On a density of the set of primes dividing the generalized Fibonacci numbers

By

Yoshifumi KOHNO, Toru NAKAHARA and Bo Myoung OK

ABSTRACT J. C. Lagarias showed the set of prime numbers which divide some Lucas number L_n has positive density using Hasse's method [H]. In his paper he found several results for certain other special second-order linear recurrences [L], [W]. So we will research similar phenomena for slightly generalized second-order linear recurrences.

1 Introduction

In this note we will try to generalize a result of Lagalias on some second-order linear recurrences. Our method will be controlled by Hasse's one. Then we have to check whether these recurrences satisfy Hasse's conditions or not.

Now, any irreducible second-order recurrence $\{U_n\}$ whose terms U_n are rational numbers can be expressed in the form

$$U_n = \alpha \theta^n + \bar{\alpha} \bar{\theta}^n,$$

where α and θ are in the quadratic field K generated by the roots of the characteristic polynomial of $\{U_n\}$, and $\bar{\alpha}, \bar{\theta}$ are the algebraic conjugates of α, θ in K.

Hasse's conditions are as follows:

- (1) $\theta/\bar{\theta} = \pm \phi^k$, where k = 1 or 2 for some ϕ in K,
- (2) $\bar{\alpha}/\alpha = \zeta \phi^j$, where ζ is a root of unity in K and j is an integer.

We put $S_U = \{p : p \text{ is a prime and } p | U_n \text{ for some } n\}$. These particular recurrances $\{U_n\}$, which satisfy the above conditions (1) and (2), have a special property.

Definition 1 A set Σ of primes is a Chebotarev set if and only if there is some finite normal extension L of the rationals \boldsymbol{Q} such that a prime p is in Σ iff the Artin symbol $\left[\frac{L/\boldsymbol{Q}}{(p)}\right]$ is in specified conjugacy classes of the Galois group $Gal(L/\boldsymbol{Q})$.

Definition 2 Density $d(S_U)$ is defined

$$\lim_{X \to \infty} \frac{\sharp S_{U,X}}{\sharp \mathbf{P}_X} = d(S_U),$$

where $\sharp S_{U,X} = \sharp \{p; p \in S_U \ p < X\}$ and $\sharp \mathbf{P}_X = \sharp \{p; p \text{ is a prime, } p < X\} \sim \frac{X}{\log X}$.

AMS subject classification: Primary: 11B39; secondary: 11R11, 11R18.

Property 1 Both the set S of primes and its complement

$$\bar{S} = \{p: p \text{ is a prime and } p \notin S\}$$

have a decomposition into disjoint countable unions of Chebotarev sets of primes. That is

$$S = \bigcup_{j=1}^{\infty} S^{(j)}, \quad \bar{S} = \bigcup_{j=1}^{\infty} \bar{S}^{(j)},$$

where $S^{(j)}$ and $\overline{S}^{(j)}$ are Chebotarev sets. Then the densities of the sets satisfy

$$\sum_{j=1}^{\infty} d(S^{(j)}) + \sum_{j=1}^{\infty} d(\bar{S}^{(j)}) = 1.$$

If S is any set of primes having Property 1, then S has a natural density d(S) given by

$$d(S) = \sum_{j=1}^{\infty} d(S^{(j)}).$$

2 Known results

Hasse and Lagarias obtained the following prime densities for several types of sequences:

Theorem 1 (H. Hasse [H]) For the sequence $\{V_n\} = \{2^n + 1\}$, the set of primes

$$S_V = \{p: p \text{ is a prime and } p \text{ divies } 2^n + 1 \text{ for some } n \ge 0\}$$
$$= \{p \in \mathbf{P}; p | V_n \text{ for some } n\}.$$

has density $d(S_V) = \frac{17}{24}$.

Hasse's result actually covers all the sequences

$$\{A_n\} = \{a^n + 1 \mid n \ge 0\},\$$

where a is an integer ≥ 3 , and the density of the associated set $S_A = \{p \in \mathbf{P} : p | A_n \text{ for some } n\}$ is

$$d(S_A) = \frac{2}{3}.$$

Theorem 2 (J. C. Lagarias [L]) For the sequence $\{L_n\}$ $(L_{n+1} = L_n + L_{n-1}, L_1 = 2, L_2 = 1)$, the set of primes $S_L = \{p \in \mathbf{P} ; p | L_n \text{ for some } n\}$

has density $d(S_L) = \frac{2}{3}$.

Theorem 3 (J. C. Lagarias [L2]) For the sequence $\{W_n\}$ $(W_n = 5W_{n-1} - 7W_{n-2}, W_0 = 1, W_1 = 2)$, the set of primes

$$S_W = \{ p \in \mathbf{P} \ ; \ p | W_n \ for \ some \ n \}$$

has density $d(S_W) = \frac{3}{4}$.

Lagarias considered

$$\{A_n(m)\}, \{B_n(m)\} \ (m: \text{fixed})$$

where both series admit the condotion:

$$U_n = mU_{n-1} - U_{n-2}$$

with $A_0(m) = B_0(m) = 1$, $A_1(m) = m + 1$, $B_1(m) = m - 1$, to which Hasse's method is applicable. In the cases of fields $K = Q\left(\sqrt{m^2 - 4}\right)$, for the following sets of primes:

$$S_A(m) = \{ p \in \mathbf{P}; \ p | A_n(m) \text{ for some } n \}, \\ S_B(m) = \{ p \in \mathbf{P}; \ p | B_n(m) \text{ for some } n \},$$

it is known that $d(S_A(m)) = d(S_B(m)) = \frac{1}{3}$.

3 Theorem

Let

$$\{U_n\} (U_n = mU_{n-1} + U_{n-2}, U_0 = 2, U_1 = m),$$

be a second-order linear recurrence, where we assume that $D = m^2 + 4$ is a prime discriminant of $K = Q(\sqrt{D})$. Then we have

Theorem 4 For the sequence $\{U_n\}$ $(U_n = mU_{n-1} + U_{n-2}, U_0 = 2, U_1 = m)$, the set of primes

 $S_U = \{ p \in \mathbf{P} \; ; \; p | U_n \text{ for some } n \}$

has density $d(S_U) = \frac{2}{3}$.

Remark 1 In the case of m = 1, the theorem above coincides with Theorem 2. We can prove Theorem 4 by a similar way to Theorem 2.

Acknowledgements The authors would like to express their sincere thanks to Prof. Attila Pethő at Kossuth Lajos University in Debrecen for references [L].

References

- [H] H. HASSE, Über die Dichte der Primzahl p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung mod p ist, Math. Annalen 168, 1966, 19-23.
- [IKN] M. IMAMURA, M. KÔZAKI and T. NAKAHARA Circular puzzles and periodic phenomena of Fibonacci sequences modulo m (in Japanese), Rep. Fac. Sci. Engrg. Saga Univ. 22, 1994, 169–185.
- [L] J. C. LAGARIAS, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118, 1985, 449-461.
- [L2] J. C. LAGARIAS, Errata to the set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 162-2, 1994, 393-396.
- [W] M. WARD, The prime divisors of Fibonacci numbers, Pacific J. Math. 11, 1961, 379-386.

Yoshifumi Kohno Department of Engineering Systems and Technology Course of Science and Engineering Graduate School of Saga University Saga 840, JAPAN E-mail address: kono@ms.saga-u.ac.jp

Toru Nakahara Department of Mathematics Faculty of Science and Engineering Saga University Saga 840, JAPAN E-mail address: nakahara@ma.is.saga-u.ac.jp

Bo Myoung Ok Department of Engineering Systems and Technology Course of Science and Engineering Graduate School of Saga University Saga 840, JAPAN E-mail address: ok@ms.saga-u.ac.jp