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\S 1 Introduction. We propose here an approximation scheme for Gauss curvature
flow of a convex hypersurface in $\mathrm{R}^{n+1}$ and explain how to prove the convergence of the

scheme to the Gauss curvature flow.
The Gauss curvature flow of a convex hypersurface in $\mathrm{R}^{n+1}$ is described as fol-

lows. Let $\Gamma_{0}$ be a convex hypersurface of $\mathrm{R}^{n+1}$ and $F_{0}$ : $S^{\prime n}arrow \mathrm{R}^{n+1}$ be a parametric
representation of $\Gamma_{0}$ . The Gauss curvature flow of this hypersurface $\Gamma_{0}$ is a collection
$F(\cdot,t)$ : $S^{n}arrow \mathrm{R}^{n+1}$ of closed hypersurfaces with parameter $t\in[0, T)$ which is a $s$olution
of the initial value problem

(1.1)

where $\beta>0$ is a constant and $K(s, t)$ and $n(s,t)$ denote the Gauss curvature and the

outward unit normal vector, respectively, at $F(s,t)$ of the hypersurface $p(\cdot,t)$ .
W. J. Firey [F] proposed problem (1.1) with $\beta=1$ as a mathematical model of

the wearing process of stones on beach by waves and studied some basic properties of
the solution $F$ of this problem. Afterwards, K. Tso [T] and then B. Chow [C] studied
problem (1.1) and established the following existence theorem.

Theorem 1. If $F_{0}$ represents a smooth, strictly convex hypersurface, then there
exist a positive $T>0$ and a unique smooth solution $F:S^{n}\mathrm{x}[0, T)arrow \mathrm{R}^{n+1}$ of (1.1)
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such that $F(\cdot,t)$ represents a strictly convex set $\Gamma_{t}\equiv F(S^{n},t)\subset \mathrm{R}^{n+1}$ for all $0<t<T$
and $\Gamma_{t}$ converge to a point as $\mathrm{t}\nearrow T$ .

Another way of describing Gau$ss$ curvature flow is the so-called level-set approach, in

which the evolving convex hypersurfaces $\Gamma_{t}$ are regarded as the $0$-level set of a function
$u$ defined on $\mathrm{R}^{n+1}\cross[0, \infty)$ . More precisely, the idea is explained as follows. Given a
compact convex hypersurface $\Gamma_{0}$ , we choose a function $g\in BUC(\mathrm{R}^{n+1})$ so that

(1.2) $\Gamma_{0}=\{z\in \mathrm{R}^{n+1}|g(z)=0\}$ and $\{z\in \mathrm{R}^{n+1}|g(z)\leq 0\}$ is convex,

and consider the initial value problem

(1.3) $\{$

(i) $u_{\mathrm{t}}+G(Du, D2u)=0$ in $\mathrm{R}^{n+1},\cross(0, \infty)$ ,

(ii) $u(z, 0)=g(Z)$ $(z\in \mathrm{R}^{n+1})$ .

Here the function $G:(\mathrm{R}^{n+1}\backslash \{0\})\cross S(n+1)arrow \mathrm{R}$ is defined by

$G(p, X)=-|p| \{\det_{+}(\frac{1}{|p|}(I-\overline{p}\otimes\overline{p})X(I-\overline{p}\otimes\overline{p})+\overline{p}\otimes\overline{p})\}^{\beta}$

where $\overline{p}=p/|p|$ and

$\det_{+}A=\prod_{i=1}^{n+1}\max\{\lambda_{i}, 0\}$ for $A\in S(n+1)$ ,

with $\lambda_{i}(i=1, \ldots, n+1)$ denoting the eigenvalues of $A\in S(n+1)$ . Now, the (generalized)

Gauss curvature flow of $\Gamma_{0}$ is defined as the collection $\mathrm{t}^{\mathrm{r}_{t}}\}_{t\geq 0}$ of the closed subsets

(1.4) $\Gamma_{t}=\{z\in \mathrm{R}n+1|u(z,t)=0\}\subset \mathrm{R}^{n}+1$ .

One of main $\mathrm{r}\mathrm{e}s$ult $\mathrm{s}$ in [IS] (see [IS, Theorems 1.8 and 1.9]) states that if $g\in$

$BUC(\mathrm{R}^{n+1})$ , then there is a unique viscosity solution $u\in BUC(\mathrm{R}^{n+1}\cross[0,\infty))$ of (1.3)

and that the collection $\{\Gamma_{t}\}_{t\geq 0}$ defined by (1.4) is independent of the choice of $g$ . See

[IS] as well for the correct definition of viscosity $s$olution for (1.3), (i). Thi$s$ assertion is,
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of course, a generalization of a well-known, similar observation due to Chen-Giga-Goto

[CGG] and Evans-Spruck [ES] for mean curvature flow and alike.

An argument in [CEI] guarantees that under assumption (1.2), if we set

(1.5) $V_{t}=\{z\in \mathrm{R}^{n+1}|u(z,t)\leq 0\}$ ,

then $V_{t}$ is a convex set and $\Gamma_{t}=\partial V_{t}$ for all $\mathrm{t}\geq 0$ . We shall also call the collection
$\{V_{t}\}_{t\geq 0}$ the generalized Gauss curvature flow of the convex body $V_{0}$ .

See [CEI] for a discussion on the consistency of thi $s$ level-set approach and the

parametric representaion approach based on (1.1).

In what follows we discuss only on the generalized Gauss curvature flow defined

via the level-set approach as above and hence suppress the word “generalized” in the

argument below.

\S 2 An approximation scheme and the main result. Now, we introduce

an approximation scheme for Gauss curvature flow. We need notation. We denote by
$C(m)$ the collection of all closed subsets of $\mathrm{R}^{m}$ . Let $A\in C(n+1)$ and $p\in S^{n}$ . Define

(2.1) $l_{0}(A,p)= \sup\{\langle z,p)|z\in A\}$ .

Of course, $\ell_{0}(\emptyset,p)=-\infty$ and, if the set $\{\langle z,p\rangle|z\in A\}$ is not bounded above, $l_{0}(A,p)=$

$\infty$ .
For $t>0$ define $S(A,p, t)$ and $C(A,p,t)$ , subsets of $\mathrm{R}^{n+1}$ , by

(2.2) $S(A,p,t)=\{z\in A|\langle z,p\rangle\leq l_{0}(A,p)-t\}$

and

(2.3) $C(A,p,t)=\{z\in A|\langle z,p\rangle>\ell_{0}(A,p)-t\}(=A\backslash S(A,p,t))$ .
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$\iota$

Moreover, we define $d(A,p,t)\in[0, \infty]$ by

(2.4) $d(A,p,t)= \inf\{s>0|L^{n+1}(C(A,p, \mathit{8}))\geq t\}$ ,

where $\mathcal{L}^{n+1}(B)$ denotes the $(n+1)$-dimensional Lebesgue measure of the set $B$ , and for
$\mu>0$ set

(2.5) $d_{\mu}(A,p, t)= \min\{d(A,p,t), \mu\}$

Finally, for any $A\in C(n+1),$ $h>0$ , and $\mu>0$ we define

(2.6) $T_{h}^{\mu}(A)= \bigcap_{p\in S^{\mathfrak{n}}}S(A,p,$ $d_{\mu}(A,p,\alpha_{n}h^{\frac{1}{2\beta}})^{\beta(}n+2))$ ,

where
$\alpha_{n}=\frac{2^{\frac{n+2}{2}}\omega_{n}}{n+2}$ , with $\omega_{n}=$ the volume of the unit ball $\subset \mathrm{R}^{n}$ .

It is clear that for all $A\in C(n+1),$ $T_{h}^{\mu}(A)\subset A$ and $T_{h}^{\mu}(A)\in C(n+1)$ and if $A$ is
convex then so is $T_{h}^{\mu}(A)$ .

Fix a compact convex set $V_{0}\subset \mathrm{R}^{n+1}$ . Fix $h>0$ and $\mu>0$ . Define the sequence
$\{C_{i}\}_{i\in \mathrm{N}}$ of subsets of $\mathrm{R}^{n+1}$ by the recursion formula

$C_{1}=V_{0}$ and $C_{i+1}=T_{h}^{\mu}(C_{i})$ for $i\in \mathrm{N}$
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and the collection $\{V_{t}^{\mu,h}\}_{t\geq}0$ of subsets of $\mathrm{R}^{n+1}$ by

(2.7) $V_{t}^{\mu,h}=C_{i}$ if $(i-1)h\leq t<ih$ and $i\in \mathrm{N}$ .

This collection $\{V_{t}^{\mu,h}\}_{t\geq}0$ , with $\mu>0$ and $h>0$ , is our approximation scheme for the
Gauss curvature flow $\{V_{t}\}_{t\geq 0}$ defined by (1.5).

The main result in this paper is the following

Theorem 2. Assume that $V_{0}$ is compact and convex, $\beta\geq\frac{1}{n+2}$ , and $\mu\in(0,$ $\frac{1}{6})$ .
For each $\epsilon>0$ there is a $\delta>0$ such that if $0<h<\delta$ , then

(2.8) $\bigcup_{t\geq 0}V_{t}\cross\{t\}\subset\bigcup_{t\geq 0}V_{t}\mu,h><\{t\}+B^{n+2}(0, \zeta)$

and

(2.9) $\bigcup_{t\geq 0}V^{\mu,h}t\cross\{t\}\subset\bigcup_{t\geq 0}V_{t^{\cross}}\{t\}+B^{n+2}(0, \epsilon)$,

where $B^{n+2}(0, \epsilon)$ denotes the closed ball of radius $\epsilon$ and center at the origin in $\mathrm{R}^{n+2}$ .
That is, as $h\backslash 0$ , the sets $\bigcup_{t\geq}\mathrm{o}V_{t}^{\mu,h}\cross\{t\}$ converge to the set $\bigcup_{t\geq 0}V_{t}\mathrm{x}\{t\}$ in the

Hausdorff distance.

The underlying idea of our definition of $T_{h}^{\mu}$ (or our approximation scheme) can be
explained as follows. Let $A\in C(n+1)$ be a $s$mooth, strictly convex domain and $B_{0}\in\partial A$ .

Now, we assume that $B_{0}=0$ and $(0, -1)\in \mathrm{R}^{n}\cross \mathrm{R}$ is the outward unit normal
vector of $A$ at $0$ . Writing $z=(x,y)\in \mathrm{R}^{n}\cross \mathrm{R}$ for generic points in $\mathrm{R}^{n+1}$ , we may claim
that in a neighborhood of $0$ , the set $A$ is almost identical to the paraboloid

$P= \{(x,y)|y\geq\frac{1}{2}(\kappa_{1}x_{1}^{2}+\cdots+\kappa_{n}X)2n\}$,
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where $\kappa_{i}$ denotes the principal curvatures of the surface $\partial A$ at $0$ .
For $d>0$ we denote

$P(d)=P\cap \mathrm{t}(_{X},y)|y\leq d\}$ ,

and compute the volume of the set $P(d)$ , to find

(2.10) $\mathcal{L}^{n+1}(P(d))=\alpha_{n}\frac{d^{\frac{\tau\iota+2}{2}}}{\sqrt{K}}$ ,

$K$ denoting the Gauss curvature of $\partial A$ at $0$ , i.e., $K= \prod_{i=1^{\mathcal{K}_{i}}}^{n}$ .
If a convex body, starting with $A$ at time $0$ , is shrinking with velocity

$v=K^{\beta}$ ,

in the directions of inward normal vectors of $A$ , then the boundary point of the convex

body at time $h>0$ with $(0, -1)$ as its outward normal direction must be somewhere

near the point $B_{1}$ with coordinates

$(0, K^{\beta}h)$ .

If we set
$d=(K^{\beta}h)^{\frac{1}{\beta(\iota+2)}}$”

and plug this into (2.10), then we find the formula

(2.11) $L^{n+1}(P(d))=\alpha_{n}h^{\frac{1}{2\beta}}$ .

A nice feature in formula (2.11) is that it does not involve the Gauss curvautre $K$

explicitly any more. Moreover, the formula determines $d$ uniquely as a function of $h>0$ .

Thus, reversing the above process, i.e., fixing first $d>0$ by formula (2.11) and then

setting $a=d^{\beta(n+2)}$ , we can identify the point $B_{1}$ as the point with coordinates $(0, a)$

without knowing the Gauss curvature $K$ .
Roughly speaking, the set $T_{h}^{\mu}(A)$ is defined as the convex hull of all the points $B_{1}$

obatined from $B_{0}\in\partial A$ by the process described above.
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\S 3 Some properties of $T_{h}^{\mu}$ . We begin with the following proposition, which

says that the mapping $T_{h}^{\mu}$ is invariant under translation and orthogonal transformation.

Henceforth $h,$ $\beta$ , and $\mu$ denote fixed positive constants.

Propostion 1. For any $A\in C(n+1),$ $U\in O(n+1)$ , and $z\in \mathrm{R}^{n+1}$ we have

(3.1) $T_{h}^{\mu}(U(A))=U(T_{h}^{\mu}(A))$ ,

(3.2) $T_{h}^{\mu}(z+A)=z+T_{h}^{\mu}(A)$ .

Here and later $O(n+1)$ denotes the set of orthogonal matrices of order $n+1$ .

The proof is straightforward and left to the reader.

The next proposition asserts the monotonicity of $T_{h}^{\mu}$ .

Proposition 2. Assume that $\beta\geq\frac{1}{n+2}$ and $0< \mu<\frac{1}{6}$ . Then, for any $A,$ $B\in$

$C(n+1)$ , if $A\subset B$ we have

(3.3) $T_{h}^{\mu}(A)\subset T_{h}^{\mu}(B)$ .

Remark. The restriction that $\beta\geq\frac{1}{n+2}$ and $\mu<\frac{1}{6}$ in Theorem 2 is due to the above
proposition. The condition, $\mu<\frac{1}{6}$ , is not optimal in this respect and we will not seek
for the optimal one here.

The following property will be needed in the proof of Theorem 2.

Proposition 3. Assume that $\beta\geq\frac{1}{n+2}$ and $0< \mu<\frac{1}{6}$ . Let $A_{\text{\’{e}}}\in C(n+1)$ , with
$0<\epsilon\leq 1$ , be compact and satisfy

$A_{\epsilon}\subset A_{\delta}$ if $\epsilon<\delta$ .
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Then we have

$T_{h}^{\mu}(_{0<\epsilon\leq} \bigcap_{1}A_{\zeta})=0<e\leq\ln T^{\mu}h(A_{\zeta})$ .

\S 4 Level-set approach. We shall take the level-set approach to proving Theo-

rem 2 and here introduce the level-set approach to our approximation $s$cheme.

In what follows we fix $\beta\geq\frac{1}{n+2}$ and $\mu\in(0, \frac{1}{6})$ . Fix $h>0$ as well. For any function
$\varphi\in C(\mathrm{R}^{n}+1)$ , following [E], we set

(4.1) $M_{h\varphi}(z)= \inf\{\lambda\in \mathrm{R}|z\in T_{h}^{\mu}(\{\varphi\leq\lambda\})\}$ $(z\in \mathrm{R}^{n+1})$ .

Here and henceforth we use the notation $\{P\}$ for $\{z|P(z)\}$ , where $P$ or $P(z)$ is a

proposition concerning $z$ .

We see immediately from (4.1) that for $\varphi\in C(\mathrm{R}^{n+1})$ and $\lambda\in \mathrm{R}$,

$T_{h}^{\mu}(\{\varphi\leq\lambda\})\subset\{M_{h\varphi}\leq\lambda\}$ and $\{M_{h\varphi}\leq\lambda\}\subset$ $\cap T_{h}^{\mu}(\{\varphi\leq\gamma\})$ .
$\gamma>\lambda$

Loosely speaking, these say that $T_{h}^{\mu}$ maps the sub-level set of $\varphi$ of height $\lambda$ to the sub-

level set of $M_{h\varphi}$ of height $\lambda$ . In other words, the mapping $T_{h}^{\mu}$ on sets of $\mathrm{R}^{n+1}$ can be

understood by seeing the mapping $M_{h}$ on functions in $\mathrm{R}^{n+1}$ .
Fix $\varphi\in C(\mathrm{R}^{n+1})$ . Since $T_{h}^{\mu}(\{\varphi\leq\lambda\})\subset\{\varphi\leq\lambda\}$ for $\lambda\in \mathrm{R}$, we see that for all

$\varphi\in C(\mathrm{R}^{n+}1)$ ,

(4.2) $M_{h\varphi}\geq\varphi$ in $\mathrm{R}^{n+1}$ .
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Also, it follows from Proposition 2 that if $\varphi,\psi\in C(\mathrm{R}^{n+1})$ and $\varphi\leq\psi$ in $\mathrm{R}^{n+1}$ , then

(4.3) $M_{h\varphi}\leq M_{h}\psi$ in $\mathrm{R}^{n+1}$ .

It follows that $M_{h\varphi}$ is a real-valued function on $\mathrm{R}^{n+1}$ .
Proposition 1 has direct consequences for $M_{h}$ . Indeed, for any $\varphi\in C(\mathrm{R}^{n+1})$ we

have

(4.4) $(M_{h\varphi})\mathrm{o}U=M_{h}(\varphi \mathrm{o}U)$ for all $U\in O(n+1)$ ,

where $U\in O(n+1)$ is regarded as a mapping, and

(4.5) $M_{h}\mathrm{o}\tau_{y}=\tau_{y}\mathrm{o}M_{h}$ for all $y\in \mathrm{R}^{n+1}$ ,

where $\tau_{y}$ denotes the translation by $y$ , i.e., $\tau_{y}\varphi(z)=\varphi(z-y)$ . The proof of these claims
are again left to the reader.

Next, we observe that $M_{h\varphi}\in UC(\mathrm{R}^{n+1})$ for all $\varphi\in UC(\mathrm{R}^{n+1})$ . This will be proved
as a consequence of (4.3), (4.5), and the following claim.

Let $\theta\in C(\mathrm{R})$ be any nondecreasing function. The claim is:

(4.6) $M_{h}(\theta 0\varphi)=\theta \mathrm{o}(M_{h\varphi})$ for $\varphi\in C(\mathrm{R}^{n}+1)$ .

The proof of this claim, which is again easy, is left to the reader. (See (2.10) in [I1] for
a similar observation.)

To conclude the uniform continuity, let $\varphi\in UC(\mathrm{R}^{n+1})$ and $\omega$ denote the modulus
of continuity of $\varphi$ . If $y\in \mathrm{R}^{n+1}$ , then

$\tau_{y}\varphi\leq\varphi+\omega(|y|)$ ,

and so, using (4.5), (4.3), and (4.6) with $\theta(r)=r+\omega(|y|)$ , we see that

$M_{h\varphi}(z-y)=M_{h}(\mathcal{T}_{y}\varphi)(_{Z)}\leq M_{h\varphi}(Z)+\omega(|y|)$ $(z\in \mathrm{R}^{n\dagger}1)$ ,
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from which follows the uniform continuity of $M_{h\varphi}$ , i.e.,

(4.7) $|M_{h\varphi}(Z)-Mh\varphi(y)|\leq\omega(|Z-y|)$ for all $z,y\in \mathrm{R}^{n+1}$ .

Similarly, we have

(4.8) $||M_{h\varphi-M_{h}\psi||}\leq||\varphi-\psi||$ for $\varphi,\psi\in C(\mathrm{R}^{n+1})$ ,

where $|| \varphi||=\sup_{\mathrm{R}^{\tau\iota+1}}|\varphi|\in[0, \infty]$ .
Also, we easily see that if $c$ is a constant function on $\mathrm{R}^{n+1}$ then

$M_{h^{C}}=c$ .

Our proof of Theorem 2 will be carried out via the following

Theorem 3. Let $g\in BUC(\mathrm{R}^{n+1})$ be such that for any $\lambda<\sup_{\mathrm{R}^{\mathfrak{n}}+1g}$ , the set
$\{g\leq\lambda\}$ is compact and convex. Let $u\in BUC(\mathrm{R}n+1\cross[0, \infty))$ be the vis cosity solution

of (1.3). Define $v_{h}$ : $\mathrm{R}^{n+1}\cross[0, \infty)arrow \mathrm{R}$ by

(4.9) $v_{h}(z,t)=M_{h}^{i}g(z)$ if $(i-1)h\leq t<ih$ and $i\in \mathrm{N}$ ,

where $M_{h}^{i}$ denotes the $i$ times iterates of the mapping $M_{h}$ . Then for each $0<T<\infty$ ,
as $h\searrow 0$ ,

(4.10) $v_{h}(z,t)arrow u(z, t)$ uniformly on $\mathrm{R}^{n+1}\cross[0, T]$ .

The above definition (4.9) is a reformulation of (2.7) in terms of the level-set ap-
proach. (See the next Proposition.)

Let us state here a corollary of Proposition 3, which gives a better connection between
(4.9) and (2.7).

Proposition 4. Let $\gamma\in \mathrm{R}$ and $\varphi\in C(\mathrm{R}^{n+1})$ be such that $\{\varphi\leq\gamma\}$ is a compact

set. Then, for $z\in \mathrm{R}^{n+1}$ , if $M_{h\varphi}(z)<\gamma$, then we have

(4.11) $M_{h\varphi}(z)= \min\{\lambda\in \mathrm{R}|z\in T_{h}^{\mu}(\{\varphi\leq\lambda\})\}$ .
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Note that under the above hypothe$s\mathrm{i}\mathrm{s}$ , if $\lambda<\gamma$ then we have

$\{M_{h\varphi\leq}\lambda\}\subset T_{h}^{\mu}(\{\varphi\leq\lambda\})$ .

Proof. Assume that $z\in \mathrm{R}^{n+1}s$atisfies $\lambda\equiv M_{h\varphi}(z)<\gamma$ .
It follows that if $t>\lambda$ then

(4.12) $z\in M_{h}(\{\varphi\leq t\})$ .

Fix any $\eta\in(\lambda, \gamma)$ . Note that

$\{\varphi\leq\lambda\}=$ $\cap$ $\{\varphi\leq t\}$ .
$\lambda<t\leq\eta$

Now, from Proposition 3 and (4.12), we have

$T_{h}^{\mu}(\{\varphi\leq\lambda\})=$ $\cap$ $T_{h}^{\mu}(\{\varphi\leq t\})\ni Z$ ,
$\lambda<t\leq\eta$

whence follows (4.11). $\square$

\S 5 Approximate derivative of $M_{h}$ at $h=0$ . In this section we assume that
$\beta\geq\frac{1}{n+2}$ and $\mu\in(0, \frac{1}{6})$ .

The key $\mathrm{o}\mathrm{b}s$ervation in the proof of Theorem 3 will be stated in this section, which
roughly says that the generator of Gauss curvature flow in terms of the level-set ap-
proach, i.e., $-G$ in (1.3), (i) “approximates the derivative” of $M_{h}$ at $h=0$ .

Indeed, we have the following two theorems. The reader who is interested in the
proof of these theorems should consult [I2].

Theorem 4. Let $\varphi\in C^{2}(\mathrm{R}^{n+1})$ satisfy $D\varphi(\hat{Z})\neq 0$ , with $\hat{z}\in \mathrm{R}^{n+1}$ . Then for each
$\epsilon>0$ there is a constant $\delta>0$ such that

$M_{h\varphi}(z)\leq\varphi(z)+(-G(D\varphi(\hat{z}), D^{2}\varphi(\hat{z}))+\epsilon)h$ $(z\in B^{n+1}(\hat{z}, \delta),$ $h\in(\mathrm{O}, \delta))$ .
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Theorem 5. Let $\varphi\in C^{2}(\mathrm{R}^{n+1})$ satisfy $D\varphi(\hat{z})\neq 0$ , with $\hat{z}\in \mathrm{R}^{n+1}$ . Assume that

$\{$

$\varphi(z)>\varphi(\hat{z})$ if $\langle z, D\varphi(\hat{z})\rangle\geq 0$ and $z\neq 0$ ,

$\lim\inf\varphi(z)>\varphi(\hat{z})$ ,
$|z|arrow\infty$

$-G(D\varphi(\hat{z}), D^{2}\varphi(\hat{z}))>0$ .

Then for each $\epsilon>0$ there is a constant $\delta>0$ such that

$M_{h\varphi}(z)\geq\varphi(z)+(-G(D\varphi(\hat{z}), D2\varphi(\hat{z}))-\mathcal{E})h$ $(0<h\leq\delta, z\in B^{n+1}(\hat{z}, \delta))$ .

$D\varphi(z)$

\S 6 Convergence of the approximation scheme. We shall complete the proof

of Theorems 2 and 3 in this section.

We will again assume throughout that $\beta\geq\frac{1}{n+2}$ and $0< \mu<\frac{1}{6}$ .

Proof of Theorem 3. Let $g\in BUC(\mathrm{R}^{n+1}),$ $u\in BUC(\mathrm{R}^{n+1}\cross[0, \infty))$ , and $v_{h}$ :

$\mathrm{R}^{n+1}\cross[0, \infty)arrow \mathrm{R}$ be as in Theorem 3.

Define

$\overline{v}(Z,t)=\lim_{0r\searrow}\sup\{v_{h}(y, s)|(y, s)\in \mathrm{R}n+1\mathrm{x}[0, \infty)\cap B^{n+2}(z,t;r), 0<h<r\}$

$((z,t)\in \mathrm{R}n+1\mathrm{x}[0, \infty))$ ,
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and

$\underline{v}(z, t)=\lim_{r\backslash 0}\inf\{v_{h}(y, s)|(y, s)\in \mathrm{R}^{n+1}\mathrm{x}[0, \infty)\cap Bn+2(z,t;r), 0<h<r\}$

$((z,t)\in \mathrm{R}n+1\cross[0, \infty))$ .

We shall first prove that $u=\overline{v}=\underline{v}$ in $\mathrm{R}^{n+1}\cross[0, \infty)$ , which guarantees that $v_{h}(z, t)arrow$

$u(z,t)$ unifornly on compact subsets of $\mathrm{R}^{n+1}\cross[0, \infty)$ as $h\backslash 0$ .
To see this, we prove that $\overline{v}$ and $\underline{v}$ are a viscosity subsolution of (1.3), (i) and a

viscosity supersolution of (1.3), (i), and that

$\lim_{r\searrow 0}\sup\{|\overline{v}(x,t)-\underline{v}(y, S)|||x-y|<r,0<t, s<r\}\leq 0$ .

Then we use a comparison theorem, to find that $\overline{v}\leq\underline{v}$ in $\mathrm{R}^{n+1}\cross[0, \infty)$ . And we

see that
$u=\overline{v}=\underline{v}$ on $\mathrm{R}^{n+1}\cross[0, \infty)$ .

This shows that
$v_{h}(x, \mathrm{t})arrow u(x,t)$ as $h\searrow \mathrm{O}$ .

Here the convergence holds uniformly on any compact subsets of $\mathrm{R}^{n+1}\cross[0, \infty)$ .
A simple modification of the above arguments yields the uniform convergence in the

whole space $\mathrm{R}^{n+1}\mathrm{x}[0, \infty)$ . $\square$

Proof of Theorem 2. Fix any compact convex $V_{0}\subset \mathrm{R}^{n+1}$ and choose $g\in$

$BUC(\mathrm{R}^{n+1})$ so that $\{g\leq 0\}=V_{0}$ and so that for any $\lambda<\sup_{\mathrm{R}^{n}+1g}$ the set $\{g\leq\lambda\}$

is compact and convex. Let $u\in BUC(\mathrm{R}^{n+1}\cross[0, \infty))$ be the viscosity $s$olution of (1.3)

and $v_{h}$ : $\mathrm{R}^{n+1}\cross[0, \infty)arrow \mathrm{R}$ be defined by (4.9).

First we observe in view of Proposition 4 that

$V_{t}^{\mu,h}=\{v_{h}(\cdot, t)\leq 0\}$ $(h>0, t\geq 0)$ .

Next, since $G\leq 0$ , we infer that for each $z\in \mathrm{R}^{n+1}$ the function $u(z,t)$ of $t\geq 0$

is nondecreasing. By comparison between $u$ and the constant function $\sup_{\mathrm{R}^{n+1}}g$ , we
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see that $u \leq\sup_{\mathrm{R}^{7l}+}1g$ in $\mathrm{R}^{n+1}\cross[0, \infty)$ . By comparing each Gauss curvature flow
$\{u(\cdot, \mathrm{t})\leq\lambda\}_{t\geq 0}$ with the Gauss curvature flow of a ball containing the set $\{g\leq\lambda\}$ , we
then conclude that

$\lim_{tarrow\infty}u(z, t)=\sup_{l1}g\mathrm{R}’+$

uniformly in $\mathrm{R}^{n+1}$ .
Fix $\gamma>0$ so that $\gamma<\sup_{\mathrm{R}^{\iota}+\mathrm{t}},g$ , and then $T>0$ so that

$u(z,t)>\gamma$ $(z\in \mathrm{R}^{n+1}, t\geq T)$ .

Fix $\epsilon>0$ and, in view of the compactness of the set $\{u\leq\gamma\}$ and the continuity of
$u$ , choose $\delta\in(0,\gamma)$ so that

$\{u\leq\delta\}\subset\{u\leq 0\}+B^{n}+2(0, \epsilon)$ .

By Theorem 3, we can choose $\eta>0$ so that for all $0<h\leq\eta$ ,

(6.1) $|u(Z;^{t})-vh(Z,t)|\leq\delta$ $(z\in \mathrm{R}^{n+1}, t\in[0, T])$ .

Then, if $0<h\leq\eta,$ $(z,t)\in \mathrm{R}^{n+1}\cross[0,T]$ , and $v_{h}(z,t)\leq 0$ , we have

$(z, t)\in\{u\leq\delta\}\subset\{u\leq 0\}+B^{n}+2(0, \epsilon)$ .

If $0<h\leq\eta$ and $z\in \mathrm{R}^{n+1}$ , then, since $u(z, T)>\gamma>\delta$ , we see that $v_{h}(z, T)>0$ .
Noting that for each $z\in \mathrm{R}^{n+1}$ the function $v_{h}(z,t)$ of $t\geq 0$ is nondecreasing, we find
that if $0<h\leq\eta$ , then $v_{h}(z,t)>0$ for all $(z,t)\in \mathrm{R}^{n+1}\cross[T, \infty)$ .

Thu$s$ we see that
$\{v_{h}\leq 0\}\subset\{u\leq 0\}+B^{n+2}(0, \epsilon)$,

proving (2.9).

The other inclusion is observed with a little more care. Indeed, we need to divide
our considerations into two cases.

Case 1: Int $V_{0}=\phi$ . The extinction time in this case is zero (see [CEI]), i.e., $V_{t}=\emptyset$

for $t>0$ . Therefore, it is obvious that $\{u\leq 0\}\subset\{v_{h}\leq 0\}$ for all $h>0$ .
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Case 2: Int $V_{0}\neq\psi$ . We may now assume that $g(x)<0$ for all $x\in$ Int $V_{0}$ . The
convexity of $V_{0}$ guarantees (see [CEI]) that there does not happen “fattening”in the

Gauss curvature flow $\{V_{t}\}_{t\geq 0}$ , from which we can conclude that

$\{u\leq 0\}=\overline{\bigcup_{s>0}\{u\leq-\mathit{8}\}}$ .

Fix $\epsilon>0$ , and we see from the above that for $s$ome $\delta>0$ ,

$\{u\leq 0\}\subset\{u\leq-\delta\}+B^{n+2}(0, \epsilon)$ .

We may assume that (6.1) holds with current $\delta>0$ and some $\eta>0$ . Now it is immediate
to conclude that for all $0<h\leq\eta$ ,

$\{u\leq 0\}\subset\{v_{h}\leq 0\}+B^{n+2}(0, \epsilon)$ ,

which proves (2.8). $\square$
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