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CUBIC MODULAR EQUATIONS AND NEW
RAMANUJAN-TYPE SERIES FOR 1/x
(TALK GIVEN AT THE CONFERENCE “TOPICS IN
NUMBER THEORY AND ITS APPLICATIONS”, RIMS,
KYOTO)

HENG HUAT CHAN AND WEN-CHIN LIAW

1. INTRODUCTION

In his famous paper “Modular equations and Approximations to 7", Ra-
manujan offered 17 beautiful series for 1/7. He then remarks that two of
these series, namely,
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“belong to the theory of ¢;”. Ramanujan did not elaborate on what he meant
by “theory of g2”. Ramanujan’s so-called “theory of g2” has recently been
developed by B. C. Berndt, S. Bhargava and F. G. Garvan (see TAMS, vol.
347, (1995), 4163-4244), after the discovery of the Borweins’ cubic theta
functions and is now known as “Ramanugjan’s theory of elliptic function to
alternative base 3. _

In this talk, we will see how one can derive new series for 1/7 which belong
to the aforementioned theory. Our fastest convergent new series takes the
form
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where

a = 1028358v/3 — 593849 and b = 19101285v/3 — 795.
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For each term summed in this series, we get approximately 10 more decimal
places of accuracies for w. As a corollary, we have

. 1781547V/3 + 9255222
- 3928247 '

2. THE BORWEINS’ CUBIC SERIES

Let o .
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Further, let
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and define the cubic singular modulus o, as the unique number satisfying
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The Borweins recorded in their book “Piand the AGM” the following gen-

eral series for 1/m:

Theorem 2.1. (The Borwezns general “cubic” series for 1/m)
Set

€(n) = 8n K(an)) 2 - N (gan(l - an)%g‘r% - an) )

an 1= —5
where H,, := 4an(1 — ay). Then

Note that from this general series, we see that in order to construct series
for 1/x, it suffices to evaluate €(n), a,, b, and H, for various n. On the other
hand, since b, is dependent on H,,, and so does ay,, it suffices to compute €(n)
and H, for various n. We have succeeded in using new modular equations
and Kronecker’s limit formula to compute H, and €(n) for n = 7, 10, 11, 14,
19, 19, 26, 31, 34 and 59. Our nine new series then follow from the table :

Our series (1.3) is the case n = 59. Before the discovery of these new
series, there are only 5 known cubic series for 1/7, namely n = 2, 3, 4, 5 and
6. Two of which are already in Ramanujan’s paper while the other three were
given by the Borweins in their book before the discovery of Ramanujan’s
alternative base theory. The Borweins discovered their series by solving a
sixth degree polynomial expressing o, in terms of Ramanujan-Weber class
invariants.
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TABLE 1. Class number = 4

Let us briefly describe the Borweins’ method. The Borweins obtained
their series n = 2,3 and 6 by solving «,, from a sixth degree relations :
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where the Ramanujan-Weber class invariant G, is defined as
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However, the Borweins did not indicate how they obtain their €(5)’s.

They leave the computations of €(n) as exercises. Their method cannot be
applied in our case since the class invariants G3, are more complicated. So
new methods have to be devised.
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3. CUuBIC MODULAR EQUATIONS

We say that 8 has degree n over « if
' K1l-p)  K(l-o)
K@) = K@
A relation between o and 3 induced by (3.1) is known as a cubic modular

equation. The first few modular equations are given by Ramanujan.
For example, when (3 has degree 2 over «

(@B)® + {1 -a)(1 - B}/ =1.

In general, we have

(3.1)

Theorem 3.1. (Cubic Russell-type modular equations)
Suppose p > 3 is an odd prime and (p+1)/3=N/s in lowest terms. Sup-
pose 3 has degree p over .. Then the relation between

u=(af)/® and v={1-0a)(1-H)}"
can be given in the form
By(v)u" + Bi(v)u ! +--- + By(v) =0,
where By(v), ..., BN (v) are polynomials of degrees at most N in v.

Next, define the multiplier of degree n to be

m(a, ) = 1)
( 7ﬁ) K(ﬁ)'
One can show that
_ B -=p)da
(3.2) m?(a, B) = n(—y—(-l—_—a—jzﬁ—.

From (3.2), we see that m can be computed via differentiating a modular
equation of degree n. This in turn allows us to conclude that

dm(e, B)
da

We are now ready to compute €(n)

Lemma 3.1. can be expressed in terms of o and (.

Theorem 3.2. (New formula for €(n))

e(n) = v/nog + 30‘"(14_ )Zm

This formula has never appeared in print. It shows that e(n) can be
computed once we know o, and at least a modular equation of degree n.
This result guarantees us a modular equation of prime degree and so €(p) can
be computed from ap. When n = 2p, as in our table, we can use modular
equations of 2 and p to evaluate €(n) but we will not go into the details. It
remains to compute H,, from which o, will follow.

(1 — Qnp, an)



4. COMPUTATIONS OF H,

Theorem 4.1. Suppose the class number of the imaginary quadratic field
Q(v/—3n) is 4 and that each genus in the class group contains a single class.
Then 4H ! is of the form a + bV/d, with a and b non-negative integers and
d € {2,3,6,p,2p,3p,6p}.

This shows that 4H, ! can be determined in a finite number of steps. So,
for example

4H;! = 136.789534087679355... = 68 + 26/7.

oy, then follows from the H,. ’
The proof of Theorem 4.1 follows from the fact that

AHT' = 24 up +upt,

where
u = L [16/=n/3) ’
ST ="
Here,

00
n(r) == e?TiT/lZ H(l _ eZm'k'r).
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Then, the fact that u2 is a product of two fundamental units follows from
the following result which is a consequence of Kronecker’s limit formula:

Theorem 4.2. Let x be a genus character arising from the decomposition
Dy = didy. Let h;, be the class number of the field Q(Vd;), wa, be the
number of roots of unity in Q(v/dz), and €, be the fundamental unit of
Q(+v/dy). Suppose [a] is an ideal class in Ck. Set

F([a]) = VN (L DIn(r)I,

where n(T) denotes the Dedekind n-function defined by
x
n(z) — e11'12::/12 H(l _ e27rikZ)
k=1

and -
r=-=, Im7>0, where a= [11, T2)-
T1

eihl,xhz,x/wa _ H F([a])"X([“]).
aeCk

Then
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