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1 Introduciton.
In 1982, in a conference of MSJ, late professor T. Mitsui proposed the following
problem:

Problem 1 Let $L_{n}$ be the lattice of integral symmetric matrices of order $n$ .
Set

$F_{n}(s)= \tau\in L_{n}\sum_{T>0},traCe(\tau)^{-}s$
, $\Re(s)>\frac{n(n+1)}{2}=\nu$ .

Is it possibfe to continue $F_{n}(s)$ meromorphically to the whole s-plane?

It was pointed out by him(and is not difficult to show) that $F_{n}(s)$ can be con-
tinued to $Re(s)>\nu-1$ and holomorphic except $s=\nu$ which is a pole of order
1 with residue

$c_{\nu}=Vol\{x\in Sym_{n}(\mathrm{R});x>0, trace(x)\leq 1\}$

In this paper we report an affirmative answer for $\mathrm{n}=2$ .

2 Source of the idea.
The following two ideas are fundamental for our solution. The first that was
proposed by F. Sato in a discussion with the author about this problem is to
consider in the framework in the theory of automorphic forms on Lie groups.
That is to study

$F_{n}(x, s)= \sum_{\in\tau L_{n},\tau>0}traCe(xT_{X}\tau)^{-}s$
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as an automorphic function on $SO_{n}(\mathrm{R})\backslash SL_{n}(\mathrm{R})/SL_{n}(\mathrm{Z})$ .
The $\sec o\mathrm{n}\mathrm{d}$ is contained in an old result of Hecke. Let $K$ be a real quadratic

field. He studied the Dirichlet series

$\Phi_{K}(s)=$ $\sum$ $trace_{K}(\alpha)-s$ .
$\alpha:\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ positive $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}\in K$

and
$\Phi_{K}(x,s)=$ $\sum$ $(\alpha\epsilon^{x}+\alpha^{\prime-x}\epsilon)-s$

$\alpha:\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ positive $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}\in K$

, where $\epsilon$ denotes the totally positive fundamental unit in $K$ . Since the latter is a
periodic (automorphic on $\mathrm{R}/\mathrm{Z}!$) $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ we can apply fourier series expansion.
The resulting formula calculated by Hecke is

$\Phi_{K}(_{X,S})=\sum h(mm, s)\zeta(\lambda_{m}, S)$ ,

where $h(m, \cdot)$ is a certain ”gamma factor” and $\zeta(\lambda, s)$ is the zeta function asso-
ciated to the ”Gr\"ossencharakter’’ A. Since the each terms of the infinite series is
meromorphic and the convergence is sufficiently rapid Hecke..Was able to show
moromorphy of $\Phi_{K}(x, S)$ (hence $\Phi_{K}(s)$ also).

The similarity to our problem may be clear. However in applying Hecke’s
method we encounter the following questions:

1. What is ”fourier series” in our case?

2. What is ”zeta function with Gr\"ossencharacter’’ in our case?

Fortunatery, the above two problems were alre’ady studied extensively. The first
is Selberg-Langlands spectral theory and the second is Siegel-Maass-Shintani-
Hejhal-Sato zeta function associated to symmetric matrices. So that we can
expect the full solution of Mitsui’s problem along these theories. In fact the
author gave a solution of an analogue of Mitsui’s problem for $\mathrm{n}=2$ in which the
lattice $L_{2}$ is replaced by $L_{p,q}$ associated to the indefinete division quoternion
$Q_{p,q}([1])$ . In $\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ case almost direct combination of existing results on 1. and
2. is sufficient. But original problem treated in this paper proposes additional
difficulties concerning continuous spectrum already in the case $\mathrm{n}=2$ . For larger
$\mathrm{n}$ , though we belive the effectiveness of the above method we should resolve
much harder analytical problems in the actual implimentation.

3 Notation.
First we fix notations on automorphic spectral theory. Let $H$ denotes the upper
half plane and $\Gamma=SL_{2}(\mathrm{Z})$ are considerd to act on $H$ as an a linear fractional
transformation A measurable function $f$ on $H$ is called automorphic if $f$
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is invariant under $\Gamma$ . For automorphic sunctions $f$ and $g$ we define the inner
product

$<f,g>=I_{F}^{f}(x+iy) \overline{g(x+i.y)}\frac{dxdy}{y^{2}}$ .

where $F$ denotes a fundamental domain of $\Gamma$ . We denote $L^{2}(F)$ the Hilbert space
of functions consists of $<f,$ $f><\infty$ . Let $D=y^{2}(_{\partial x}^{\partial^{2}}=+=\partial y)\partial^{2}$ denotes the non-
Euclidean Laplacian. Smooth automorphic function $f$ such that $Df=-\lambda f$ is
called automorphic eigenfunction for eigenvalue $\lambda$ . Such functions are classified
in the following three classes:

1. Eisenstein series

$E(z, s)=c,d \sum_{()=1}\frac{y^{s}}{|_{CZ+}d|2_{S}}$ , $\Re s>1$ .

and its analytic continuation with respect to $s$ . It is easily seen that the
corresponding eigenvalue is $s(s-1)$ .

$.$.

2. Constants.

3. Maass cusp foms $\{\phi_{j}(\mathcal{Z})\}_{j}^{\infty}=1$ which forms an orthogonal bases of $L_{0}^{2}(F)=$

{ $f\in L^{2}(F);f$ vanishes at infinity in $F$}. We express the eigenvalue of $\phi_{j}$

as $\frac{1}{4}+r_{j}^{2}$ .

Next we explain the zeta functions. For a positive matrix

$T=$
we denote $z\tau=x_{T}+iy_{T}$ , where $x_{T}= \frac{b}{c}$ and $y_{T}= \frac{\sqrt{ac-b}}{c}$ . Let $\phi(z)$ be an
automorphic eigenfunction. Then we define the zeta function of $2\cross 2$ integral
matrices with $\phi$ by

$\zeta_{+}(\phi, u)=\sum_{L\Gamma\backslash +}\frac{\phi(z\tau)}{E(T)det(\tau)u}$ , $\Re u>\frac{3}{2}$

,where $L^{+}$ denotes the set of the positive elements of $L_{2}$ . The sumrnation
is taken over all the equivalence classes defined by the action $xrightarrow\gamma x\gamma^{T}$ ,
and $E(T)=|\{\gamma\in\Gamma;\gamma T\gamma^{T}=T\}|$ . The result $\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{g}\mathrm{e}1- \mathrm{M}\mathrm{a}\mathrm{a}\mathrm{S}\mathrm{S}^{-}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}$-Hejhal-
Sato$([3])\mathrm{s}\mathrm{a}\mathrm{y}\mathrm{S}$ that $\zeta_{+}(\phi, u)$ can be extended to a moremorphic function in the
$u$-plane which is holomorphic except some explicitly located poles and satisfies
certain functional equations. In the case of Eisenstein series the analyticity with
parameter $s$ is also established.
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4 Outlin.$\mathrm{e}\backslash \cdot\dot{J}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}..,\mathrm{e}$ proof.
Let $z=x+iy\in H$ . Define

$f(_{ZS},)= \sum_{aa,b,c\in \mathrm{Z},a>0C-b^{2}>0},\frac{y^{s}}{(\mathrm{c}(X^{2}+y2)-2bx+a)^{s}}$

for $\Re s>3$ . It is not difficult to show that $f(z, s)$ is bounded for these $\mathrm{s}$ and
invariant under $\Gamma$ , so that an element of $L^{2}(F)$ . Moreover we have

$F_{2}(x^{-1}, S)=f(z(xTs)x),$ .

We apply the spectral theory on $L^{2}(F)$ .

Proposition 1 For $\Re s>3$ we have

$f(z, s)$ $=$ $\sum_{j=1}^{\infty}h(r_{j}, S)(+(\phi j, \frac{s}{2})+\frac{3}{\pi}h(\frac{i}{2}, s)\zeta+(1, \frac{s}{2})$

$+$ $\frac{1}{4\pi}\int_{-\infty}^{\infty}h(r, S)\zeta_{+((\cdot,\frac{1}{2}}E+ir),$ $\frac{s}{2})E(Z, \frac{1}{2}-ir)dr$

, where
$h(r, S)= \frac{\sqrt{\pi}\Gamma(\frac{1}{2}(S-\frac{1}{2}-ir))\mathrm{r}(\frac{1}{2}(s-\frac{1}{2}+ir))}{4\Gamma(_{S)}}‘.$.

The analytic continuation of the first(discrete) term is similar to [1]. The second
term is trivial. As for the third term we must use an argument of Barnes $(\mathrm{s}\mathrm{e}\mathrm{e}$

[4] $)$ . Hence finally we have

Theorem 1 $f(z,s)$ can be continued to an meromorphic function on the whole
s-plane.

Since $f(\iota’, s)=F_{2}(s)$ we have an affiamative solution of Problem for $\mathrm{n}=2$ .
Detailed proof will appear in [2].
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