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1 Introduction
Let $A=\{a_{1}, \ldots , a_{n}\}$ be a finite nonempty set of letters and let $A^{*}$ and $A^{\omega}$ denote the
sets of all finite words over $A$ and all sequences $x_{0}x_{1k}\ldots X\cdots(x_{k}\in A)$ , respectively.
Let $\lambda$ be the empty word. A substitution (over $A$) is a map $\sigma$ : $Aarrow A^{*}\backslash \{\lambda\}$ ,
which has a natural extension to $\Omega=A^{*}\cup A^{\omega}$ by concatenation: $\sigma(x_{0}x_{1}\cdots)=$

$\sigma(x_{0})\sigma(x_{1})\cdots$ . If $a_{i}$ is a prefix of $\sigma(a_{i})$ and the length of $\sigma(a_{i})$ is greater than 1,
then there is a unique $w\in\Omega$ having a prefix $a_{i}$ and being a fixed point of $\sigma$ , which
means that $\sigma(w)=w$ . Any real algebraic irrational $\theta$ can be uniquely expressed as

$\theta=\sum_{k=-m}^{\infty}\epsilon k2^{-}k$ , (1)

where $m$ is a nonnegative integer depending on $\theta$ and $\epsilon_{k}=0$ or 1. The problem we
are interested in is whether the sequence $\epsilon_{0}\epsilon_{1}\cdots\in\{0,1\}^{\omega}$ is a fixed point of any
substitution over $\{0,1\}$ or not.

Generally, for a fixed point $w=x_{0}x_{1}\cdots$ of the given substitution $\sigma$ , we define
the generating function of $w$ for $a_{i}$ by

$f_{i}(z)= \sum_{k=0}xk(w;a_{i})z^{k}\infty$ , (2)

where $\chi_{k}(w;a_{i})=1$ if $x_{k}=a_{i}$ , and otherwise $\chi_{k}(w;a_{i})=0$ , so that

$\sum_{i=1}^{n}f_{i}(_{Z})=\sum_{k=0}z=\infty k\frac{1}{1-z}$ .

It is known that $f_{i}(z)(1\leq i\leq n)$ satisfy a Mahler type functional equa-
tion if $\sigma$ is of constant length, which means that each $\sigma(a_{i})(1\leq i\leq n)$ has
the same length $\geq 2$ , and it is also known that if $\sigma$ is of nonconstant length,
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i.e., the lengths of $\sigma(a_{i})(1\leq i\leq n)$ are not equal, then we can construct
$g_{1}(z),$ $\ldots,g_{n}(z)\in Q[[z_{1}, \ldots, Zn]]$ satisfying a Mahler type functional equation and
$\mathit{9}i(\mathcal{Z}, \ldots, Z)=f_{i}(z)(1\leq i\leq n)$ . We shall give here a detailed explanation of these
facts, following Loxton [3].

First we consider the case where the substitution $\sigma$ is of constant length. Suppose
that each $\sigma(a_{i})(1\leq i\leq n)$ has the same length $d\geq 2$ . Since $\sigma(w)=w$ , we observe
that for any $k$ , the string $x_{dk}x_{d}k+1^{*}..X_{d}k+d-1$ coincides with $\sigma(a_{j})$ if $x_{k}=a_{j}$ . If $\dot{\mathrm{w}}\mathrm{e}$

set
$\psi_{ijl}=\{$

1 if $a_{i}$ is the $(l+1)- \mathrm{s}\mathrm{t}$ letter of $\sigma(a_{j})$

$0$ otherwise,
we have

$xdk+l(w;ai)=j=1 \sum^{n}\psi ijl\chi k(w;a_{j})$ .

We can now obtain a system of functional equations for the functions $f_{i}(z)(1\leq i\leq$

$n)$ , since

$\infty$ $\infty d-1$

$\sum\chi_{h}(W|ai)z^{h}=\sum\sum\chi_{dk+l}(W;a_{i})\mathcal{Z}^{dk}+l=\sum_{j=1}^{n}(\sum_{l=0}^{d-1}\psi_{ijl)}Z^{l}$ $( \sum_{k=0}^{\infty}\chi_{k}(W|a_{j})Z^{dk})$ ,
$h=0$ $k=0l=0$

that is
$f_{i}(z)=j1 \sum_{=}^{n}p_{i}j(Z)f_{j(}z^{d})$ $(1\leq i\leq n)$ , (3)

where $p_{ij}(z)=\Sigma_{l=0}^{d1}-\psi ijlz^{l}$ are polynomials.
Next we consider the case where the substitution $\sigma$ is not necessarily of constant

length. We adopt the usual vector notations: if $\mu=$ $(\mu_{1}, \ldots , \mu_{n})\in N_{0}^{n}$ with $N_{0}$

the set of nonnegative integers, we write $z^{\mu}=z_{1}^{\mu_{1}}\cdots z^{\mu}n\mathrm{n}$ and $|\mu|=\mu_{1}+\cdots+\mu_{n}$ .
Define the functions $g_{1}(z),$

$\ldots$ , $g_{n}(z)\in Q[[z_{1}, \ldots , z_{n}]]$ by

$g_{i}(z)= \sum_{\mu}\phi i\mu z^{\mu}$
$(1\leq i\leq n)$ ,

where the sum is taken over all $n$-tuples $\mu=$ $(\mu_{1}, \ldots , \mu_{n})\in N_{0}^{n},$ $\phi_{i\mu}=1$ when-
ever $x_{|\mu|}=a_{i}$ and for each $k$ there are exactly $\mu_{k}$ occurrences of $a_{k}$ in the string
$x_{01|\mu|-1}x\cdots x$ , and $\phi_{i\mu}=0$ otherwise. Then $g_{i}(z, \ldots , z)=f_{i}(z)(1\leq i\leq n)$ .

In what follows, $|u|_{a_{i}}$ denotes the number of occurrences of the letter $a_{i}$ in the
word $u\in A^{*}$ . Suppose that the term $z^{\mu}$ occurs in the series $g_{j}(z)$ . Imagine the fixed
point $w=x_{0}x_{1}\cdots$ being constructed by applying the substitution $\sigma$ successively to
$x_{0},$ $x_{1,..*}$ . When we reach $x_{|\mu|}$ , we must have examined the letter $a_{i}$ exactly $\mu_{i}$ times
and so we must have written out the word $\sigma(a_{i})$ exactly $\mu_{i}$ times. Let $t_{ik}=|\sigma(a_{i})|_{a_{k}}$ .
Then the part of the sequence constructed by the time the substitution $\sigma$ reaches
$x_{|\mu|}$ contains the letter $a_{k}$ exactly $\Sigma_{i=1}^{n}\mu_{i}t_{i}k$ times and altogether $\Sigma_{i=1}^{n}\Sigma_{k=}nt_{i}1\mu_{i}k$
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letters have been written down. The next letter to be written will be the first
letter, say $a_{l}$ , of $\sigma(a_{j})$ , so that $g_{l}(z)$ must contain the term $z^{\nu}$ with $l\text{ノ}k=\Sigma_{i=1}^{n}\mu_{i}t_{ik}$ .
If $a_{m}$ , say, is the second letter of $\sigma(a_{j})$ , then $g_{m}(z)$ contains the term $z^{\lambda}$ with
$\lambda_{k}=\nu_{k}(k\neq l))\lambda_{l}=l\text{ノ}l+1$ , and so on. We introduce the $n\cross n$ matrix $T=(t_{ik})$ .
If $z=$ $(z_{1}, \ldots , z_{n})$ is a point of $C^{n}$ with $C$ the set of complex numbers, we define a
transformation $T:C^{n}arrow C^{n}$ by

$Tz=(_{k=1} \prod^{n}\mathcal{Z}_{k}t_{1k}$ , , .. , $\prod_{k=1}^{n}z_{k^{t}}nk$). (4)

Noting that
$(Tz)\mu=Z\mu T$ ,

where the exponent $\mu T$ on the right-hand side is the usual product of the row vector
$\mu$ and the matrix $T$ , and so $z^{\nu}=(Tz)^{\mu}$ , we can expect that each $g_{i}(z)$ will be
expressible by means of $g_{i}(Tz)(1\leq j\leq n)$ . This works as in the $\mathrm{p}\mathrm{r}\mathrm{e}\dot{\mathrm{c}}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ case.
Set $\psi_{ij\kappa}=1$ if $a_{i}$ is the $(|\kappa|+1)- \mathrm{s}\mathrm{t}$ letter of $\sigma(a_{j})$ and is preceded by exactly $\kappa_{k}$

occurrences of the letter $a_{k}$ for each $k$ , and set $\psi_{ij\kappa}=0$ otherwise. Let the length
of each $\sigma(a_{j})(1\leq j\leq n)$ be not greater than $s$ . Then

$\sum_{\nu}\phi_{i\nu}z^{\nu}$
$= \sum_{\mu j}\sum^{n}\sum_{S=1|\kappa|<}\psi ii\hslash\phi_{j}\mu z\mu T+\kappa$

$= \sum_{j=1}^{n}\sum_{\mu}(\sum_{||\hslash<s}\psi ij_{\hslash}z^{\kappa})\phi i\mu^{Z^{\mu}}T$

$= \sum_{j=1}^{n}(\sum_{|\hslash|<s}\psi ij\kappa Z)\kappa(\sum_{\mu}\phi j\mu z)\mu T$ ,

that is
$g_{i}(z)= \sum_{j=1}p_{i}j(Z)gjn(\tau z)$ $(1\leq i\leq n)$ , (5)

where $p_{ij}(z)$ are certain polynomials whose coefficients are $0$ and 1. The functional
equations such as (3) and (5) are called Mahler type functional equations.

In this paper we study substitutions in two letters in connection with the dyadic
expansion of real algebraic irrationals. Hence, in what follows, we consider the
case of $n=2$ and write $a_{1}=a$ and $a_{2}=b$ for abbreviation, so that in this
case $A=\{a, b\}$ . The generating functions defined by (2) are denoted by $f_{1}(z)=$

$f_{a}(z),$ $f_{2}(z)=f_{b}(z)$ . Similarly we denote $g_{1}(z)=g_{a}(z),$ $g_{2}(z)=g_{b}(z)$ , which
satisfy $g_{a}(z_{i},z)=f_{a}(z),$ $g_{b}(z, z)=f_{b}(z)$ , and

$(_{g_{b}(_{Z)}}^{g_{a}}(z))=M(z)$ ,
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where
$M(z)=(_{r(z)}^{p(z)}$ $s(zq(_{Z),)}), p(z),$ $q(Z),$ $r(z),$ $\mathit{8}(Z)\in z[z1, \mathcal{Z}2]$ .

Further

$T=$ , (6)

where $t_{\alpha\beta}=|\sigma(\alpha)|_{\beta}(\alpha,\beta\in A)$ , and the characteristic polynomial of the matrix $T$

is defined by
$\Phi(X)=X^{2}-(t_{aa}+t_{bb})X+(t_{aa}t_{bb}-t_{ab}tba)$ .

If we proved that the value $f_{a}(2^{-1})$ or $f_{b}(2^{-1})$ of the generating function of a
nonperiodic fixed point $w$ of a substitution $\sigma$ in two letters is transcendental, we
could conclude that the sequence $\epsilon_{0}\epsilon_{1}\cdots$ appearing in the dyadic expansion (1) of
any real algebraic irrational is not a fixed point of any substitution over $\{0,1\}$ . This
has not been proved so far. In the present paper, we prove it in the case of constant
length (see Theorem 2 and Corollary below) and also in the case of nonconstant
length, however, with some exceptional cases.

THEOREM 1. Let $w$ be any fixed point of a substitution $\sigma$ in two letters and let
$f_{a}(z)$ and $f_{b}(z)$ be the generating functions of $w$ for $a$ and for $b$ , respectively. If
$t_{ab}t_{ba}\Phi(1)\Phi(\mathrm{o})\Phi(-1)\neq 0$ , then the numbers $f_{a}(l^{-1})$ and $f_{b}(l^{-1})$ are transcendental
for any integer $l\geq 2$ .

EXAMPLE (cf. Wen and Wen [8]). We consider the substitution $(\sigma(a), \sigma(b))=$

(ab, $a$ ), which is called Fibonacci substitution and has a fixed point

$w=abaababaabaababaababa\cdots$ .

Let $f_{a}(z)$ and $f_{b}(z)$ be the generating functions of $w$ for $a$ and for $b$ , respectively.
Then the numbers $f_{a}(l^{-1})$ and $f_{b}(l^{-1})$ are transcendental for any integer $l\geq 2$ .

THEOREM 2. Let $w$ be any nonperiodic fixed point of a substitution $\sigma$ in two
letters which is of constant length and let $f_{a}(z)$ and $f_{b}(z)$ be the generating func-
tions of $w$ for $a$ and for $b$ , respectively. Then the numbers $f_{a}(l^{-1})$ and $f_{b}(l^{-1})$ are
transcendental for any integer $l\geq 2$ .

COROLLARY. The dyadic expansion of any real algebraic irrational is not a fixed
point of any substitution over $\{0,1\}$ which is of constant length.

Therefore the problem which remains unsolved is to remove the condition
$t_{ab}t_{ba}\Phi(1)\Phi(0)\Phi(-1)\neq 0$ in Theorem 1, in the case of substitutions in two letters of
nonconstant length.
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2 Lemmas
Let $T=(t_{ij})$ be an $n\cross n$ matrix with nonnegative integer entries. Then the maxi-
mum $\rho$ of the absolute values of the eigenvalues of $T$ is itself an eigenvalue (cf. Gant-
macher [2] $)$ . We suppose that the matrix $T$ and an algebraic point $\alpha=(\alpha_{1}$ , ..., $\alpha_{n})$ ,
where $\alpha_{i}$ are nonzero algebraic numbers, have the following four properties:

(I) $T$ is non-singular and none of its eigenvalues is a root of unity, so that in
particular $\rho>1$ .

(II) Every entry of the matrix $T^{k}$ is $O(\rho^{k})$ as $k$ tends to infinity.

(III) If we put $T^{k}\alpha=(\alpha_{1}^{(k)}, \ldots, \alpha_{n}(k))$ , then

$\log|\alpha_{i}|(k)\leq-C\rho^{k}(1\leq i\leq n)$

for all sufficiently large $k$ , where $c$ is a positive constant.

(IV) For any nonzero power series $f(z)$ in $n$ variables with complex coefficients
which converges in some neighborhood of the origin, there are infinitely many
positive integers $k$ such that $f(T^{k}\alpha)\neq 0$ .

Let $K$ be an algebraic number field and $I_{I\mathrm{t}^{r}}$ the integer ring of $K$ . We denote by
$K[[z_{1}, \ldots , z_{n}]]$ the ring of formal power series in variables $z_{1},$ $\ldots$ , $z_{n}$ with coefficients
in $K$ . Suppose that $f(z)\in I_{1}^{\nearrow}[[z_{1}, \ldots , z_{n}]]$ converges in an $n$-polydisc $U$ around the
origin and satisfies the functional equation

$\sum a_{i}(z)mf(_{Z})^{i}$

$f(Tz)= \frac{i=0}{m}$ , (7)
$\sum_{i=0}b_{i}(\mathcal{Z})f(_{Z})^{i}$

where $1\leq m<\rho$ and $a_{i}(z),$ $b_{i}(z)$ are polynomials in $z_{1},$ $\ldots$ , $z_{n}$ with coefficients in
$I_{K}$ . We denote by $\triangle(z)$ the resultant of polynomials $\Sigma_{i=0}^{m}ai(z)u^{i}$ and $\Sigma_{i=0}^{m}bi(z)u^{i}$

in $u$ . If one of them is a constant $c(z)$ in $u$ , we set $\triangle(z)=c(z)$ . Then Mahler
proved the following:

LEMMA 1 (Mahler [4], cf. Nishioka [6]). Assume that $T$ and $\alpha$ have the prop-
erties $(\mathrm{I})-(\mathrm{I}\mathrm{v})$ and $f(z)$ satisfying (7) is transcendental over the rational function
field $IC(Z_{1}, \ldots, z_{n})$ . If $T^{k}\alpha\in U$ and $\triangle(T^{k}\alpha)\neq 0$ for any $k\geq 0$ , then $f(\alpha)$ is
transcendental.

The following lemma will be used in the proof of Lemma 3 below.
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LEMMA 2 (Masser [5]). Let $T$ be an $n\cross n$ matrix with nonnegative integer entries

for which the property (I) holds. Let $a$ be an $n$ -dimensional vector whose components
$\alpha_{1},$ $\ldots$ , $\alpha_{n}$ are nonzero algebraic numbers such that $T^{k}\alphaarrow$ $(0, \ldots , 0)$ as $ktend_{\mathit{8}}$

to infinity. Then the negation of the property (IV) is equivalent to the following:
There exist integers $i_{1},$

$\ldots,$
$i_{n}$ , not all zero, and $po\mathit{8}itiveinteger\mathit{8}a,$ $b$ such that

$(\alpha_{1}^{(k)})i_{1}\ldots(\alpha_{n}^{(k}))i_{n}=1$

for all $k=a+lb(l=0,1,2, \ldots)$ .

In what follows, let $1=(1,1)$ and $x1=(x, x)$ .

LEMMA 3. Suppose that $t_{aa}+t_{bb}>0,$ $t_{ab}t_{ba}\Phi(1)\Phi(\mathrm{o})\Phi(-1)\neq 0$ , and $t_{aa}+t_{ab}\neq$

$\mathrm{t}_{ba}+t_{bb}$ . Then the matrix $T$ defined by (6) and $l^{-1}1$ , where $l$ is an integer greater
than 1, have the properties $(\mathrm{I})-(\mathrm{I}\mathrm{v})$ .

REMARK. If a substitution $\sigma$ in two letters has a fixed point, then $t_{aa}+t_{bb}>0$ .

Proof of Lemma 3. We denote

$T==:$
for abbreviation. The eigenvalues of $T$ are

$\Lambda=(p+s+\sqrt{D})/2$ , $\lambda=(p+s-\sqrt{D})/2$ ,

where $D=(p-S)^{2}+4qr>0$ . Hence the property (II) is satisfied, since $p+s>0$ and
so $\Lambda>|\lambda|$ , and the property (I) is also satisfied, since the characteristic polynomial
of the matrix $T$ is $\Phi(X)$ and so $\Lambda,$ $\lambda\neq 0,$ $\pm 1$ .

Letting

$T^{k}=$ $(k\geq 0)$ , (8)

we see that
$T^{k}l^{-1}1=(l-x_{k}, l-y_{k})$

by (4) and that $x_{k},$ $y_{k}>0$ for any $k\geq 0$ . We can write

$x_{k}=\xi 1\Lambda^{k}+\xi_{2}\lambda k$ , $y_{k}=\eta_{1}\Lambda^{k}+\eta 2\lambda^{k}$ , (9)

where $\xi_{1},$ $\xi_{2},$
$\eta 1,$

$\eta_{2}\in Q(\sqrt{D})$ , and $\xi_{1},$ $\eta_{1}\geq 0$ since $\Lambda>|\lambda|$ . We assert that $\xi_{1},$ $\eta_{1}>0$ ,
which implies that the property (III) is satisfied. Since

$=T=$
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with (9), we have

$\xi_{1}\Lambda\Lambda^{k}+\xi 2\lambda\lambda k=(p\xi 1+q\eta 1)\Lambda k+(p\xi_{2}+q\eta_{2})\lambda k$,
$\eta_{1}\Lambda\Lambda^{k}+\eta 2\lambda\lambda k(=r\xi_{1}+s\eta_{1})\Lambda^{k}+(r\xi 2+S\eta 2)\lambda k$

for any $k\geq 0$ . Hence, by the assumption that $q,$ $r>0$ , we see that $\xi_{1}=(p\xi_{1}+$

$q\eta_{1})/\Lambda>0$ if $\eta_{1}>0$ , and that $\eta_{1}=(r\xi_{1}+s\eta_{1})/\Lambda>0$ if $\xi_{1}>0$ . Therefore, noting
that $\xi_{1}$ and $\eta_{1}$ are not both zero, we can conclude that $\xi_{1},\eta_{1}>0$ .

Finally, using Lemma 2, we prove that the property (IV) is satisfied. Assume
that there exist integers $t,$ $u$ , not both zero, and positive integers $m,$ $n$ such that

$(l^{-x_{k}})t(l-y_{k})u=l^{-(x_{k}}t+uyk)=1$

for all $k\in A:=\{m+ln|l\in N_{0}\}$ . Then $w_{k}:=tx_{k}+uy_{k}=0(k\backslash \in A)$ . Since we
can write $w_{k}=\zeta_{1}\Lambda^{k}+(_{2}\lambda^{k}$ , where $\zeta_{1},$ $\zeta_{2}\in Q(\sqrt{D})$ ,

$\zeta_{1}=-\zeta_{2}(\lambda/\Lambda)^{k}$ $(k\in A)$ .

Then the right-hand side converges to $0$ as $k\in A$ tends to infinity, but the left-hand
side is a constant. Therefore $\zeta_{1}=0$ and so $\zeta_{2}=0$ . Hence $w_{k}=0$ for all $k\geq 0$ . By
the equations $w_{0}=t+u=0$ and $w_{1}=t(p+q)+u(r+\mathit{8})=0$ , we have $p+q=r+s$ ,
which contradicts the assumption in the lemma. Therefore the property (IV) is
satisfied, and the proof of the lemma is completed.

LEMMA 4. Let $w$ be any fixed point of a substitution $\sigma$ in two letters. If
$t_{ab}t_{ba}\Phi(1)\Phi(\mathrm{o})\Phi(-1)\neq 0$ , then $w$ is nonperiodic.

Proof. We may assume that $a$ is a prefix of $w$ without loss of generality. Suppose
that $w$ is periodic. Let $\Lambda,$ $\lambda(|\Lambda|\geq|\lambda|)$ be the eigenvalues of $T$ . By the same reason as
in the proof of Lemma 3, we see that $\Lambda>|\lambda|$ . Define the frequency of $\alpha\in A=\{a, b\}$

occurring in $w=x0x_{1}\cdots X_{n}\cdots$ by

$d_{\alpha}= \lim_{narrow\infty}(|x_{01}X\cdots xn|\alpha/n)$,

so that $d_{a}+d_{b}=1$ . Then
$(d_{a}, d_{b})T=\Lambda(d_{a}, d_{b})$ , (10)

since $t_{ab}t_{b\alpha}\neq 0$ and $\Lambda>|\lambda|$ (cf. Queff\’elec [7]). By (10) and $t_{aa}+t_{bb}=\Lambda+\lambda$ , we
have

$T=\lambda$ . (11)

We can verify by induction that

$T^{n}=(_{|\sigma(b}^{|\sigma^{n}(a)|_{a}}n)|_{a}$ $|\sigma^{n}(a)|_{b}|\sigma^{n}(b)|b)$ $(n\geq 0)$ , (12)
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where $\sigma^{n}(\alpha)(\alpha\in A)$ denotes the $n$-fold iteration of $\sigma$ . Then by (11) and (12),

$\lambda^{n}=T^{n}=(_{|\sigma(}^{|\sigma^{n}(}nab)|_{a})|_{a}$ $|\sigma^{n}(a)|_{b}|\sigma^{n}(b)|_{b})$

and so
$\lambda^{n}d_{b}=|\sigma^{n}(a)|_{a}db-|\sigma^{n}(a)|_{ba}d$ $(n\geq 0)$ , (13)

where $d_{b}\neq 0$ by (10) and $t_{ab}\neq 0$ . Since $w$ is periodic, we can write $w=luu\cdots$ with
$l,$ $u\in A^{*}$ ; thereby

$|u|_{a}d_{b}-|u|_{b}d_{a}=0$ . (14)

Noting that $\sigma^{n}(a)$ is a prefix of $w$ for any $n\geq 0$ , we can write

$\sigma^{n}(a)=l_{\vee}u\cdots ur_{n}k(n)$

$(n\geq 0)$ ,

where $k(n)$ is an integer depending on $n$ and $r_{n}$ is a word over $A$ whose length is
less than that of $u$ . Therefore

$|\sigma^{n}(a)|_{\alpha}=|l|_{\alpha}+k(n)|u|_{\alpha}+|r_{n}|_{\alpha}$ $(n\geq 0)$ (15)

for $\alpha\in A$ . By (13), (14), and (15), we have

$\lambda^{n}d_{b}=(|l|_{a}+|r_{n}|_{a})d_{b}-(|l|_{b}+|r_{n}|_{b})d_{a}$ $(n\geq 0)$ ,

where the right-hand side is bounded since the length of $r_{n}$ is less than that of $u$ .
Hence $|\lambda|\leq 1$ . By (11) and (14), $\lambda$ is a rational number. Since $\lambda$ is an algebraic
integer, it is a rational integer. Hence $\lambda$ is 1, $0$ , or-l, and the proof of the lemma
is completed.

3 Proof of Theorems

Proof of Theorem 1. First we consider the case where the substitution a is of
nonconstant length, i.e., $t_{aa}+t_{ab}\neq t_{ba}+t_{bb}$ . As mentioned in Section 1, we can
construct $g_{a}(z),gb(Z)\in Q[[z]]=Q[[Z_{1}, Z_{2}]]$ satisfying $g_{a}(z, z)=f_{a}(z),$ $g_{b}(z, Z)=$

$f_{b}(z)$ , and
$(_{g_{b}(_{Z})}^{g_{a}}(_{\mathcal{Z})})=M(z)(^{g_{a}(Z}\mathit{9}b(TZ))\tau)$ , (16)

where
$M(z)=(_{r(z)}^{p(Z)}$ $s(zq(_{Z),)}), p(z),$ $q(_{Z)},$ $r(_{Z),S}(_{Z)}\in^{z[Z]}z1,2\cdot$
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Letting $h(z)=g_{a}(z)/g_{b}(z)$ , we get

$h(Z)= \frac{p(z)h(\tau_{z})+q(Z)}{r(z)h(TZ)+\mathit{8}(Z)}$

by (16), so that
$h(TZ)= \frac{-s(_{Z})h(_{Z)}+q(Z)}{r(z)h(_{Z)}-p(Z)}$ ,

which is a functional equation of the form (7).
We shall apply Lemma 1. The properties $(\mathrm{I})-(\mathrm{I}\mathrm{v})$ are satisfied by Lemma 3.

We have to check the remaining conditions in Lemma 1. We firstly verify that
the function $h(z)$ is transcendental over the field $C(Z1, Z2)$ . For this, we show that
$g_{b}(z, z)=f_{b}(z)$ is transcendental over the field $C(z)$ . Noting that the coefficients
of the power series $f_{b}(z)$ are $0$ and 1, we see by the theorem of $\grave{\mathrm{C}}$ arlson [1] that
if $f_{b}(z)$ is algebraic over $C(z)$ , then $f_{b}(z)\in C(z)$ ; thereby the sequence of its
coefficients is a linear recurrence, so that it is periodic, which contradicts Lemma 4.
Therefore $g_{b}(z, z)$ is transcendental over $C(z)$ . Since $g_{a}(z, z)+g_{b}(z, z)=1/(1$ -

$z)$ and so $h(z, z)+1=1/((1-z)gb(z, z)),$ $h(z, z)$ is transcendental over $C(z)$ .
Hence $h(z)$ is transcendental over $C(z1, Z2)$ . Secondly we verify that $h(z)$ converges
at all the $T^{k}l^{-1}1(k\geq 0)$ . We have $T^{k}l^{-1}1=(l^{-x_{k}}, l^{-y_{k}})$ , where $x_{k}$ and $y_{k}$ are
defined by (8). Since $x_{k},y_{k}>0,$ $g_{a}(z)$ and $g_{b}(z)$ converge at $T^{k}l^{-1}1$ for any $k\geq 0$ .
Hence $h(z)$ converges at all the $T^{k}l^{-1}1(k\geq 0)$ , since $g_{b}(T^{k}l^{-1}1)>0$ . Finally we
assert that the resultant $\triangle(z)$ of polynomials $-s(z)u+q(z)$ and $r(z)u-p(Z)$ in
$u$ satisfies $\triangle(T^{k}l^{-1}1)\neq 0$ for any $k\geq 0$ . Noting that $\triangle(z)$ divides $\det M(z)=$

$p(z)\mathit{8}(Z)-q(Z)r(z)$ and letting $M^{(n)}(z)=M(z)M(TZ)\cdots M(\tau n-1Z)$ , we see that
if $\Pi_{k=0}^{n-1}\triangle(T^{k}l^{-1}1)=0$ , then $\det M^{(n}$ ) $(l^{-1}1)=\Pi_{k=0}^{n-}1\det M(T^{k}l^{-1}1)=0$ . Hence it
suffices to prove that $\det M^{(n}$ ) $(l^{-1}1)\neq 0$ for any $n\geq 1$ . To the contrary we assume
that $\det M^{(n}$) $(l^{-1}1)=0$ for some $n$ . Since the entries of $M^{(n)}(z)$ are elements of
$Z[z_{1,2}z]$ , those of $M^{(n)}(l^{-1}1)$ are rational numbers. Hence there exist integers $t$ and
$u$ , not both zero, such that $(t, u)M^{(n)}(l^{-1}1)=(0,0)$ . Noting that

$=M^{(n)}(_{Z)}$ ,

we have $tg_{a}(l^{-}11)+ug_{b}(l^{-}11)=0$ , so that $th(l^{-1}1)+u=0$ . Hence $t\neq 0$ and
so $h(l^{-1}1)=-u/t$ . Since $h(z, z)+1=1/((1-z)g_{b}(Z, z)),$ $g_{b}(l^{-1}1)$ is a rational
$\mathrm{n}\mathrm{u}$.mber. Therefore the $f$-adic decimal expansion of $g_{b}(l^{-}11)$ , which is given by

$g_{b}(l^{-1}1)=f_{b}(l-1)= \sum xk\geq 0k(w;b)l-k$
,

is periodic, which contradicts Lemma 4, and the assertion is proved. Therefore it
follows from Lemma 1 that $h(l^{-1}1)$ is transcendental. Hence $f_{b}(l^{-1})=g_{b}(l^{-1}1)=$

$l/((l-1)(h(l-11)+1))$ and $f_{a}(l^{-1})=l/(l-1)-fb(l-1)$ are transcendental.
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Next we consider the case where the substitution $\sigma$ is of constant length, i.e.,
$t_{aa}+t_{ab}=t_{ba}+t_{bb}=d\geq 2$ . As mentioned in Section 1, $f_{a}(z),fb(z)$ satisfy

$=M(z)(_{fb}^{f_{a}(z^{d}}(_{\mathcal{Z}^{d}})))$ ,

where
$M(z)=(_{r(_{Z})}^{p}(z)$ $\mathit{8}(Zq(Z)))$ , $p(z),$ $q(Z),$ $r(Z),$ $s(_{Z)}\in Z[z]$ .

In this case, a matrix $T=(d)$ and a point $l^{-1}$ obviously have the properties $(\mathrm{I})-(\mathrm{I}\mathrm{v})$

and the rest of the proof is similar to that of the preceding case.

We omit the proof of Theorem 2, since it is the same as the latter case in the
proof of Theorem 1.
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