l
holds for all m2-2, n20, k2l.

Note that the function Gm:6m(z):é[O;bm,bm+1,bm+z,...] is well-defined,
which is an analytic function on {z€C; |z|>1}. In addition, for any m2-2,

_Z_(fm+2—f

em:Z-(fm+2_fM+l)(1+0(l)) as IZ! tends to infinity; 0n.=

»1) (ct0(1)) as

m tends to infinity for any |[z|>1, where c=c(z) is independent of n.

Theorem 14. Let a, b be complex numbers satisfying

a#b, h.#0 for all n20.
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Let (p.*,q.*) be as in Corollary 3. Let p>1 be any fixed real number. Then the

following estimates are valid for any z€C with lzl2p:

Pza* 2¢]a-b|
¢(z;a,b, 1) - " . ,

dzn IZIZ n 1

P n+ * 2|a_bl
¢(z;a,b, 1) - A l<

q2n+l* I fn+3_].

vA
for all n2no(a,b,p), where a is the golden ratio, and no(a,b,p) is a number

independent of z.

Theorem 15. Let k22 be an integer, and let a, b be complex numbers
satisfying
a#b, h.#0 for all n20.
Let (p»*.q.*) be as in Corollary 4. Let p>1 be any fixed real number. Then the

following estimates are valid for any z€C with [z|2p:

Pzn® 20 (k) |a-b]
¢(z:a,b,k) - : - I< P ,

an IZ‘Z n 1

Pzn+1 ¥ 2a(k)|a-b]|
¢(z;a,b, 1) - et i(

qan+1" | fositfa -1

z|
for all n2no(a,b,k,p), where a=(k+(k?>+4)*)/2, and no(a,b,k,p) is a number

independent of z.
In view of Theorems 14, 15, we have the following
Remark 5. The function E(z):=¢(z"';a,b;k) (E(0):=a) is analytic on the

unit disc {z€C; |zl<l}, and its Padé approximant p.*/q.* uniformly converges to

E(z) on any compact set in the unit disc.

6. Some variants of Hankel determinants Ho. m(t).
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Theorem 16. Let b.€Z [z] be as in Lemma 6. Then we have the equality

(z-1)¢ (z:a.b:K)=[a: (-a+b) - (2425~ 14 +1). (-a+b) 1 "B 1%€K ((z-1)).

For ¢=¢0¢.¢:- - €K™, we denote by M..» (¢) the Hankel matrix
Mo m(0):=(0us+isido<i.i<m-1, (n,m)EZX(N\{0})

with ¢.:=0 (n¢-1), so that H.. .(9)=det M. .(9).

Corollary 9. - For any mz20, k21
1 Eo £ " Em-
1 ¢ ¢2 " ¢tm
det(My, w(e )Mo, m(e))= =tm(a-b)™, t.€Z,
1 Em Em+1 " " Ca2m-1

holds, and t.#0 if and only if m€{f.,-1; n20}, where t.=t(m,k) is independent of

a, b.

Let w=p ™ =poprpz--:=lim V. , v=r ™ =yoyyve---:=lim Wa  be the infinite
words (16) over {0,1} with V., W. defined by (15). Let t.(z) be a function

defined by

Tm(z)=z_(f”*z—fm*’) Loz "/ VaZ ™. (17)

n20 n20

Then 1. (z) becomes an analytic function on {z€C; |z|>l}. Since po=vo=1, we can

define rational numbers 71.‘™ (n20) by

Tw(z)= 7o ™z "1,
n20

V|

Theorem 17. Let b.€Z [z] be as in Lemma 6. Then the equality
Ym(Z):[OIbm.bm+1.bm+z,-.-]EQ ((z='))

holds for all m2-2.

Remark 6. 1-2(2)=(z-1)e(z;1,0;k), v-l(z):e(Z:O.l;k)/s(z;l;o:k) (k21).
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Corollary 10. Let 710 =1, (g, (y, ¢ ... (eQ"), n2-2. Then, for any

i2-2, Ho.wm(r"?)#0 if and only if m€{f.-fi+1: n2i+l}.

7. Problems. In view of (17) together with (15), (16), the function
T=(z) is represented by a ratio pa*(z)/va*(z) with pn*(z), va*(z)€Z [[z7']] with
bounded coefficients. In fact, the coefficients of pn*(z), vn*(z) are 0, or 1
that come from the locally catinative formulae (15). On the other hand, it seems
very likely that the sequence {ra. ‘"’ }a.z0 is unbounded both from above, and from
below for all m2-1: while, it is clear from Remark 6 that the sequence is-
bounded for m=-2. For example,

{ya " }us0=1,0,-1,0,1,1,-1,-2,0,3,1,-3,-3,3,5,-1,-8,-2,10,8,-11, .. .,

7'24(A”:_29, 731(—1):93. 734(_”:—125, 745(‘”:506, 747(~”:"796, etc.
(Conjecture i) The sequence {1 ‘™’ }n20 is unbounded from above, and from

below for all m2-1.

We have already shown that the set S. of all the roots of the denominator
qn™ of the Padé approximant for ¢ %> with a normal index N(n) “uniformly
coverges” to the unit circle as n tends to infinity, cf. Theorem 13. On the
other hand, we have difficulty to have a result related to the distribution of
the zeros of the numerators p.* of the Padé approximants with normal indices. If
N=f., then N is a normal index and the polynoﬁial

P*(z):=eoz ' +e,2N 7% + - Henoy
is one of the numerators of the Padé approximants with respect to the normalized

Padé pairs for ¢(z;a,b;k). Noting,

zZN1P¥(z )= > A
0¢nslom(a)l

. it will be interesting to investigate the distribution of the .zero points of the

polnomials
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©.(z;9)=0.(z;9;a1,...,8.):7 =,

with ¢.=9¢.(a,,...,3.) (a., ., a,€C ) for a fixed point ¢=9¢o9.9, - -€EAN of a

substitution t over A={a.,...,a.}. We put
©(z;9)=0(z;9;a1,...,8:):= = 9az”.
(Conjecture ii) Let ®.(z;9;a,,

..,as) be as above with any fixed point ¢

of any substitution t over A={a,,..., a.} having some fixed points. Let Z. be the

set defined by

Z(n)=Z(n;9;a:,...,8.):={26C; ©.(z;9;a:,...,a,)=0}
for a,, ..., a.€C. If ®(z;9:a,,...,2:.)¢C [z], then
o0 o0
M (W Z(m)) D S,
n=0 m=n

where S:={z€C; |z|=1} is the unit circle, and M denotes the closure of a set

MC C with respect to the usual topology in C.

It is clear that Conjecture ii

holds if ¢ is a periodic word. In the same

notation as in Conjecture ii, we have the following conjectures. Conjecture iii

is stronger than Conjecture ii.

(Conjecture iii) If ©=0(z;9;a,,...,a:)¢#C [z], then

o oo
(M (W Z(m)))ND = SUF,

n=0 m=n

where D:={z€C; |z|<1} is the unit disc, and F is a finite set depending on g,

and a,, ..., as. In addition F, coincides with the set of all zero points of the

function ® if ®@¢C (z).

(Conjecture iv) Let t(a;)=a,W (WEA*\{1}), lim [t"(W)|=w, and let

¢ is the fixed point prefixed by a,. If ®=
® (z;9:9,,...,2,)¢C (z), then

p:=lim (W), i.e..
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N (O 2(]1"(ai]) = SUG,

n=0 m=n
where G is a finite_set depending on ¢, and a,, ..., a.. In addition, G is not
empty if ©¢C (z).
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