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1 Introduction

Since the time of Euler who founded the theory of partitions, the subject has undergone sev-

eral stages of development using combinatorial tools, $q$ -theoretic identities, analytic meth-

ods, Lie algebras and the theory of modular forms. Very often, in combinatorial proofs,

the conjugate of a partition is studied. More precisely, given a partition $\pi$ whose parts

$b_{1}\geq b_{2}\geq\ldots\geq b_{\nu}$ are written in decreasing order, its Ferrers graph is an array of nodes

equally spaced with $b_{i}$ nodes in the $\dot{i}$ -th row such that the left-most node of each row will

lie on a common vertical line. If we read the nodes of this graph column wise, we get the

conjugate partition $\pi^{*}$ . For example, if $\pi$ is the partition 7+7+5+4+2+2, then its conjugate

$\pi^{*}$ is $6+6+4+4+3+2+2$ .

Let $\lambda(\pi)$ denote the largest part of $\pi$ , and $\nu(\pi)$ , the number of parts of $\pi$ . Clearly,

$\lambda(\pi)=\nu(\pi^{*})$ and $\nu(\pi)=\lambda(\pi^{*})$ . (1.1)

and so $\lambda(\pi)+\nu(\pi)$ is invariant under conjugation. Another invariant is $D(\pi)$ , the Durfee

square of $\pi$ . This the largest square of nodes starting from the upper left hand corner of the

Ferrers graph. The relation (1.1) and the invariallce of $D(\pi)$ have been used extensively [5].

But surprisingly one fundamental invariant has remained totally unexploited. This is $\nu_{d}(\pi)$ ,

the number of different parts of $\pi$ . That, is, $\mathrm{f}\dot{\mathrm{o}}\mathrm{r}$ all $\mathrm{p}\dot{\mathrm{a}}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}\pi$, we have

$\nu_{d}(\pi)=\nu_{d}(\pi^{*})$ . (1.2)
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Recently we have undertaken $\mathrm{t}$ he study of this invariant and utilized it to prove a variety of

partition identities, some new, and some of whic$h$ are extensions of known identities. Here

we shall briefly describe (without proof) some of the identities we have obtained using (1.2).

In order to do this, we need some notation.

2 Notation and partition interpretation

Given a complex number $a$ and a positive integer $n$ , define

$(a)_{n}=(a;q)_{n}= \prod_{=j0}^{7}(1-aq^{j})1-1$ .

Next let

$(a)_{\infty}= \lim_{narrow\infty}(a)_{n}=\prod_{j=0}^{\infty}(1-aq^{j})$ , for $|q|<1$ .

The expression
$\frac{(aq)_{n}}{(bq)_{n}}=\frac{(1-aq)(1-oq^{2})\ldots(1-aq^{7})l}{(1-bq)(1-bq)2\ldots(1-bq)n}$ (2.1)

occurs quite often in the theory of basic hyper-geometric series. Fine [6] discusses in detail

many transformation properties of $\mathrm{t}$he function $F(a, b;q)$ formed by summing the expression

in (2.1) over $n\geq 0$ . The standard combinatorial interpretation of (2.1) is that it is the

generating function of vector partitions $(\pi_{1}; \pi_{2})$ into parts $\leq n$ , where the parts of $\pi_{2}$ cannot

repeat. Instead of the expression in (2.1) we consider instead

$\frac{(abq)_{r1}}{(bq)_{\gamma}1}$

and interpret it as the generating function of partitions into parts $\leq n$ , such that $\mathrm{t}$he power

of $b$ is $\nu(\pi)$ and $\mathrm{t}$ he power of (1–a) is $\nu_{d}(\pi)$ . That is

$\frac{(abq)_{n}}{(bq)_{n}}=\sum_{\lambda(\pi)\leq n}(1-a)\nu_{d}(\pi\rangle b^{(}\nu\pi)q^{\sigma}(\pi)$ , (2.2)

where $\sigma(\pi)$ is the sum of the parts of $\pi$ . With this different interpretation we have $\mathrm{t}$he

following results:
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3 Results

1. Cauchy’s identity: The $q$-binomial theorem or Cauchy’s identity is

$\sum_{n=0}^{\infty}\frac{(a)_{n}t^{n}}{(q)_{n}}=\frac{(at)_{\infty}}{(t)_{\infty}}$ . (3.1)

Several proofs of (3.1) are known (see Andrews [5]). Our new proof goes as follows:

First consider the three parameter generating function of all partitions, namely,

$f(a, b, c;q)= \sum_{\pi}(1-a)^{\nu_{d}}(\pi)b\nu(\pi)cq^{\sigma})\lambda(\pi(\pi)$ . (3.2)

Using (2.2) it follows that

$f(a, b, c;q)=1+ \sum_{n=1}^{\infty}\frac{(1-a)(abq)_{n}-1bc^{n}q\gamma \mathrm{t}}{(bq)_{n}}$. (3.3)

Using (3.3) and wit$hnarrow\infty$ in (2.2) we observe that

$f(a, b, 1;q)=1+ \sum_{=n1}\infty\frac{(1-a)(abq)n-1bq^{7}1}{(bq)_{\gamma 1}}=\frac{(abq)_{\infty}}{(bq)_{\infty}}$. (3.4)

We call (3.4) as a variant of Cauchy’s identity.

Next observe that (1.1) and (1.2) imply that

$f.(a, b, c;q)=f.(a, C, b;q)$ , (3.5)

Thus from (3.4) and (3.5) we get

$\sum_{n=0}^{\infty}\frac{(a)_{r1c^{n}}q^{n}}{(q)_{\mathit{7}1}}=J(a, 1, c;q)=f(a, c, 1;q)=\frac{(acq)_{\infty}}{(cq)_{\infty}}$ (3.6)

which is equivalent to Cauchy’s identity (3.1).

2. A variant of the Rogers-Fine identity: Although $f$ is symmetric in $b$ and $c$ , this

is not apparent from the series (3.3). A different series expansion for $f$ which renders this

$\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\iota\gamma$ explicit can be derived using Durfee squares and the symmetry (1.2). This is

$f(a, b, c;q)=1+ \sum n=1\infty\frac{(1-a)bnncq(na2bq)n-1(aCq)r\mathrm{t}-1(1-ab_{C}q)2n}{(bq)_{n}(cq)_{n}}$. (3.7)

T.his is a variant of the Rogers-Fine identity which is proved as equation (14.1) in [6], using

transformation prop$e$rties of $F(a, b;t)$ . Subsequently Andrews [4] gave a combinatorial proof

of the Rogers-Fine identity, but our proof via (3.7) is simpler (this will be presented in [2]).
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3. Heine’s transformation: One of the fundamental results in the theory of basic hyper-

geometric series is Heine’s transformation, namely,

$\sum_{n=0}^{\infty}\frac{(a)_{n}(\gamma)n^{C^{n}}}{(\alpha)_{n}(q)_{n}}=\frac{(\gamma)_{\infty}(ac)_{\infty}}{(\alpha)_{\infty}(C)_{\infty}}\sum_{n=0}^{\infty}\frac{(\alpha/\gamma)_{n}(_{C})_{n}\gamma^{n}}{(ac)_{n}(q)n}$. (3.8)

In 1967 Andrews [3] gave a combinatorial proof by rewriting it in symmetric form and

interpreting this in terms of certain vector partitions. We depart from Andrews by rewriting

(3.8) in the form

$\sum_{71=0}^{\infty}\frac{(a)_{71}(\alpha\gamma q)n+1nq^{n}\infty^{C}}{(\gamma q^{n+1})_{\infty}(q)_{7}1}=7Y1\sum_{0=}\frac{(\alpha)_{m}(acq)7n+1\infty^{\gamma q}7nm}{(cq^{7n+})1(\infty q)_{7n}}\infty$ (3.9)

and interpreting this in a different $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{a}1.\mathrm{W}\mathrm{a}\mathrm{y}$. Identity (3.9) is in a symmetric form

$l\iota(a, c, \gamma, \alpha)=h(\alpha, \gamma, c, a)$ (3.10)

and follows by using (1.2) and the $\mathrm{g}e$nerating function of partitions formed by cuts of the

Ferrers graphs (see [1] for a proof of (3.9)).

4. A six parameter extension: The combinatorial proof of Heine’s transformation via

(3.9) gives rise to the following new six parameter extension:

$1+ \sum_{1t=}^{\infty}\frac{(1-\alpha)(\alpha\gamma q)_{t}-1\gamma\beta^{t}q^{l}}{(\gamma q)_{t}}+\sum_{n=1}\frac{(1-a)(abq)_{n}-1bc^{nn}q}{(bq)_{n}}\infty(1+\sum_{t=1}\infty\frac{(1-\alpha)(\alpha\gamma q^{n+1})t-1\gamma\beta^{l}qn+t}{(\gamma q^{n+1})_{t}})=$

$1+ \sum_{t=1}^{\infty}\frac{(1-\mathit{0})(aCq)t-1^{Cb^{t}q}t}{(cq)_{t}}+\sum_{n\gamma=1}^{\infty}\frac{(1-\alpha)(\alpha\beta q)m-1\beta\gamma^{\mathit{7}}qnrn}{(\beta q)_{m}}(1+\sum_{=t1}^{\infty}$

.

$\frac{(1-a)(acq^{m+1})_{t-}1^{Cbq^{m}}\iota+1}{(cq^{m+1})_{l}}\mathrm{I}$

(3.11)

For a sketch of the combinatorial proof of (3.11) see [1]. This identity is in $\mathrm{t}$ he symmetric

form

$H(a, b, c,\gamma, \beta, \alpha)=H(\alpha, \beta, \gamma, c, b, a)$ . (3.12)

Setting $b=\beta=1$ in (3.11) yields the symmetric form of Heine’s transformation (3.9), but

both Cauchy’s identity and the variant are necessary in the derivation (see [1]).

5. An extension of Ramanujan’s mock-theta identity: In his last letter to Hardy,

Ramanujan had stated the following fifth order mock theta function identity:

$\sum_{n=0}^{\infty}\frac{q^{n}}{(q^{n+1})_{r}1}=1+\sum_{0rn=}^{\infty}\frac{q^{2m+1}}{(q^{n1+}1)_{m}+1}$ . (3.13)
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In 1967 Andrews [3] gave a combinatorial proof of (3.13) using conjugation of Ferrers graphs.

In view of the symmetry (1.2), we noticed that following Andrews’ proof, (3.13) could be

extended by introducing a free parameter as follows:

$\sum_{n=0}^{\infty}\frac{(aq^{n+1})_{n}qn}{(q^{n+1})_{n}}=\frac{1}{1-q}+\sum_{m=1}^{\infty}\frac{(1-a)(aq)m+2m-1q^{2+1}m}{(q^{m+1})m+1}$ . (3.14)

For a proof of (3.14) see [1].

4 Concluding remarks

The results given above are a sample of what could be achieved using the invariance (1.2).

What is amazing is that the usefulness of this invariant had completely escaped attention.

In a forthcoming paper [2] we shall present many more results that can be derived using this

invariant. Along term project is to go through many identities in Fine [6] systematically, and

provide new combinatorial proofs using (1.2). This will also have the advantage of yielding

extensions just as (3.11) extended (3.9).
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